G DE GRUYTER

THE SHAPE-STRUCTURE RELATION FOR THE LIGHT CONSTRUCTION MEMBRANE TYPE

L. Kopenetz^a, A. Cătărig^a, Mihaela-Teodora Ghemiş^{b, *}

^a Technical University of Cluj-Napoca, Faculty of Civil Engineering, Mechanics of Structures Department, Romania ^b University of Oradea, Faculty of Civil Engineering, Cadastre and Architecture, Civil Engineering Department, Romania

Received: 04.09.2015 / Accepted: 01.10.2015 / Revised: 17.11.2015 / Available online: 15.12.2015

DOI: 10.1515/jaes-2015-0020

KEY WORDS: membrane, light structures, structure's shape, finite elements, soap film

ABSTRACT:

In the case of light structures membrane type the form is confused with the structure and vice versa. Thus the analysis process, nonlinear type, the one for form finding is also a means of optimizing these structures. To respect the natural principle of minimum it is advisable that the structure's shape is similar to the minimum surface area. The numerical problem solving is based on using finite elements with constant strain of soap film. Based on these considerations, the paper presents aspects of determining the shape of the membrane structure using finite elements of soap film.

1. INTRODUCTION

Light structures membrane type or membrane with cables allows the most varied and complex monumental engineering construction (Kopenetz & Cătărig, 2006; Kopenetz & Pârv, 2014; Kopenetz, & Prada, 2011).

Examples of such structures are shown in the following:

a) Juventus Stadium, Turin, Italy (figure 1) - Structural solution characterized by a roof suspended from steel cables connected by two pillars and the main structural system (consisting of reinforced concrete beams to level + 18.55 m and steel beams up to the external supports of the roof, elevation + 33.00 m).

Figure 1. Juventus Stadium, Turin, Italy (http://www.italia.it/uploads/RTEmagicC_Torino_Juventus_Stadi um_www.juventus.com.jpg.jpg) (view at 18 Aug. 2015)

b) Florida Suncoast Dome (Tropicana Field), Saint Petersburg, Florida, USA (figure 2) – "Tensegrity" structure with radial cable systems. The canvas roof is made of fibreglass coated with Teflon.

^{*} Corresponding author: e-mail: mihaelatoadere@yahoo.com

Figure 2. Florida Suncoast Dome (Tropicana Field), Saint Petersburg, Florida, USA (https://upload.wikimedia.org/wikipedia/commons/0/09/Tropicana_ field from air.JPG) (view at 18 Aug. 2015)

c) Tao-Yuan County Arena, Taoyuan, Taiwan (figure 3) - Membrane Structure having a circular plan with 120*m* in diameter. The membrane made of PTFE (polytetrafluoroethylene) having a long life.

Figure 3. Tao-Yuan County Arena, Taoyuan, Taiwan (http://www.taiyokogyo.co.jp/img/lgr/mk_371.jpg) (view at 18 Aug. 2015)

d) Hajj Terminal, Jeddah, Saudi Arabia (figure 4) - Structure made of Teflon membrane, covering an area of 105 hectares.

Figure 4. Hajj Terminal, Jeddah, Saudi Arabia (http://archrecord.construction.com/features/aiaAwards/10_25year Award/1.jpg) (view at 18 Aug. 2015)

Given the flexibility of these structures in general, and structural subassemblies, in particular, the structural design must address two key issues:

- Determining the initial geometry (Kopenetz et al., 2004, 2005; (Kopenetz, 2006).

- Establishing the tensions and surface shape, from pre-stress and static and dynamic loads applied (Kopenetz & Ionescu, 1985).

If for determining the stresses there are relatively many bibliographic alerts, for the form study there are few communications (Bentley, 1999; Woodbury, 2010).

To respect the natural principle of minimum it is advisable that the light structure's shape is similar to the minimum area surface.

The analytical solving of the minimal surface shape is possible only for certain specific contours (coil, askew quadrangle with tips on a regular tetrahedron etc.) (Fox & Kemp, 2009; Burry, 2011).

From the point of view of structural engineering resolutions are based on PLATEAU's problem (Plateau, 1873), that means finding a minimal area surface for a closed space contour (Kopenetz & Cătărig, 2006; Kopenetz & Pârv, 2014).

2. DETERMINATION OF MINIMUM AREA SURFACE

Minimum area surfaces are those surfaces which of all the surfaces they pass through a skew curve, have the smallest area.

If on a closed elastic or rigid contour is considered a soap film with its own negligible weight, due to superficial stress, characteristic to fluid films, these take the form of minimum area surface, corresponding to the contours. In this regard, the minimum area surfaces represent the natural form of existence of films made of soap film, unloaded (Lynn, 1999; Hawking, & Mlodinov, 2010).

The minimum area surface is determined in two conditions:

a) The first condition is related to the mean curvature:

$$H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 (1)

This curvature must be equal to zero in any point of the surface, which is equivalent to the condition $R_1 = -R_2$, where R_1 and R_2 are the main radii of the curvature.

b) The second condition is related to stress, meaning that they must be constant at any point and in after each direction.

The approach of this condition, regarding the size of the minimum area surface, is experimental and numerical and it is followed by analytical methods only for particular cases.

The experimental determination of minimum area surface shape sums up to finding the coordinates and curvatures in all the points of the area, through stereo-photogrammetry methods or even normal shooting from different angles. The numerical study, both for finding minimum area surface and for determining the shape from different loads, appeals to the special finite element with uniform stress σ^{t} .

By discrete modelling of the fluid film surface, the membrane structure with an infinite number of degrees of freedom is replaced with a system with a finite number of degrees of freedom. This system represents a set of bidimensional membrane type elements, using isoparametric finite elements of indefinite shape, linked in knots (Kwinter, 2007; Rubinstein & Firstenberg, 1999).

The finite elements used are Zienkiewicz-Irons type, the geometry and the allowed distribution of the displacement being presented using the same functions of the form and interpolation.

The implemented method of calculation is based on the theory presented in references (Kopenetz & Ionescu, 1985; Kopenetz, et al., 2005,Kopenetz & Cătărig, 2005; Kopenetz & Pârv, 2014; Kopenetz & Prada, 2011), considering only the linear-elastic response of the material.

Newton-Raphson iterative method is used in order to solve the stability issues which are not influenced by the type of the finite element. The differential equations of movement are solved using the Newark and Wilson methods.

The initial shape is set by the software in case of membrane type structures for which the initial shape is very important. The software uses a finite element having a constant tension as a pattern for the material of the surface structure. If there are *no* external loads, the minimum area is assumed as initial shape.

SUM01 calculation program developed to solve this problem is using efficiently an iterative process (Kopenetz & Ionescu, 1985; Kopenetz & Cătărig, 2006; Kopenetz & Pârv, 2014; Kopenetz & Prada, 2011).

3. NUMERICAL EXEMPLES

a) In order to determine the surface shape of a minimum area for the membrane type structure in figure 5 using two variants, let's consider point 12 fixed. The minimum surface area is calculated considering first the constant stress in the membrane equals 5 daN/mm, and then 20 daN/mm.

After analysing the results (table 1), we notice that as expected identical ordinates are obtained.

If point 12 is free, the minimum area is obtained as the horizontal plan, again an expected physical result.

STARTING AREAS

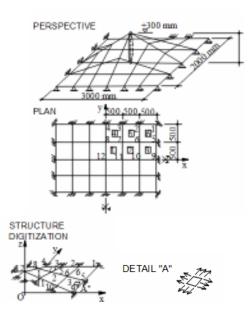


Figure 5. Shape of a minimum area for membrane structure

-	Material. Soap Tilli					
			Co	ordinates		
Point	Starting			After 10 iterations with $t_0=5$ and $t_0=20$ daN/mm		
	х	Y	Z	Х	у	Z
1	1500	1000	0	1500	1000	0
2	1000	1000	0	1000	1000	0
3	500	1000	0	500	1000	0
4	0	1000	0	0	1000	0
5	1500	500	0	1500	500	0
6	1000	500	50	985,56	498	20,66
7	500	500	100	486,78	490,45	57,20
8	0	500	150	0	437,33	75,44
9	1500	0	0	1500	0	0
10	1000	0	100	975,92	0	29,38
11	500	0	200	422,2	0	84,55
12	0	0	300	0	0	300

Material: Soap Film

Table 1. Coordinates x, y, z after 10 iterations

b) In this example, the study of form is proposed for a bearing structure with pre-stressed membranes with arches, suitable for gyms (figure 6).



Figure 6. Prestressed membranes with arches suitable for gyms

The results are presented in figure 7 and table 2:

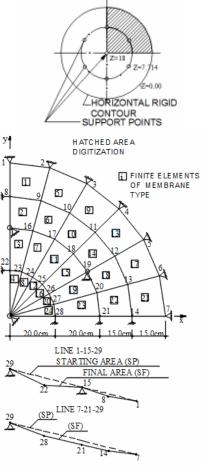
Figure 7. Shape result for prestressed membrane with arches suitable for gyms

Material: Soap Film					
Point	Coord	inates after 5 itera	ations [m]		
Tomt	х	у	Z		
1.	36,000	18,000	0		
2.	31,500	18,000	0		
3.	27,000	18,000	0		
4.	24,000	18,000	0		
5.	21,000	18,000	0		

	-		
6.	18,000	18,000	0
7.	36,000	17,120	5,560
8.	33,115	16,820	5,513
9.	30,292	17,120	5,560
10.	27,423	16,618	5,203
11.	24,669	16,696	4,939
12.	22,077	17,120	4,830
13.	17,351	16,279	1,830
14.	12,440	17,120	0
15.	36,000	14,560	10,580
16.	34,110	14,447	10,483
17.	32,292	14,560	10,580
18.	29,714	14,134	9,820
19.	27,428	14,203	9,332
20.	25,495	14,560	9,160
21.	19,552	13,390	4,877
22.	13,472	13,628	1,965
23.	7,420	14,560	0
24.	36,000	10,580	14,560
25.	34,678	10,535	14,488
26.	33,412	10,580	14,560
27.	31,072	10,267	13,510
28.	29,135	10,352	12,890
29.	27,495	10,580	12,610
30.	22,019	9,798	8,091
31.	16,000	9,541	4,394
32.	9,747	9,874	1,801
33.	3,440	10,580	0
34.	36,000	5,560	17,120
35.	34,955	5,543	17,062
36.	33,955	5,560	17,120
37.	31,753	5,393	15,879
38.	30,027	5,447	15,195
39.	28,660	5,560	14,830
40.	23,756	5,220	10,551
41.	18,436	5,012	6,817
42.	12,760	5,007	3,837
43.	6,860	5,199	1,581
44.	0,880	5,560	0
45.	36,000	0	18,000
46.	35,031	0,001	17,946
47.	34,103	0	18,000
48.	31,933	0,002	16,690
49.	30,247	0,001	15,981
50.	28,850	0	15,580
51.	24,734	-0,003	11,939
52.	20,352	-0,006	8,460
53.	15,576	-0,005	5,495
54.	10,511	0,010	3,105
55.	5,278	0,007	1,306
56.	0	0	0

Table 2. Coordinates x, y, z, after 5 iterations

c) The next example presents the study of the shape for a circular hall with membrane structure in three versions:


- Mechanical stress.
- Mneumatic stress.

- Pneumatic stress for cable supported structures.

The results are presented in figure 8, table 3, figure 9, table 4, figure 10 and table 5.

STUDY OF FORM FROM MECHANIC STRAIN WITHOUT CABLES

NUMBER OF UNKNOWN: 52

Figure 8. Shape for circular hall with membrane. Mechanical stress

Material: Soap film with stress T=1,0 daN/cm

Material. Soap min with stress 1–1,0 daty/cm					
Point	Coordinates after 8 iterations [cm]				
TOIIIt	х	у	Z		
8.	0	54,390	2,731		
9.	14,109	52,824	2,739		
10.	27,306	47,293	2,579		
11.	38,688	38,615	2,742		
12.	47,102	27,195	2,730		
13.	52,797	14,209	2,739		
14.	54,611	0	2,579		
15.	0	40,000	7,714		
16.	10,074	38,047	5,881		
17.	19,615	33,972	5,473		
18.	27,910	27,736	5,883		
19.	34,640	20,000	7,714		
20.	37,984	10,312	5,882		
21.	39,229	0	5,472		
22.	0	18,521	8,841		
23.	4,691	17,632	9,174		
24.	9,095	15,752	9,219		

25.	12,923	12,873	9,175
26.	16,039	9,260	8,841
27.	17,614	4,759	9,174
28.	18,190	0	9,219
29.	0	0	18,000

Table 3. Coordinates after 8 iterations with stress T=1,0 daN/cm

CIRCULAR WAREHOUSE

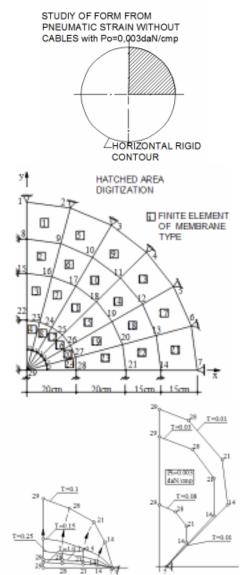


Figure 9. Shape for a circular hall with membrane structure. Pneumatic stress

Point	Coordin	ates after 8 iterat	
	х	Y	Z
	47,439	27,390	1,413
	47,628	27,499	2,828
	48,032	27,733	5,828
	48,930	28,251	10,54
12	54,918	31,709	25,84
	251,43	145,18	231,76
	515,83	297,86	518,47
	587,86	339,44	624,27
	587,01	338,96	623,13
	34,275	19,789	2,483
	34,548	19,947	4,981
			,
	35,126	20,281	10,270
10	36,304	20,961	19,009
19	43,378	25,046	44,968
	245,44	141,72	413,37
	497,44	287,22	904,47
	551,86	318,65	1131,01
	551,54	318,46	1129,71
	39,578	0	2,483
	39,894	0	4,981
	40,561	0	10,270
	41.992	0	19,009
21	50,089	0	44,968
21	283,41	0	413,37
	574,39	0	904,48
	637,23	0	1131,02
	636,86	0	1129,72
	16,832	9,718	3,394
	17,074	9,858	6,830
	17,607	10,166	14,106
	18,643	10,764	25,971
26	23,811	13,748	60,763
	151,30	87,35	560,51
	295,31	170,70	1201,39
	287,44	165,96	1493,88
	287,47	165,98	1493,27
	19,437	0	3,394
	19,716	0	6,830
	20,331	0	14,106
	21,528	0	25,971
28	27,495	0	60,763
28			
	174,71	0	560,51
	341,01	0	1201,38
	331,92	0	1493,87
	331,96	0	1493,2
	0	0	3,765
	0	0	7,594
	-	0	15,734
	0	~~~~~~~~~~~~~~~~~~~~~~	
	0	0	29,028
29			29,028 68,127
29	0	0 0	68,127
29	0 0 0	0 0 0	68,127 633,35
29	0	0 0	68,127

Table 4. Points coordinates x,y,z [cm]

CIRCULAR WAREHOUSE STUDY OF FORM FROM PNEUMATIC STRAIN WITH CABLES (Po=0,003daN/cmp)

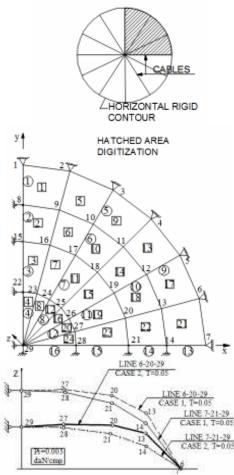


Figure 10. Shape for a circular hall with membrane structure. Pneumatic stress for situation when there are stabilization cables

CASE 1: Initial length L_0 (IJ)₁ of the elements of

cable					
Cable	$L_0 (IJ)_1$				
1	25,000				
2	17,493				
3	20,881				
4	20,000				
5	25,000				
6	17,493				
7	20,881				
8	20,000				

	•		20,000		
Point	Coordinates after 8 iterations [cm] For T=0,025				[cm]
	х		Y		Ζ
1	0		70		0
11	46,876		46,876		30,038
12	48,071		27,702		20,441
13	63,912		17,056		29,945
14	55,390		0		20,331
18	29,694		29,694		35,793

19	35,085	20,194	29,541		
20	40,543	10,791	35,634		
21	40,406	0	29,409		
25	15,024	15,024	35,398		
26	17,381	9,995	34,140		
27	20,548	5,433	35,328		
28	20,018	0	34,064		
29	0	0	34,760		
Point	Coordin	nates after 8 iterati For T=0,05	ons [cm]		
	х	Y	Z		
1	0	70	0		
11	39,026	39,026	24,780		
12	47,657	27,497	20,078		
13	53,267	14,298	24,738		
14	54,952	0	19,996		
18	26,971	26,971	32,296		
19	34,880	20,115	29,539		
20	36,818	9,865	32,242		
21	40,210	0	29,446		
25	14,931	14,931	35,251		
26	17,347	9,999	34,837		
27	20,394	5,455	35,219		
28	20,001	0	34,789		
29	0	0	35,686		
Point	Coordinates after 8 iterations [cm] for T=0,1				
Font	х	у	Z		
1	0	70	0		
11	35,807	35,807	23,029		
12	46,825	27,036	19,286		
13	48,919	13,122	22,999		
14	54,048	0	19,259		
18	25,727	25,727	30,931		
19	34,382	19,847	29,278		
20	35,137	9,429	30,916		
21	39,681	0	29,248		
25	14,745	14,745	35,951		
26	17,261	9,964	36,038		
27	20,138	5,397	35,943		
28	19,924	0	36,024		
29	0	0	37,840		
	11 5 0	1. /			

Table 5. Points coordinates: x,y,z [cm]

CASE 2: Initial length L_0 (IJ)₂ of the elements of

cable					
Cable	$L_0 (IJ)_2$				
1	18,0278				
2	15,8114				
3	20,2237				
4	20,0998				
5	18,0278				
6	15,8114				
7	20,2237				
8	20,0998				

Point	Coordinates after 8 iterations [cm] for T=0,025				
	х	у	z		
1	0	70	0		
11	40,260	40,260	23,488		
12	47,645	27,455	10,120		
13	54,967	14,648	23,227		
14	54,881	0	9,891		
18	29,282	29,282	23,982		
19	34,872	20,056	15,968		
20	39,954	10,581	23,679		

21	40,125	0	19,667
25	19,888	19,888	20,954
26	17,503	10,046	19,224
27	27,194	7,237	20,757
28	20,137	0	19,032
29	0	0	19,600
	Coordin	nates after 8 iterati	ons [cm]
Point		For T=0,05	
	х	у	Z
1	0	70	0
11	34,548	34,548	17,021
12	47,508	27,403	9,875
13	47,156	12,709	16,892
14	54,754	0	9,682
18	25,422	25,422	19,456
19	34,794	20,048	15,873
20	34,701	9,341	19,322
21	40,071	0	15,623
25	18,956	18,956	19,699
26	17,474	10,056	19,330
27	25,903	6,995	19,588
28	20,126	0	19,187
29	0	0	19,867
D : /	Coordinates	after 8 iterations [cm] for T=0,1
Point	х	Y	Z
1	0	70	0
11	31,984	31,984	15,042
12	47,292	27,310	9,463
13	43,753	11,735	14,941
14	54,556	0	9,339
18	24,293	24,293	17,819
19	34,655	20,013	15,635
20	33,189	8,934	17,748
21	39,965	0	15,478
25	18,922	18,922	19,060
26	17,419	10,064	19,448
27	25,871	6,938	19,003
28	20,096	0	19,371
29	0	0	20,425

Table 5. Points coordinates: x,y,z [cm]

4. CONCLUSIONS

- In order to cover large areas (ths m²) membrane type light structures are suitable design options.

- n case of such structures, the shape is the structure and the structure coincides with the shape, so any solution that resolves the optimal and stable shape has a practical importance.

- This paper presents a numerical procedure for finding the shape by using finite elements with constant stress.

5. REFERENCES

Bentley, P., 1999, *Evolutinary Design by Computers*. Morgan Kaufmann, Burlington.

Burry, M., 2011, Scripting Cultures; Architectural Design and Programming. Wiley, London.

Cătărig, A., Kopenetz, L., 1998, Structuri ușoare alcătuite din cabluri și membrane (Cables and Membranes Structures), Editura UT Pres, Cluj-Napoca.

Fox, M., Kemp, P., 2009, *Iteractive Architecture*. Princeton Architectural Press, New York.

Hawking, S., Mlodinov, L., 2010, *The Grand Design*. Banton Books, New York.

Kopenetz, L., Pârv, Bianca, 2014, Introducere în teoria structurilor înalte și a structurilor cu dimensiuni mari (Introduction into High and Big Dimensions Structures Theory). Editura UT Pres, Cluj-Napoca.

Kopenetz, L., Prada, Marcela, 2011, Introducere în teoria structurilor speciale (Introduction into Special Structures Theory). Editura Universității, Oradea.

Kopenetz, L., 2006, *Gongolatok Statikusoknak*. Ed. Kriterion, Cluj-Napoca.

Kopenetz, L., Cătărig, A., Alexa, P., 2004, *Setting the Form* of Light Membrane Structures. Proceedings of International Conference Performance based Engineering for 21st Century, Iași.

Kopenetz, L., Cătărig, A., Alexa, P., 2005, *The Geometry of Stressed Lightweight Structures*. International Colloquium of IASS Polish Chapter, Warsav.

Kopenetz, L., Cătărig, A., 2006, *Teoria structurilor ușoare* cu cabluri și membrane (Membranes and Cables Light Structures Theory), Editura UT Pres, Cluj-Napoca.

Kopenetz, L., Ionescu, A., 1985, *Lightweight Roof for Dwellings*. International Journal for Housing and its Application, Vol.9, Nr.3, Miami, SUA.

Kwinter, S., 2007, Far from Equilibrium – Essay on Technology and Design Culture. Actar, Barcelona.

Lynn, G., 1999, *Animate Form*. Princeton Architectural Press, New York.

Plateau, J.A.F., 1873, *Statique experimentale et theoretique des liquids*, Paris

Rubinstein, M.F., Firstenberg, I.R., 1999, *The Minding Organization*. Wiley, London.

Woodbury, P., 2010, *Elements of Parametric Design*. Routledge, London.