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ABSTRACT: 

Full flat slabs can be enhanced by using spherical voids to replace the unemployed concrete from the core part of the slab. 
Therefore we get low self-weighted slabs that can reach a high range of spans, a low material consumption compared to classical 
solutions used so far. On the other hand, the upsides of these slabs pale against the insecurity in design stage about their 
punching and shear force behaviour. In this paper it is presented a parametric study about shear force behaviour of flat slabs with 
spherical voids used in standard condition service. The study was made using the Atena 3D finit element design software, 
starting form a numerical model gauged on experimental results on real models – scale 1:1. Based on these lab results, the 
model’s validation was made by overlapping the load – displacement experimental curves on the curves yielded from numerical 
analyses. The results indicate that under a longitudinal reinforcement rate of lower than 0.50%, flat slabs with spherical voids 
don’t fail to shear force and over this value the capable shear force decreases in comparison with solid slabs, as the reinforcement 
rate increases. 

* Corresponding author.

1. INTRODUCTION

1.1. General considerations 

Introducing the plastic balls (spheres or flattened rotationally 
symmetrical void formers) to replace and therefore eliminate the 
concrete in the middle strip of a full flat slab, which does not 
contribute to its structural performance, one obtains a hollow 
flat slab that span in two directions (after www.bubbledeck.com 
viewed at 14.02.2015, and Albrecht, 2012). The advantages 
thus obtained are many: economic savings, longer spans 
between supports, faster construction time and enviromantally 
friendly. However, despite these advantages, some uncertainties 
concerning the shear strength are expected. In these conditions 
the question is to what degree the spherical hollow cores 
influence the shear bearing capacity of the slab in comparison 
with the classical solutions of flat slabs. Or, more specifically, 
up to what loading level, the slab behaviour at shear force is 
affected by the spherical hollow cores, knowing the fact that the 
reinforced concrete flat slabs, besides the supports zones, are in 
general in a moderate stress regime (Bindea, 2013a). If the 
punching shear could easily be resolved by eliminating the 
plastic balls from the areas around columns still remains an 
issue to establish the dimensions for the perimeter of solid slab. 

Considering, from the punching shear provisions (Kiss and 
Onet, 2008), the first control perimeter u1=2d as the 
perimeter of solid slab, the check of shear stress at control 
perimeter is in a direct relation with the shear strength of the 
hollow flat slab. So, it is important to establish the limits in 
which the shear strength of the hollow flat slab could be 
considered same as for the full slab. Concerning the load 
bearing behaviour of biaxial hollow slabs, numerical and 
experimental studies has been reported in our country and 
abroad, but there wasn't considered all the loading level 
range (Schnellenbach-Held & Pfeffer, 2002, Schnellenbach-
Held & Aldejohann, 2005; Abramski 2010; Calin, 2010). 

1.2. Experimental tests 

The present study has the strating point in the laboratory 
where we conducted experimental tests on four slabs with 
spherical voids (bubbledeck slab system) and a normal slab, 
subjected to shear force. The test was made on four point 
bending. The reinforcing percentage and the shear arm – a/d 
ratio has varied. The failure of low reinforcing percentage 
elements occured during bending. As noticed in figure 1, 
the DG3 slab showed shear force failure by crushing of 
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concrete strut between bearings and load application points 
(Bindea, 2013b). 
 

 
 

Figure 1. Failure at shear force – DG3 slab 

 
2. NUMERICAL MODEL 

2.1. Constitutive models for concrete and reinforcement 

In order to achieve numerical analysis, the ATENA 3D 
(Advance Tool for Engineering Nonlinear Analysis) nonlinear 
design software was used. It is developed by Cervenka 
Consulting Company. The program is used with success 
especially for simulating the reinforced concrete structures 
behaviour (Cervenka 2011). Concrete modelling in ATENA3D 
is based on a tension cracking model mixed with a compression 
plastic range model, which can handle the increased 
deformation capacity of concrete under triaxial compression 
(Papanikolaou & Kappos, 2007). Both models use “return 
mapping” type algorythm for integrating component equations 
(Cervenka & Papanikolaou, 2008).   
 

 
 

Figure 2. Uniaxial stress – strain law (Cervenka, 2012) 
 

The component model “CC3NonLinCementious 2User” has 
been chosen, defined by the uniaxial stress – strain law (Figure 
2) and by a biaxial failure function presented in Figure 3. 

 

 
 

Figure 3. Biaxial failure function for concrete  
(Cervenka, 2012) 

Using this component model for concrete allows us to use 
the material curves determined by lab experiments. 
Consequently, in order to define the compression concrete 
there was initiated a sigma – epsilon variation diagram 
(Figure 4), assigned/ traced by 20 points from the 
experimental curve. 
 
In order to model the concrete tensile behaviour there was 
introduced a linear sigma – epsilon diagram, defined by 3 
points determined according to the values of tensile strength 
and elasticity compression modulus of concrete (obtained in 
laboratory by split tests on 150 mm cubes and compression 
tests on 100 x 100-300 mm prisms, conform RILEM 1994). 
 
The behaviour curve for steel reinforcement (sigma – 
epsilon) was defined through 3 points extracted from the lab 
experiments curves.  
 
The steel sections used for loading and support of the 
elements were considered to be made of an ideal elastic 
material, in order to avoid errors because of local plasticity 
in higher stress areas.  
 

 
 
 

Figure 4. Sigma – epsilon curve for concrete in compression 
 

2.2. The finite elements and mesh size 

The discretization of the concrete and steel sections was 
made in “CCIsoTetra” tetraedric volumetric finite elements. 
These finite elements display a capability of nonlinear 
behaviour and count no more than 10 integration nodes. 
The reinforcement was modelled as independent truss bars. 
The geometry of finite elements is shown in Figure 5. 
 

 
 

Figure 5. Geometry of finite elements (Cervenka, 2012) 
 
In order to assign the finite element mesh, there were a 
number of several similar analyses (the mesh dimension 
varied from 6 cm to 10 cm). Following these tests it was 
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able to establish the finite element mesh for 8 cm, based on the 
accuracy and precision of the results. 
 

 
 

Figure 6. Numerical model with meshsize = 8cm 
 
Being that the “bubbledeck” reinforcement models were made 
with steel mesh for both sides of the elements, there was 
considered a strong liability between concrete and longitudinal 
reinforcement. The numerical model considered a perfect 
liability between concrete and longitudinal reinforcement. 
 
2.3. Validation of numerical model 

The theoretical model has taken into account the following 
mechanical characteristics: 

o Elasticity modulus for concrete Ecm [MPa] 36800 
o Compression strength for concrete fcm [MPa] 46.86 
o Tensile strength for concrete  fctm [MPa] 3.62 
o Poisson’s coefficient for concrete 0.2 
o Elasticity modulus for reinforcement Es [MPa] 

200000 
o Yield strength for reinforcement fy [MPa] 462 
o Poisson’s coefficient for reinforcement 0.3 

 
Taking into account that the DG3 element failed at shear force, 
the calibration of the theoretical model was made in initial state 
according to this element and was eventually validated 
according to the DG4 flat slab with voids (longitudinal 
percentage ratio    p = 0.31%). The comparison was made in 
terms of load – displacement curve, but also in terms of failure 
mode. 
 
Thus the calibration of the numerical model with spherical 
voids was made in several steps, as follows: 
 
- calibration related to DG3 element: 

o variation of  load implementation parameters, 
o variation of  tensile  behaviour parameters of 

concrete, 
o influence of the discretization mesh size, 
 

- model validation according to DG4 and DP1 (full slab) 
elements. 

 
The tensile concrete behaviour sigma – epsilon was set based on 
experimental tensile average strength for concrete and 
experimental elasticity modulus. The value for ultimate tensile 
strain εtu was established using the curve reported by J.Y. Cho 
in 2006. The behaviour curve obtained by Cho was determined 
from experimental tests at biaxial tension on reinforced concrete 
models having the compression strength 41Mpa, value that is 
close enough to the compression strength obtained for the 
concrete used in our experimental programme (fcm = 46MPa). 
 

 
 

Figure 7. Average stress-strain relationship of concrete after 
crack occurrence (Cho, 2006) 

 
The ultimate tensile strain (εtu = 0.001323) was obtained 
using the expression form Figure 7. This value was 
introduced in the behaviour curve for the concrete in 
tension, as it shown in Figure 8. Given that the tested 
elements were provided on both sides with welded 
reinforcing meshes we considered in the theoretical mode 
the tension stiffening coefficient by 0.4 as it is 
recommended in FibModelCode, 2010.  
 

 
 

Figure 8. Sigma – epsilon curve for concrete in tension 
 
As noticed in Figure 9, there are small differences regarding 
initial stiffness and maximal force and appending 
displacement. These differences appear due to the way the 
computation algorithm determines the moment of 
emergence and crack opening in tensile concrete.  
 

 
 

Figure 9. Variation of discretization mesh – numerical 
model MG3 

 
According to Cervenka 2012, the cracking process divides 
into 3 stages (Figure 10). First stage ends while tensile 
strength in concrete is reached; the second one follows the 
cracking process until tension drops until total discharge, 
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followed by the final stage, in which cracks keep on expanding 
without tensile tensions.  
 

 
 
 

Figure 10. Cracking stages (Cervenka, 2012) 
 
As reported by Cervenka 2012, the cracking width is 
determined in according to the size of the finite element and the 
crack openings are related to the cracking width, agreeably to 
the expression: 
 

w = εcr × Lt' , 
 

where: εcr  is the crack opening strain, normal to the crack 
direction, yielded from cracking width after complete 
discharge of tensile tension. 
 
Thus, as the size of finite elements decreases, the span 
between cracks also decreases, fact that leads to a higher 
stifness of the element, especially in spherical voids flat 
slabs, upon which it was noticed that, following 
experimental data, the gap between cracks is dependent on 
the transversal array of voids. 
 
Thereby, as finite element size decreases, the gap between 
cracks decreases, leading to a higher stiffness of the 
element, especially in the case of spherical voids flats slabs 
those have shown during lab experiments that the distance 
between cracks is related to the presence of transversal 
arrays of voids.  
 
There is no difference in failure mode, but the failure occurs 
also in the model that has a finer finite meshing mode, by 
inclined cracks between bearings and load application track, 
as shown in Figure 11.  
 

 
 

Figure 11. Failure mode – numerical model MG3 with meshsize = 5cm 
 
A crack density arises, but in the same time also an alignment 
that imitates the direction and orientation of cracks yielded in 
the lab specimen.  
 
Having the same material characteristic of MG3 model related 
to DG3 flat slab and changing only the reinforcement and a/d 
ratio, in order to obtain a good imitation of the experimental 
study of DG4 specimen, the behaviour diagram for MG4 
numerical model was obtained – Figure 12. One can notice that 
the numerical model displays a load – vertical displacement 
curve very close to the experiment, especially in the initial 
stage. The distinction concerning the ultimate load is under 
10%. 
 

 
 

Figure 12. Verifying numerical model regarding slab DG4 

In figure 13 it is shown the failure mode of the spherical 
void flat slab that has reinforcement ratio of 0.31% and a/d 
ratio of a/d=1.8. It is clear that failure occurred during 
normal cracks in core area of the slab. It shows that the 
cracks were emerged under the array of voids where the 
opening has reached the highest value. 
 

 
 

Figure 13. Failure mode – numerical model MG4 
 
In figure 14 it is shown the F-∆ curve for the solid 
numerical model (the slab with no voids), overlapped by the 
curve of the solid slab DP1. One should notice that the 
differences are insignificant, both regarding the initial 
stiffness and also the maximum load value. 
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Figure 14. Verifying numerical model MG3 regarding solid slab 
 

Taking into account that there are no major differences in 
behaviour regarding numerical simulation of lab experimental 
tests, the numerical model validation is considered a success.  
 
Maintaining the mechanical characteristics determined above, 
we move on to the completion of parametric study.  
 
 

3. PARAMETRIC STUDY 

This study was made with the designation of supervising the 
behaviour of flat slabs with spherical voids and low steel ratio 
under shear force, exploring in wide range the influence of the 
studied parametres during the experimental programme. 
 
Taking into account that the theoretical model was adjusted in 
terms of material properties, depending on the behaviour of 
tested specimens, within the parametric study the influence of 
concrete class and neither the void size were not aimed. The 
same mechanical characteristics of materials were followed, but 
the range for a/d ratio and steel ratio was extended.  
 
For each set of parametres there were some analysis made, both 
for slabs with voids and solid slab with the same thickness. 
 
In Figure 15 there are shown the load – displacement curves for 
model MG3 (theoretical model related to DG3 slab from the 
experimental study, reinforcing percentage p = 0.52%). The a/d 
ratio ranges inside 1.8÷3.0, both for specimens with voids (dot-
lined curves) and for the specimens without voids, but the same 
characteristics (continuous-lined curves). 

 
 

Figure 15. Variation of a/d ratio – numerical model MG3  
(p = 0.52%) 

 
The load – displacement curves for MG4 model (theoretical 
model related to DG4 slab from the experimental study, 

reinforcing percentage p = 0.31%) are shown in Figure 16. 
The shear arm varied as in MG3 model.  
 

 
 

Figure 16. Variation of a/d ratio – numerical model MG4  
(p = 0.31%) 

 
Following the load – displacement curves, we can notice 
that the inequality of stiffness between the specimen with 
voids and the ones without voids decreases as the a/d ratio 
drops, also in the case of high steel ratio elements, the 
presence of voids increases significantly the ultimate 
dispacement. In a/d = 3.0 ratio for both reinforcing ratios, 
an increase of ultimate failure load in flat slabs with voids 
compared to ones with no voids is noticed. This is due to 
the fact that, while increasing the a/d ratio, the inclined 
cracks become more present between bearings and load 
application points and the concrete plasticity is not focused 
on the height of compressed zone on the core section of the 
specimen. 
 
There are no high differences between maximum shear force 
in models with voids, compared to those without voids. The 
worst case belongs to the flat slab with lomgitudinal 
reinforcement ratio of 0.52% and a/d ratio of 2.6, whereas 
the shears force corresponded the solid slab outbalances by 
4%. All models with voids that have the reinforcement ratio 
of 0.52% failed at shear force and those with ratio of 0.31% 
failed at bending moment. 
 
Also all models without voids (for all reinforcement ratios) 
failed at bending moment and the inclined cracks, from 
shear force, had values much lower than perpendicular ones 
in the central area of the slab. 
 
Concerning the failure mode of specimens related to a/d 
ratio, we noticed that, as the distance between load points 
and bearings increases, the inclined cracks are more obvious 
and appear much sooner than the yielding point of the 
element. This is the reason why the variation of the steel 
ratio was made for a/d ratio of 3.0. 
 
It is presented in Figure 17 the F-∆ curves in relation to the 
variation of the reinforcing ratio. We can notice that the 
differences of stiffness and maximal load grow in value, as 
we increase the reinforcing ratio. Concerning the slabs with 
a steel ratio of up tu 0.52%, the presence of voids does not 
negatively affect the maximum shear value. But as the 
reinforcing ratio increases over 0.52%, the coresponding 
shear force of the specimens with voids will decrease, 
compared to the one coresponding solid slabs. The decrease 
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(of 14%) is more profound as the reinforcement ratio reaches 
the value 0.81%. 
 

 
 

Figure 17. Variation of reinforcing percentage ratio – 
ratio a/d = 3.0 

 
In Figure 18 it is presented the cracking state associated with 
the maximum stress value, view inside the numerical model of 
flat slab with sperical voids. The cracking plane of the inclined 
cracks can be noticed. The cracking plane intersects the spheres 
in their maximum diameter zone. 
 

 
 

Figure 18. Cracking stage – numerical model MG3 of ratio  
a/d = 3.0 

 
In all specimen with voids, even if failed at shear force, the 
failure occured after yielding point, but crack openings  
associated with serviceability limit state SLS (w = 0.3mm) was 
achieved before the elements begin to yield (before reaching 
maximum load or horizontal curve on diagram F- ∆). 
 
 

4. CONCLUSIONS 

In this parametric study there was a variation of the shear arm 
and reinforcing percentage. The mechanical characteristics of 
materials used and the geometry of the spherical voids remained 
constant throught the experiment. For each case of flat slab with 
spherical voids, there was a similar model without voids. The 
next conclusions have arised: 

• The numerical model shows the behaviour of in-lab 
elements, from with initial stifness to failure mode, 
the differences between failure forces values are 
below 10%. 

• There is the confirmation of stifness reduction for 
bending of flat slabs with voids towards that of 
flat slabs without voids, along with the extension 
of reinforcing percentage and a/d ratio.  

• In all a/d ratios for flat slabs with spherical voids 
percentage of 0.52%, failure occured during shear 
force, whilst for flat slabs with spherical voids 
percentage of 0.31%, failure occured at bending 
moment. 

• All slabs without voids collapsed at bending 
moment, no matter what the reinforcing 
percentage and shear arm was. 

• By comparing the utimate values of shear force of 
flat slabs with spherical voids with those of flat 
slabs without voids concerning reinforcing 
percentage of up to 0.52%, one should not notice 
remarkable differences (± 5%). 

• As reinforcing percentage rises, the ultimate shear 
force for flat slabs with spherical voids decrease 
from that of solid slabs. 

 
Based on the numerical analysis results, one can conclude 
that flat slabs with spherical voids with reinforcing 
percentage of 0.5% don’t display a very different behaviour 
for shear force compared to that of solid slabs of same 
thickness. 
 
In slabs with reinforcing percentage between 0.50% ÷ 
0.80%, failure may occur through inclined cracking from 
shear force, even though ultimate shear force value don’t 
differ much of that of maximum shear force for solid slabs 
of the same geometry, in which case failure occurs in 
normal cracks from bending. Thus, considering 
experimental values and the fact that numerical analysis 
confirm reaching the serviceability limit state of inclined 
cracks (w=0.3mm) before reaching yield point of 
longitudinal reinforcement, the bearing capacity for shear 
force in flat slabs with spherical voids can be considered 
conservative as being 60% of bearing capacity of reinforced 
concrete solid slabs. 
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