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ABSTRACT:

Full flat slabs can be enhanced by using spherical voids to replace the unemployed concrete from the core part of the slab.
Therefore we get low self-weighted slabs that can reach a high range of spans, a low material consumption compared to classical
solutions used so far. On the other hand, the upsides of these slabs pale against the insecurity in design stage about their
punching and shear force behaviour. In this paper it is presented a parametric study about shear force behaviour of flat slabs with
spherical voids used in standard condition service. The study was made using the Atena 3D finit element design software,
starting form a numerical model gauged on experimental results on real models — scale 1:1. Based on these lab results, the
model’s validation was made by overlapping the load — displacement experimental curves on the curves yielded from numerical
analyses. The results indicate that under a longitudinal reinforcement rate of lower than 0.50%, flat slabs with spherical voids
don't fail to shear force and over this value the capable shear force decreases in comparison with solid slabs, as the reinforcement
rate increases.

1. INTRODUCTION Considering, from the punching shear provisions (Kiss and
) ) Onet, 2008), the first control perimeterl=2d as the
1.1. General considerations perimeter of solid slab, the check of shear stress at control

) . . perimeter is in a direct relation with the shear strength of the
Introducing the plastic balls (spheres or flattened rotationally,qiow flat slab. So, it is important to establish the limits in
symmetrical void formers) to replace and therefore eliminate thgnich the shear strength of the hollow flat slab could be
concrete in the middle strip of a full flat slab, which does no{.gnsidered same as for the full slab. Concerning the load
contribute to its structural performance, one obtains a ho”o‘%earing behaviour of biaxial hollow slabs, numerical and
flgt slab that span in two directions (after www.bubeedeck.con@werimemm studies has been reported in our country and
viewed at 14.02.2015, an'd Albrecht, 2012). The advantagegyroad, but there wasn't considered all the loading level
thus obtained are many: economic savings, longer span§nge (Schnellenbach-Held & Pfeffer, 2002, Schnellenbach-

between supports, faster construction time and enviromantaliye|q & Aldejohann, 2005: Abramski 2010: Calin, 2010).
friendly. However, despite these advantages, some uncertainties

concerning the shear strength are expected. In these conditiops. Experimental tests

the question is to what degree the spherical hollow cores

influence the shear bearing capacity of the slab in comparisorhe present study has the strating point in the laboratory
with the classical solutions of flat slabs. Or, more specificallywhere we conducted experimental tests on four slabs with
up to what loading level, the slab behaviour at shear force ispherical voids (bubbledeck slab system) and a normal slab,
affected by the spherical hollow cores, knowing the fact that theubjected to shear force. The test was made on four point
reinforced concrete flat slabs, besides the supports zones, arepignding. The reinforcing percentage and the shear arm — a/d
general in a moderate stress regime (Bindea, 2013a). If thetio has varied. The failure of low reinforcing percentage
punching shear could easily be resolved by eliminating thelements occured during bending. As noticed in figure 1,
plastic balls from the areas around columns still remains athe DG3 slab showed shear force failure by crushing of
issue to establish the dimensions for the perimeter of solid slab.

* Corresponding author.
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concrete strut between bearings and load applicgbioints
(Bindea, 2013b).

Figure 1. Failure at shear force — DG3 slab

2. NUMERICAL MODEL
2.1. Constitutive models for concrete and reinfor cement

In order to achieve numerical analysis, the ATENM® 3
(Advance Tool for Engineering Nonlinear Analysig)ntinear
design software was used.

Using this component model for concrete allows ausige
the material curves determined by lab experiments.
Consequently, in order to define the compressiorcretea
there was initiated a sigma — epsilon variationgdien
(Figure 4), assigned/ traced by 20 points from the
experimental curve.

In order to model the concrete tensile behavioeretwas
introduced a linear sigma — epsilon diagram, defibg 3
points determined according to the values of tersilength
and elasticity compression modulus of concreteajoket in
laboratory by split tests on 150 mm cubes and cesgion
tests on 100 x 100-300 mm prisms, conform RILEM 1994

The behaviour curve for steel reinforcement (sigma
epsilon) was defined through 3 points extractechftbe lab
experiments curves.

The steel sections used for loading and supporthef
elements were considered to be made of an ideatiela
material, in order to avoid errors because of I@tasticity
in higher stress areas.

It is developed by Ceevenk

Consulting Company. The program is used with success

especially for simulating the reinforced concreteucures 3;% 120

behaviour (Cervenka 2011). Concrete modelling in ARBN -0 7~

is based on a tension cracking model mixed witbrapgression 0.80 7 N

plastic range model, which can handle the increased 060 ,.’ ™~ -
deformation capacity of concrete under triaxial poession oo s ~
(Papanikolaou & Kappos, 2007). Both models use fretu b d N
mapping” type algorythm for integrating componegtiations 0-20 ’/

(Cervenka & Papanikolaou, 2008).
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Figure 2. Uniaxial stress — strain law (Cervenkd, 20

The component model “CC3NonLinCementious 2User” has

been chosen, defined by the uniaxial stress nstaai (Figure
2) and by a biaxial failure function presented igufe 3.
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Figure 3. Biaxial failure function for concrete
(Cervenka, 2012)
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Figure 4. Sigma — epsilon curve for concrete in jpassion

2.2. Thefinite dementsand mesh size

The discretization of the concrete and steel sestiwas
made in “CClsoTetra” tetraedric volumetric finite relents.
These finite elements display a capability of noedir
behaviour and count no more than 10 integrationesod
The reinforcement was modelled as independent tass
The geometry of finite elements is shown in Figbire

Figure 5. Geometry of finite elements (Cervenka,201

In order to assign the finite element mesh, theezewa
number of several similar analyses (the mesh diroens
varied from 6 cm to 10 cm). Following these testavas
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able to establish the finite element mesh for 8 lsased on the
accuracy and precision of the results.

Figure 6. Numerical model with meshsize = 8cm

Being that the “bubbledeck” reinforcement modelseverade
with steel mesh for both sides of the elementsretheas

considered a strong liability between concrete landitudinal

reinforcement. The numerical model considered afeper
liability between concrete and longitudinal reirdement.

2.3. Validation of numerical model

The theoretical model has taken into account tHewiing
mechanical characteristics:

o0 Elasticity modulus for concrete.E[MPa] 36800

o Compression strength for concretg [MPa] 46.86

o Tensile strength for concretg,,f[MPa] 3.62

o Poisson’s coefficient for concrete 0.2

0 Elasticity modulus for reinforcement ¢ E[MPa]
200000

0 Yield strength for reinforcement fiMPa] 462

o Poisson’s coefficient for reinforcement 0.3

Taking into account that the DG3 element failedlstar force,
the calibration of the theoretical model was madmitial state
according to this element and was eventually vedda
according to the DG4 flat slab with voids (longitual
percentage ratio p = 0.31%). The comparison mvade in
terms of load — displacement curve, but also imseof failure
mode.

Thus the calibration of the numerical model withhecal
voids was made in several steps, as follows:
- calibration related to DG3 element:

o variation of load implementation parameters,

o variation of tensile  behaviour parameters of

concrete,

o influence of the discretization mesh size,
- model validation according to DG4 and DP1 (fullbgla
elements.

The tensile concrete behaviour sigma — epsilonsgabased on
experimental tensile average strength for concrated
experimental elasticity modulus. The value forratte tensile
straing,, was established using the curve reported by J.¥. Ch
in 2006. The behaviour curve obtained by Cho wasrdehed
from experimental tests at biaxial tension on m@icéd concrete
models having the compression strength 41Mpa, vidatis
close enough to the compression strength obtaionedthfe
concrete used in our experimental programmeg{(#6MPa).
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Figure 7. Average stress-strain relationship ofccete after
crack occurrence (Cho, 2006)

The ultimate tensile strairg{ = 0.001323) was obtained
using the expression form Figure 7. This value was
introduced in the behaviour curve for the concrete
tension, as it shown in Figure 8. Given that thstee
elements were provided on both sides with welded
reinforcing meshes we considered in the theoretivatle
the tension stiffening coefficient by 0.4 as it
recommended in FibModelCode, 2010.
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Figure 8. Sigma — epsilon curve for concrete irsit@m

As noticed in Figure 9, there are small differenagmrding
initial  stiffnress and maximal force and appending
displacement. These differences appear due to &yethe
computation algorithm determines the moment
emergence and crack opening in tensile concrete.
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Figure 9. Variation of discretization mesh — nurcalri
model MG3

According to Cervenka 2012, the cracking procesglds/
into 3 stages (Figure 10). First stage ends wtelesite
strength in concrete is reached; the second oten®lthe
cracking process until tension drops until totadctiarge,
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followed by the final stage, in which cracks keepexpanding
without tensile tensions.

uncracked | process zone | cracked
‘ |

Finite
i elementf

crack

closing Er ¢

Figure 10. Cracking stages (Cervenka, 2012)

As reported by Cervenka 2012, the cracking width
determined in according to the size of the finleneent and the
crack openings are related to the cracking widgneeably to
the expression:

W=gg XL,

where:g., is the crack opening strain, normal to the crack
direction, yielded from cracking width after comele
discharge of tensile tension.

Thus, as the size of finite elements decreases,spla®
between cracks also decreases, fact that leadshighar
stifness of the element, especially in sphericadvdlat
slabs, upon which it was noticed that, following
experimental data, the gap between cracks is depérmh
the transversal array of voids.

Thereby, as finite element size decreases, thebghpeen
cracks decreases, leading to a higher stiffnessthef
element, especially in the case of spherical vlats slabs
those have shown during lab experiments that thmte
between cracks is related to the presence of teasal
arrays of voids.

is

There is no difference in failure mode, but théufa occurs
also in the model that has a finer finite meshingde) by
inclined cracks between bearings and load appiioatiack,
as shown in Figure 11.
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Figure 11. Failure mode — numerical model MG3 witiishsize = 5cm

A crack density arises, but in the same time afs@lggnment
that imitates the direction and orientation of &mgielded in
the lab specimen.

Having the same material characteristic of MG3 nhodiated
to DG3 flat slab and changing only the reinforcetreamd a/d
ratio, in order to obtain a good imitation of theperimental
study of DG4 specimen, the behaviour diagram for 4MG
numerical model was obtained — Figure 12. One aditenthat
the numerical model displays a load — vertical ldispment
curve very close to the experiment, especially e tnitial
stage. The distinction concerning the ultimate lasicunder
10%.

Load |kN|
o
g

—  MG4 - numerical model
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¢

T T T 1
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Figure 12. Verifying numerical model regarding s264
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In figure 13 it is shown the failure mode of thenspcal
void flat slab that has reinforcement ratio of @@and a/d
ratio of a/d=1.8. It is clear that failure occurredring
normal cracks in core area of the slab. It shoves the
cracks were emerged under the array of voids whteze
opening has reached the highest value.
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Figure 13. Failure mode — numerical model MG4

In figure 14 it is shown the B- curve for the solid
numerical model (the slab with no voids), overlappg the
curve of the solid slab DP1. One should notice that
differences are insignificant, both regarding thwstial
stiffness and also the maximum load value.
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Figure 14. Verifying numerical model MG3 regardswid slab

Taking into account that there are no major difiess in
behaviour regarding numerical simulation of lab exkpental
tests, the numerical model validation is considersdccess.

Maintaining the mechanical characteristics deteeahimbove,
we move on to the completion of parametric study.

3. PARAMETRIC STUDY

This study was made with the designation of supergi the
behaviour of flat slabs with spherical voids and Isteel ratio
under shear force, exploring in wide range theugilce of the
studied parametres during the experimental prog@amm

Taking into account that the theoretical model wdpisted in
terms of material properties, depending on the Weba of
tested specimens, within the parametric study tifileence of
concrete class and neither the void size were imoedch The
same mechanical characteristics of materials walewied, but
the range for a/d ratio and steel ratio was exténde

For each set of parametres there were some anaigsis, both
for slabs with voids and solid slab with the sahiekness.

In Figure 15 there are shown the load — displacemenves for
model MG3 (theoretical model related to DG3 slatnfrthe
experimental study, reinforcing percentage p = @p2rhe a/d
ratio ranges inside 1.8+3.0, both for specimenk witids (dot-
lined curves) and for the specimens without vololg,the same
characteristics (continuous-lined curves).
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Figure 15. Variation of a/d ratio — numerical moi&b3
(p = 0.52%)

The load — displacement curves for MG4 model (tagcal
model related to DG4 slab from the experimentaldytu

reinforcing percentage p = 0.31%) are shown in feidL6.
The shear arm varied as in MG3 model.

Load |kN|
EX]
=
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4 Tullslab  a/d=3.0
100 I

0 20 40 50 80 100 120
vertical displacement at midspan [mm|

Figure 16. Variation of a/d ratio — numerical moli&b4
(p =0.31%)

Following the load — displacement curves, we caticao
that the inequality of stiffness between the specinvith

voids and the ones without voids decreases as/theato

drops, also in the case of high steel ratio elemetite
presence of voids increases significantly the wten
dispacement. In a/d = 3.0 ratio for both reinfogchatios,

an increase of ultimate failure load in flat slatith voids

compared to ones with no voids is noticed. Thigug to

the fact that, while increasing the a/d ratio, thelined

cracks become more present between bearings and
application points and the concrete plasticity s focused
on the height of compressed zone on the core segfithe

specimen.

loa

There are no high differences between maximum shece
in models with voids, compared to those withoutdgoiThe
worst case belongs to the flat slab with lomgitadin
reinforcement ratio of 0.52% and a/d ratio of 2vbereas
the shears force corresponded the solid slab autbes by
4%. All models with voids that have the reinforcermeatio
of 0.52% failed at shear force and those with rafi6.31%
failed at bending moment.

Also all models without voids (for all reinforcentenatios)
failed at bending moment and the inclined cracksemf
shear force, had values much lower than perperaticues
in the central area of the slab.

Concerning the failure mode of specimens related/tb
ratio, we noticed that, as the distance betweed fmznts
and bearings increases, the inclined cracks are otmrious
and appear much sooner than the yielding pointhef t
element. This is the reason why the variation &f steel
ratio was made for a/d ratio of 3.0.

It is presented in Figure 17 theAFeurves in relation to the
variation of the reinforcing ratio. We can notideat the
differences of stiffness and maximal load grow atue, as
we increase the reinforcing ratio. Concerning tladsiwith

a steel ratio of up tu 0.52%, the presence of vdmss not
negatively affect the maximum shear value. But as th
reinforcing ratio increases over 0.52%, the coradpw
shear force of the specimens with voids will deseca
compared to the one coresponding solid slabs. €heedse

11
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(of 14%) is more profound as the reinforcementoraéiaches
the value 0.81%.
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Figure 17. Variation of reinforcing percentageaati
ratio a/d = 3.0

In Figure 18 it is presented the cracking stat®@ated with
the maximum stress value, view inside the numenoadiel of
flat slab with sperical voids. The cracking plarig¢re inclined
cracks can be noticed. The cracking plane intesdbet spheres
in their maximum diameter zone.

CRACK WIDTH
CcoD1
0.00538
l0.0047822
0.0041844
0.0035867
- 0.0029889
- 0.0023911
0.0017933
0.0011956
0.00059778

0

I

Figure 18. Cracking stage — numerical model MG3tbr
a/d=3.0

In all specimen with voids, even if failed at shéarce, the
failure occured after yielding point, but crack op®s
associated with serviceability limit state SLS (v083mm) was
achieved before the elements begin to yield (befesching
maximum load or horizontal curve on diagramf-

4. CONCLUSIONS

In this parametric study there was a variationhaf $hear arm
and reinforcing percentage. The mechanical chaistits of

materials used and the geometry of the spherigdswemained
constant throught the experiment. For each caflataflab with

spherical voids, there was a similar model witheoids. The

next conclusions have arised:

e The numerical model shows the behaviour of in-lal

elements, from with initial stifness to failure negd

the differences between failure forces values ar

below 10%.

12

e There is the confirmation of stifness reduction for
bending of flat slabs with voids towards that of
flat slabs without voids, along with the extension
of reinforcing percentage and a/d ratio.

¢ In all a/d ratios for flat slabs with spherical @si
percentage of 0.52%, failure occured during shear
force, whilst for flat slabs with spherical voids
percentage of 0.31%, failure occured at bending

moment.
« Al slabs without voids collapsed at bending
moment, no matter what the reinforcing

percentage and shear arm was.

¢ By comparing the utimate values of shear force of
flat slabs with spherical voids with those of flat
slabs without voids concerning reinforcing
percentage of up to 0.52%, one should not notice
remarkable differences (+ 5%).

« As reinforcing percentage rises, the ultimate shear
force for flat slabs with spherical voids decrease
from that of solid slabs.

Based on the numerical analysis results, one caolub®
that flat slabs with spherical voids with reinfargi
percentage of 0.5% don't display a very differeahdviour
for shear force compared to that of solid slabssarine
thickness.

In slabs with reinforcing percentage between 0.56%
0.80%, failure may occur through inclined crackiingm
shear force, even though ultimate shear force vel®t
differ much of that of maximum shear force for dodlabs

of the same geometry, in which case failure ocadars
normal cracks from bending. Thus, considering
experimental values and the fact that numericalyaisa
confirm reaching the serviceability limit state ioiclined
cracks (w=0.3mm) before reaching vyield point
longitudinal reinforcement, the bearing capacity $hear
force in flat slabs with spherical voids can be sidared
conservative as being 60% of bearing capacity iofeeced
concrete solid slabs.

of
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