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ABSTRACT:

The paper presents a simplified calculation method to predict, as accurate as possible, the most important characteristics of the
behaviour of the slender reinforced concrete shear walls in the inelastic range: failure mode, strength capacity, flexural and shear
deformations, sectional and element ductility. The formulation is based on nonlinear beam element with taking into account the
influence of shear, both on strength and stiffness of the wall. The principal parameters incorporated in the calculation model are: the
rectangular shape of the cross section, the aspect ratio of the wall, the most accurate constitutive relationships for the compressed
concrete and for the reinforcement steel, both in compression and in tension (including the strengthening of the steel after yielding),
the variation of the Poisson ratio of the concrete, the amount and distribution of the vertical reinforcement. The model uses the
concept of distributed (smeared) plasticity along the element and so the flexural deformations are computed by integrating the actual
curvatures on the height of the wall. The shear deformations are also calculated, in agreement with the results of some recent
experimental researches. The calculation method was then applied to two experimental wall specimens and their force — horizontal
top displacement curves were plotted.

1. INTRODUCTION model able to accurately assess, not only the strength capacity of
the structural walls, but also their displacements produced by
Reinforced concrete shear walls are considered main structuita horizontal forces, especially in the inelastic range, but also
members of the structures designed to carry the important latef@l predict their failure modes. Subsequent experimental and
forces due to strong earthquake motions (Park and Paulay, 19#Boretical researches have perfected improved calculation
and Paulay et al., 1990). Therefore, it is very important for thesgodels of the cracked reinforced concrete elements, such as the
structural elements to yield in flexure and to have high values gfodified compression field theory based are (Vecchio F. J.,
the flexural displacements with no or little loss of strengtiTollins M. P., 1986 and Palermo D., Vecchio F. J., 2002). Other
capacity (Agent and Postelnicu, 1983). researches (lle N., Reynouard J. M., 2000 and 2005) have
perfected a model for finite element analysis under cyclic
As the well — known experimental investigation conducted bipading based on the smeared crack approach, reasonable good
NUPEC (Nuclear Power Engineering Corporation, 1996) hagsults in simulating the most characteristic features of
revealed, an obvious inability to accurately predict the two maiginforced concrete shear walls being acquired. However, such
components of the reinforced concrete shear walls inelastigiculation methods are very difficult to use in engineering
behaviour (maximum load and ultimate displacement) appeargghctice because of their high degree of sophistication which
to be associated with various models and calculation methogiguires a large computational capacity and a highly specialized
used. Thus, there is of great importance to use a calculatigbftware. As a result, the most common formulations are further
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based on nonlinear beam elements for modellingsteader
walls most frequently taking into account frequerdhly their
flexural response. A number of recent experimergakarches
(Massone et al., 2004, Beyer et al., 2011) have shgmthat, in
the inelastic range, even the reinforced concrkedsr walls
may present important shear deformations, not dielyural

ones, which had to be considered in a realistiessssent of
their stiffness and ductility. As the performanaséd design
gains ground, it is important for structural designto have at
hand effective and simple to use calculation methiodt also
reliable in respect with the design purposes. Phjser provides
a simplified and quick calculation method of thenferced

concrete slender shear walls to take into accouataspects
mentioned above.

2. MATERIALSAND METHODS

2.1 Basic Assumptions

Performed on the scheme of a vertical cantileveedfiat the
base and loaded at the top with a constant axiaef¢N)

together with a horizontal one (S), monotonicafigreasing up
to the failure, as shown in Figure 1, the calcalatf the shear
wall is based on the following assumptions (Tr&#a12):
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Figure 1. Shear wall. Forces,

The linear distribution of the specific longitudirstrainse
on the height h of the wall cross-section, at alding

stages, up to failure (Bernoulli's principle), aowh in
Figure 2;
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Figure 2. Strains in the rectangular cross-section

The working out of the tensiled concrete after kirag;
The use of a constitutive curves.(- €, for the
compressed concrete with a parabolic shape (Agent a
Postelnicu, 1983, EN 1992-1-1: 2004) to consider th

degradation of the compressive strength of the redsac
before failure (Figure 3);
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Figure 3. Constitutive curve of the compressed aatecr
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* The use for the contraction coefficient of the qetev

(Poisson ratio) a variation law as shown in Figdre
(Brinzan and Trifa, 1988);
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Figure 4. Variation law of Poisson ratio for theqmessed Figure 6. Internal forces in the eccentrically coegsed cross-
concrete section

e The use for the constitutive curvess(— &) of the ° The use in the angle shearing-deformation calcafuhe

reinforcement steel in tension/compression a Hiline secant modulus of elasticity of tkkencrete in compression
diagram (Figure 5) to consider the steel hardeaftey the obtained from the characteristic curve from FigGreas
yielding point €s), namely: c>fs, for any value of the follows: E, = o /e.;

specific strain of longitudinal reinforcement (ension or ,  The neglect of second order geometrical effects.
in compressiong in the ranged,, &5] (Brinzan and Trifa,

1988);

2.2 Calculation of the strength capacity in bending of the
shear wall

For a given value of the strain at the most conga@soncrete
fibre of the cross-section (ec, max), the intefoaedes shown in
Figure 6 must satisfy the equilibrium equationsféfand Prada,
2000):

'ﬁ*a_‘ﬂ%_ vl |\ ¥ N=Cc+zcsi_ZTsi 1)
M :Cc[%_;dfj"'zilcsi(%_di]*'zi:-rsi(di ‘%J &)

where: ) Cg; =Cgrepresents the resultant of the forces
i

produced in the compressed reinforcement bars;

Figure 5. Constitutive curve for steel reinforcemient 2. Tsi=Tsrepresents the resultant of the forces

tension/compression ! ) ] )
produced in the tensiled reinforcement bars;

C.is the resultant of the stresses from the
compressed concrete area of the cross-section.

As shown (Trifa and Prada, 2000), the internal dsrand the
length X d¢r mentioned above have the following expressions:

Cc= I(;(bcc(;(}j; = bec © cmax (1— 12 cmaxj
€c0 3 &g

with € o = 2,294 3)
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Cs = _Zlcsi = %Asicsi (k = the number of compressed 31 calculation of the flexural horizontal displacement (A;)
1= 1=

pairs of reinforcement bars) (4)

In Figure 1 are presented the variations alonghtsight of the
wall, both of the bending moment and of the cumaturhe

j j . . et -
T =3 Ty =Y Agog (i = the number of tensioned pairs bending moment in a cross-section located at tstanite y = |.

= = from the top of the wall is:
of reinforcement bars) (5) (%) L
My:Mmax_y:Mmaxl )
- _ 4_ a . 8 cmax H H
Xdr —mx , with a = c (6)
o 0 where: My is the bending moment in the base cross-section.
Replacing (3), (4), (5) and (6) in (1), it results: It results that the bending stiffness modulus ef ¢hoss-section

and also the curvature vary from one section tateroi.e.: El.
= (Elc)y and® = ®,. To determine the horizontal displacement
u, of a certain section of the wall due to flexurd, the

k i
N=obxf; + ZAsicsi 2 Ao
= considered loading stage, it will be used the iraggn of the

i=1

with o=0(1-0/3) @ curvatures of the cross-sections on the heighthefwall, as
« follows:
Noting that, from Figure 2g4 = Scmaxi—, it results that
y |y y y
the relation (7) has two unknowns: X aighax Ugy = —jdy{jcpydy:l =-[dy[®,dy=
0 |0 0 0

Giving increasing values te, max Until it reaches the ultimate

one (3.5%0), corresponding to the failure of the poessed

concrete,e. max IS €liminated and the relation (7) turns into a :(YC —y)Ag’ +(y_yC)A<I> (10)
quadratic equation with the unknown x which gives position Y

of the neutral axis of the cross-section for thadiag stage

corresponding tce. max Value. The calculus is performed by . ] 1 M

; . ; ; in which: @, =— = —Y_ (11)
successive attempts for eachymax given value, until the sy N (E | )
equilibrium equation (1) is satisfied. Once the uealof x y ¢ cly
determined, £, O, Cg, Tg and C. can be further where:p, is the radius of the curvature of the  crosgisac
calculated as shown above and, substituted intt2)yvalue of ® _ _
the bending moment of the wall cross-section, epoading to Ay = the area bounded by the portion of the  fumctio
the given value of; may is Obtained. @, graph from above the actual cross-section

The curvaturebd and the bending stiffness modulug!Fof the Yoy = the distance from the centroig Gf area Ay to

base cross-section are then calculated at the kmmiing stage Ox axis. _ _ _
with the well-known formulae (Brinzan and Trifa,88®and Bia, Customizing the relation (10) by taking y = H, ésults the top

lle et al., 1983): horizontal displacement of the wall due to flexasefollows:
g M H H @
®="C; Ele=—rn 8) Df =Ugmax =~ [dy[®ydy=—ycA (12)
X [0} 0 0

It must be noted that, fofemax = 3.5%0 andesmax < esw the  where: v = the coordinate of the centroid of the curvature
section fails through crushing of the compressettee and, (@) chart from the entire height of the wall

for €s max= €su @nd g max < 3.5%o, the section fails through steel
rebars fracture, resulting in both cases the maximalue of the
bending moment (i.e. flexural strength capacitytiogé wall
cross-section). ycyA;“,J = the statical moment of the areA?,’

A®= @ chart area from the height of the wall in the
considered loading stage: (a<€cw)

related to the actual cross-section, calculatatdedop

2.3 Calculation of the horizontal displacements of the wall of the wall.

Neglecting the displacement due to the sliding gltme base
cross-section, the total horizontal displacemerihefwall at top
can be written:

2.3.2 Calculation of the shear horizontal displacement (Ay)

We shall further determine the shear displacemétiteowall in
A=A+ A a simplified manner, by using the internal forcéghe cross-
s section for assessing the average angle of shedefugmation

where:Ais the flexural displacement and is the displacement Ym- In the Theory of Elasticity (Bia, llle et al., 83)yn is given
due to shear. by:
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T degradation, fact which had been reported by recent
Ym = Eqn (13) experimental researches (Massone et al., 2004).

Applying Juravski formula for the shear stresand replacing it 24 Application of the Method

in (13), it results: The method described above was applied to the letilwo of

two experimental wall specimens tested in INCERQil(Bng

Ym :LV_SO (14) Research Institute) Bucharest laboratory (Brinzad &rifa,
Esh blg 1988). In Figure 7 are presented the general viéwhe
structure and the way of loading. Each of the twpegimental
where:  V = the shear force: specimens consisted of two twin reinforced concsétear walls
S, = the statical moment of the compressed/tensile‘&mnemed at the top by a reinforced concrete giatalating an
zone of the cross-section calculated to the neakial actual slab.

Eqn = the modulus of elasticity in shear of the materi

Through successive transformations, it comes:

e
o= L VSo_ 21+v) VS, _ ¢ VS (15)
M Ec bly  E; blg E; blg
ﬂl+vi
o
<
where: ¢ = 2(14) W 12
E.= the secant modulus of elasticity of the g 12) &
T
compressed concrete. h=149
The lever arm of the internal forces can be appnaixéd as 1
follows:
M M T=
zO0—= 16
C C.+C, (16) —

Using the expression of z established (Bia, lll@alet1983) for
the beams with homogeneous cross-section subjetted
bending, it can be written:

Figure 7. Experimental specimens. General viewlaading
|

|
z=-2 0—— from where:S, I](CS +CC)—g and:
S Cg+C M . . .
The reinforcement of each of the twin walls wasshewn in
Figure 8 and the properties of the steel rebarsevibpse
M M _, , €., _O i
AL E, =®E, =-CE,=-C (17) presented in Table 1.
I E.l X X
g cg
" 2x(16 @8)z,
Replacing in (15), we get: -
_ 0 VS & V(CHCe)x _, (Cs+Co)x T 2012
L e bo £l V. as 3=
c g c gCc cg ”%f 2x(2 210,
. . fal o7 T
Since the shear force is constant on H but ther gthemeters gl
vary the maximum horizontal shear displacementattop of T
the wall results as follows: T 2X(7 D6,
1 @
H H (Cs+Cc)x +
Ag =Ugmax = J‘ymdy:VJ.d)s—,c (19)
0 o boEclg °
It must be noticed that the variation on the heiftthe wall of ﬂ® 11 D® @8/15
Cs C., X, o, Eg is due to the variation of the bending moment ﬁﬁ = —
and it becomes an obvious conclusion that, desiteconstant %ﬁ;ﬁ_,_'&yﬁf_l,li,_,_igﬁgs
shear force on the height of the wall, the sheapldcements t 140

vary, their values being related to the flexuralffreéss

Figure 8. Reinforcement of the wall specimens
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Esy Esu fsy fst Es
(%) (%) (MPa) (MPa)  (MPa)

Bar size Diameter

10

1.28 30 270 420 210

wla|r~[N|E-
O |00 | 00|00

1.68 30 350 530

Table 1. Steel reinforcement material properties

The strength of the concrete for the two specimeas: fc =
15.0 MPa for specimen D21 and fc = 12.6 MPa forcspen
D22. The computed strength capacities in bendingach wall

of the two specimens are presented in Table 2 dwd t

comparison with the experimental strength capacit@mes out
from Table 3.

M calc Scalc M exp/

Specimen  Wall
[kNm] [kN] Mecalc

D21 5890 2618 0.98
D21 5890 2618 0.98
D2 5376 2389 0.92
D 22 537.6 2389 0.92

D21

D22

Table 2. Computed strength capacities

Sexp Sexp XH ﬂsﬂ N XA'-‘IEKD Mexp

Specimen  Wall [KN] (kN [mm] [kNm] [kNm]

Da1 D 21 250 562.50 18.46 14.86 577.36
D21 250 562.50 18.56 14.94 577.44
Das D:,zz 215 483.75 12.60 9.20 492.95
D 22 215 483.75 13.95 10.18 493.93

Table 3. Experimental strength capacities

The push-over curves (&) computed for a wall of the two
specimens are presented in Figure 9 and Figureviiére are
separately plotted the variation of the two compdsef the top
horizontal displacement, due to flexure and shear.
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Figure 10. Shear Wall L. Computed push-over (S\) curve

In Figure 11 and Figure 12 are presented the\YSemputed
vs. experimental push-over curves for the two spens.
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Table 4. Computed displacements and ductilities

BXp EXp BXp
Specimen Wall ‘ﬂ;xp ‘ﬂlr_ 8,7 Ay
(mm) H (mm) H

D,: 6.65 1/333 1856 1/121 279 0.47

uSP D YR D)

; D1 D1 4.85 1/464 18461/122 381 0.39

0 5 1n 15 20 D., 6.35 1/354 13.951/161 220 0.54

&= Horizontal displa cement at the top (nm) D22 D"22 6.25 1/360 12.6 /179 2.02 0.57
. . D a= - Dy = lnl_
Figure 11. Shear Wall L Computed vs. Experimental Ay J2u.-1

(S —A) curves

300
S=248,P s=2351
250 Ae10.4 =147
S=1313 Pk i T
— =51 -_,,..-dl
% 200 ’;’ —
E / ,/ =215
2 /K'S:mﬂ S i T
g 150 +—d=r7 =l
E é=1.1._3
= j 5=140
g 100 J/ =i
i3
5 J - - Aexp
JL & // =5 - Acalc
/7]
H/}
A Lo
1] 5 10 15

&= Horizontal displa cement at the top {mm)

Figure 12. Shear Wall . Computed vs. Experimental
(S -A) curves

In Tables 4 and 5 are presented the values ofadhgputed and

the experimental displacements and ductilities Itiegu from

computed and experimental force—displacement cuassvell

as the values of the energy dissipation faafr (

Table 5. Experimental displacements and ductilities

Regarding the strains in the extreme points of tselcross —
sections of the experimental shear walls, in Figur® -16 are
displayed the calculated variations of the concsttain in the
most compressed point and of the strain in the most
tensioned reinforcement bas)(

S = 261,80 |

250 }‘

F 4

-“-"I-.

150

100

=l
-'-"""l-l-...-

50

a1 o1 2 30405

0.32 Eoy = 3.5 £ [%o.

Figure 13. Shear Wall . Computed (S ) curve for the most
compressed point of the base section
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Figure 14. Shear Wall 2 Computed (S €J) curve for the most Figure 16. Shear Wall . Computed (S ) curve for the most
tensioned reinforcement bars of the base section tensioned reinforcement bars of the base section

There is a rather good agreement between the atdculnd
measured strain values, especially of the compidessacrete

250 [Ssa==238.9KN and mostly in the elastic range of loading, as found from the
comparative curves plotted for the,vall specimen in Figures
f
7 17 and 18.
200 -
I
I/
[ ]
150 ; 250 |Sele 23804
S T ZIS O RN
4 200 z
100 o
| I
[
I 150
| £, P =215
50 ' 1 £ =35
100 i ]
"r“ (S - sc)exp.
Q N ; + (S - ec)calc.
a ot 1 o2 3 NEIE 30 f
0.34 = e, [% 1
£y=3.5 el . I
. -1 0 1 2 3 4 5
Figure 15. Shear Wall [ Computed (S &) curve for the most &, [%o]

compressed point of the base section

Figure 17. Shear Wall £ Computed vs. experimental
(S —¢¢) curves for the most compressed point of the baston
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Figure 18. Shear Wall . Computed vs. experimental
(S —&9) curves for the most tensioned point of the bastian

2.5 Resultsand Discussions

The reinforced concrete shear wall calculation wetkvhich
represents the aim of this paper enables a compddtealation
of a flexural governed reinforced shear concrett wats both
main respects: strength capacity in flexure and hopzontal
displacements. The two specimens calculations khoan the
capacity of this method to predict the failure madé¢he walls,
which was at the compressed zone of the base seg$i®n, as

shown in Figures 13 and 14. Regarding the displantsme

calculation, the method enables a unitary way tfutation in
all loading stages, up to the failure, being abde make
distinction between their two major components, ttuélexure
and shear. The values found for these componeaitsoafirmed
by the latter experimental researches (Massonel.eR@04)
having the aim to measure separately the flexunal shear

Figure 13. Shear wall [y General view (left) and detailed view
of the compressed zone degradation at the basg -csestion

(right)

Figure 14. Shear wall . Detail of the the degradation of the

compressed zone of the base cross - section

3. CONCLUSIONS

components. It is important to point out that theaey in the As result of findings presented in this paper, ¢hean be
same way, confirming the presence of a couplinthefinelastic  formulated the following conclusions:

flexural deformations and inelastic shear deforomati Only

near the failure, at high values of the horizofdate, the shear
component of the computed total displacement diffemuch

from the flexural one, being even two times higktean the

latter. The method also provides the basic means afo
satisfactory prediction of the strains in concreted steel
reinforcement for the most part of the loading endhe

comparison between computed and experimental septitved

a good agreement concerning the strength capagityrasults
from Table 2. Referring to the displacements valiesyas

proved a surprisingly good agreement in the elastige. It is

felt that the greater difference resulted in thelastic range
could originate in the influence of some factorsahhave not
been considered by the model, such as: the hosaksliding at

the base of the wall, the greater width of theiiread cracks and
the second order geometrical effects.

The calculation method of the reinforced concrégural
governed shear walls presented above can be a usefu
for a rather accurate prediction of the behaviouthese
important structural members, both in the elastid a
inelastic range. The main characteristics of tlékaviour
are computed or revealed, such as: failure modength
capacity, flexural and shear displacements;

The method takes into account the main factors hwhic
influence the behaviour of the structural walls ghape of
the cross-section, the constitutive curves forcirgcrete in
compression and for reinforcement steel (in congioes
and in tension, considering the strengthening after
yielding), the amount and the distribution of the
reinforcement steel in the cross-section;

The comparison between calculated and experimental
results proved a rather good accordance but additio
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comparative work is required until a final conctusicould
be formulated.
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