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ABSTRACT: 

The paper presents a simplified calculation method to predict, as accurate as possible, the most important characteristics of the 
behaviour of the slender reinforced concrete shear walls in the inelastic range: failure mode, strength capacity, flexural and shear 
deformations, sectional and element ductility. The formulation is based on nonlinear beam element with taking into account the 
influence of shear, both on strength and stiffness of the wall. The principal parameters incorporated in the calculation model are: the 
rectangular shape of the cross section, the aspect ratio of the wall, the most accurate constitutive relationships for the compressed 
concrete and for the reinforcement steel, both in compression and in tension (including the strengthening of the steel after yielding), 
the variation of the Poisson ratio of the concrete, the amount and distribution of the vertical reinforcement. The model uses the 
concept of distributed (smeared) plasticity along the element and so the flexural deformations are computed by integrating the actual 
curvatures on the height of the wall. The shear deformations are also calculated, in agreement with the results of some recent 
experimental researches. The calculation method was then applied to two experimental wall specimens and their force – horizontal 
top displacement curves were plotted. 

* Corresponding author.

1. INTRODUCTION

Reinforced concrete shear walls are considered main structural 
members of the structures designed to carry the important lateral 
forces due to strong earthquake motions (Park and Paulay, 1975 
and Paulay et al., 1990). Therefore, it is very important for these 
structural elements to yield in flexure and to have high values of 
the flexural displacements with no or little loss of strength 
capacity (Agent and Postelnicu, 1983). 

As the well – known experimental investigation conducted by 
NUPEC (Nuclear Power Engineering Corporation, 1996) has 
revealed, an obvious inability to accurately predict the two main 
components of the reinforced concrete shear walls inelastic 
behaviour (maximum load and ultimate displacement) appeared 
to be associated with various models and calculation methods 
used. Thus, there is of great importance to use a calculation 

model able to accurately assess, not only the strength capacity of 
the structural walls, but also their displacements produced by 
the horizontal forces, especially in the inelastic range, but also 
to predict their failure modes. Subsequent experimental and 
theoretical researches have perfected improved calculation 
models of the cracked reinforced concrete elements, such as the 
modified compression field theory based are (Vecchio F. J., 
Collins M. P., 1986 and Palermo D., Vecchio F. J., 2002). Other 
researches (Ile N., Reynouard J. M., 2000 and 2005) have 
perfected a model for finite element analysis under cyclic 
loading based on the smeared crack approach, reasonable good 
results in simulating the most characteristic features of 
reinforced concrete shear walls being acquired. However, such 
calculation methods are very difficult to use in engineering 
practice because of their high degree of sophistication which 
requires a large computational capacity and a highly specialized 
software. As a result, the most common formulations are further 
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based on nonlinear beam elements for modelling the slender 
walls most frequently taking into account frequently only their 
flexural response. A number of recent experimental researches 
(Massone et al., 2004, Beyer et al., 2011) have shown up that, in 
the inelastic range, even the reinforced concrete slender walls 
may present important shear deformations, not only flexural 
ones, which had to be considered in a realistic assessment of 
their stiffness and ductility. As the performance-based design 
gains ground, it is important for structural designers to have at 
hand effective and simple to use calculation methods but also 
reliable in respect with the design purposes. This paper provides 
a simplified and quick calculation method of the reinforced 

concrete slender shear walls to take into account the aspects 
mentioned above. 
 
 

2. MATERIALS AND METHODS 

2.1 Basic Assumptions 

Performed on the scheme of a vertical cantilever fixed at the 
base and loaded at the top with a constant axial force (N) 
together with a horizontal one (S), monotonically increasing up 
to the failure, as shown in Figure 1, the calculation of the shear 
wall is based on the following assumptions (Trifa, 2012): 
 

 
Figure 1. Shear wall. Forces, bending moment and curvature 

 
 
• The linear distribution of the specific longitudinal strains ε 

on the height h of the wall cross-section, at all loading 
stages, up to failure (Bernoulli's principle), as shown in 
Figure 2; 

 
Figure 2. Strains in the rectangular cross-section 

 
 

• The working out of the tensiled concrete after cracking; 
• The use of a constitutive curve (σc - εc) for the 

compressed concrete with a parabolic shape (Agent and 
Postelnicu, 1983, EN 1992-1-1: 2004) to consider the 
degradation of the compressive strength of the concrete 
before failure (Figure 3); 

 

 
Figure 3. Constitutive curve of the compressed concrete 

 
 

• The use for the contraction coefficient of the concrete ν 
(Poisson ratio) a variation law as shown in Figure 4 
(Brînzan and Trifa, 1988); 
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Figure 4. Variation law of Poisson ratio for the compressed 
concrete 

 
 
• The use for the constitutive curve (σs – εs) of the 

reinforcement steel in tension/compression a bilinear 
diagram (Figure 5) to consider the steel hardening after the 
yielding point (εsy), namely: σs>fsy for any value of the 
specific strain of longitudinal reinforcement (in tension or 
in compression) εsi in the range [εsy, εsu] (Brinzan and Trifa, 
1988); 

 
 

 
 

Figure 5. Constitutive curve for steel reinforcement in 
tension/compression 

 

 
 

Figure 6. Internal forces in the eccentrically compressed cross-
section 

 
 

• The use in the angle shearing-deformation calculus of the 
secant modulus of elasticity of the concrete in compression 
obtained from the characteristic curve from Figure 3, as 
follows: ccc /εσE =′ ;  

• The neglect of second order geometrical effects. 
 
 
2.2 Calculation of the strength capacity in bending of the 
shear wall 

For a given value of the strain at the most compressed concrete 
fibre of the cross-section (ec, max), the internal forces shown in 
Figure 6 must satisfy the equilibrium equations (Trifa and Prada, 
2000): 
 

 

    TCCN
i

si
i

sic ∑∑ −+=
                      

(1) 

 

 
2

h
dTd

2

h
Cx

2

h
CM

i
isi

i
isidrc ∑∑ 







 −+






 −+






 −=
            

(2) 

 
where: s

i
si CC =∑ represents the resultant of the forces 
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As shown (Trifa and Prada, 2000), the internal forces and the 

length drx mentioned above have the following expressions: 
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Replacing (3), (4), (5) and (6) in (1), it results: 
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Noting that, from Figure 2, 
x

xdi
max,csi

−ε=ε , it results that 

the relation (7) has two unknowns: x and εc,max. 
 
Giving increasing values to εc,max until it reaches the ultimate 
one (3.5‰), corresponding to the failure of the compressed 
concrete, εc,max is eliminated and the relation (7) turns into a 
quadratic equation with the unknown x which gives the position 
of the neutral axis of the cross-section for the loading stage 
corresponding to εc,max value. The calculus is performed by 
successive attempts for each εc,max given value, until the 
equilibrium equation (1) is satisfied. Once the value of x 
determined, siε , siσ , siC , siT  and cC  can be further 

calculated as shown above and, substituted in (2), the value of 
the bending moment of the wall cross-section, corresponding to 
the given value of εc,max, is obtained.  
 
The curvature Ф and the bending stiffness modulus (EcIc) of the 
base cross-section are then calculated at the same loading stage 
with the well-known formulae (Brînzan and Trifa, 1988 and Bia, 
Ille et al., 1983):  
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It must be noted that, for εc,max = 3.5‰ and εs,max < εsu, the 
section fails through crushing of the compressed concrete and, 
for εs,max = εsu and εc,max < 3.5‰, the section fails through steel 
rebars fracture, resulting in both cases the maximum value of the 
bending moment (i.e. flexural strength capacity of the wall 
cross-section). 
 
2.3 Calculation of the horizontal displacements of the wall 

Neglecting the displacement due to the sliding along the base 
cross-section, the total horizontal displacement of the wall at top 
can be written:  
 

∆ = ∆f + ∆s 
 

where: ∆f is the flexural displacement and ∆s is the displacement 
due to shear. 

 
2.3.1 Calculation of the flexural horizontal displacement (∆f) 
 
In Figure 1 are presented the variations along the height of the 
wall, both of the bending moment and of the curvature. The 
bending moment in a cross-section located at the distance y = Ly 
from the top of the wall is: 
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where: Mmax is the bending moment in the base cross-section. 
 
It results that the bending stiffness modulus of the cross-section 
and also the curvature vary from one section to another, i.e.: EcIc 

= (EcIc)y and Φ = Φy. To determine the horizontal displacement 
uy of a certain section of the wall due to flexure, at the 
considered loading stage, it will be used the integration of the 
curvatures of the cross-sections on the height of the wall, as 
follows: 
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where: ρy is the radius of the curvature of the    cross-section
   

Φ
yA = the area bounded by the portion of the    function 

Φy graph from above the actual cross-section 

yCy = the distance from the centroid Cy of area     Φ
yA  to 

Ox axis. 
Customizing the relation (10) by taking y = H, it results the top 
horizontal displacement of the wall due to flexure as follows: 
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where: yC  = the coordinate of the centroid of the curvature 

(Φ) chart from the entire height of the wall 
ΦA = Φ chart area from the height of the wall in the   

considered loading stage (εc,max<εcu) 
Φ
yC Ay

y
 = the statical moment of the area ΦyA       

related to the actual cross-section, calculated to the top 
of the wall. 

 
2.3.2  Calculation of the shear horizontal displacement (∆s) 
 
We shall further determine the shear displacement of the wall in 
a simplified manner, by using the internal forces of the cross-
section for assessing the average angle of shearing-deformation 
γm. In the Theory of Elasticity (Bia, Ille et al., 1983) γm is given 
by: 
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Applying Juravski formula for the shear stress τc and replacing it 
in (13), it results: 
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where: V = the shear force; 

S0 = the statical moment of the compressed/tensiled 
zone of the cross-section calculated to the neutral axis; 

Esh = the modulus of elasticity in shear of the material. 
 
Through successive transformations, it comes: 
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where: φ = 2(1+ν) 

cE′ = the secant modulus of elasticity of the 

compressed concrete.  
 
The lever arm of the internal forces can be approximated as 
follows: 
 

            
cs CC

M

C

M
z

+
=≅                                 (16) 

 
Using the expression of z established (Bia, Ille et al., 1983) for 
the beams with homogeneous cross-section subjected to 
bending, it can be written: 
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Replacing in (15), we get: 
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Since the shear force is constant on H but the other parameters 
vary the maximum horizontal shear displacement at the top of 
the wall results as follows: 
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It must be noticed that the variation on the height of the wall of 
Cs, Cc, x, σc, cE′  is due to the variation of the bending moment 

and it becomes an obvious conclusion that, despite of a constant 
shear force on the height of the wall, the shear displacements 
vary, their values being related to the flexural stiffness 

degradation, fact which had been reported by recent 
experimental researches (Massone et al., 2004). 
 
2.4 Application of the Method 

The method described above was applied to the calculation of 
two experimental wall specimens tested in INCERC (Building 
Research Institute) Bucharest laboratory (Brînzan and Trifa, 
1988). In Figure 7 are presented the general view of the 
structure and the way of loading. Each of the two experimental 
specimens consisted of two twin reinforced concrete shear walls 
connected at the top by a reinforced concrete plate simulating an 
actual slab. 
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Figure 7. Experimental specimens. General view and loading 
 
 
The reinforcement of each of the twin walls was as shown in 
Figure 8 and the properties of the steel rebars were those 
presented in Table 1. 
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Figure 8. Reinforcement of the wall specimens 
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εsy εsu fsy fst Es

(‰) (‰) (MPa) (MPa) (MPa)
1 10
2 8
4 8
5 8
3 6 1.68 30 350 530

210

Bar size Diameter

1.28 30 270 420

 
 

Table 1. Steel reinforcement material properties 
 
The strength of the concrete for the two specimens was: fc = 
15.0 MPa for specimen D21 and fc = 12.6 MPa for specimen 
D22. The computed strength capacities in bending of each wall 
of the two specimens are presented in Table 2 and the 
comparison with the experimental strength capacities comes out 
from Table 3. 
 

Specimen Wall
Mcalc 

[kNm]
Scalc 

[kN]

Mexp / 

Mcalc

D
’
21 589,0 261.8 0.98

D
”
21 589.0 261.8 0.98

D
’
22 537.6 238.9 0.92

D
”
22 537.6 238.9 0.92

D22

D21

 
 

Table 2. Computed strength capacities 
 

Specimen Wall
Sexp 

[kN]
Sexp x H
[kNm] [mm]

 N x 
   [kNm]

Mexp 

[kNm]

D
’
21 250 562.50 18.46 14.86 577.36

D
”
21 250 562.50 18.56 14.94 577.44

D
’
22 215 483.75 12.60 9.20 492.95

D
”
22 215 483.75 13.95 10.18 493.93

D22

D21

 
 

Table 3. Experimental strength capacities 
 
The push-over curves (S–∆) computed for a wall of the two 
specimens are presented in Figure 9 and Figure 10, where are 
separately plotted the variation of the two components of the top 
horizontal displacement, due to flexure and shear. 
 

 
 

Figure 9. Shear Wall D21. Computed push-over (S - ∆) curve 
 

 

 
 

Figure 10. Shear Wall D22. Computed push-over (S - ∆) curve 
 
 

In Figure 11 and Figure 12 are presented the (S–∆) computed 
vs. experimental push-over curves for the two specimens. 
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Figure 11. Shear Wall D21. Computed vs. Experimental 
 (S – ∆) curves 

 

 
 

Figure 12. Shear Wall D22. Computed vs. Experimental  
(S - ∆) curves 

 
In Tables 4 and 5 are presented the values of the computed and 
the experimental displacements and ductilities resulting from 
computed and experimental force–displacement curves, as well 
as the values of the energy dissipation factor (ψ). 
 
 

Specimen Wall
(mm) (mm)

 1) 2)

D
’
21 1 1

D
”
21 381 174

D
’
22 1 1

D
”
22 369 164

0.54

D22 6.1 13.7 2.25 0.53

D21 5.9 12.9 2.19

 
1) µ∆=               2) ψ =  

 
Table 4. Computed displacements and ductilities 

 
 

Specimen Wall
(mm) (mm)

1) 2)

D
’
21 6.65 18.56 2.79 0.47

D
”
21 4.85 18.46 3.81 0.39

D
’
22 6.35 13.95 2.20 0.54

D
”
22 6.25 12.6 2.02 0.57

1/122

1/161

1/179

D21

D22

1/333

1/464

1/354

1/360

1/121

 
1) µ∆=               2) ψ =  

 
Table 5. Experimental displacements and ductilities 

 
 

Regarding the strains in the extreme points of the base cross – 
sections of the experimental shear walls, in Figures 13 -16 are 
displayed the calculated variations of the concrete strain in the 
most compressed point (εc) and of the strain in the most 
tensioned reinforcement bars (εs).  

 

 
 

Figure 13. Shear Wall D21. Computed (S – εc) curve for the most 
compressed point of the base section 
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Figure 14. Shear Wall D21. Computed (S – εs) curve for the most 
tensioned reinforcement bars of the base section 

 
 

 
 

Figure 15. Shear Wall D22. Computed (S – εc) curve for the most 
compressed point of the base section 

 

 
 

Figure 16. Shear Wall D22. Computed (S – εs) curve for the most 
tensioned reinforcement bars of the base section 

 
There is a rather good agreement between the calculated and 
measured strain values, especially of the compressed concrete 
and mostly in the elastic range of loading, as it is found from the 
comparative curves plotted for the D22 wall specimen in Figures 
17 and 18.   

 

 
 

Figure 17. Shear Wall D22. Computed vs. experimental  
(S – εc) curves for the most compressed point of the base section 
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Figure 18. Shear Wall D22. Computed vs. experimental  
(S – εs) curves for the most tensioned point of the base section 

 
 

2.5 Results and Discussions 

The reinforced concrete shear wall calculation method which 
represents the aim of this paper enables a complete calculation 
of a flexural governed reinforced shear concrete wall in its both 
main respects: strength capacity in flexure and top horizontal 
displacements. The two specimens calculations have shown the 
capacity of this method to predict the failure mode of the walls, 
which was at the compressed zone of the base cross-section, as 
shown in Figures 13 and 14. Regarding the displacements 
calculation, the method enables a unitary way of calculation in 
all loading stages, up to the failure, being able to make 
distinction between their two major components, due to flexure 
and shear. The values found for these components are confirmed 
by the latter experimental researches (Massone et al., 2004) 
having the aim to measure separately the flexural and shear 
components. It is important to point out that these vary in the 
same way, confirming the presence of a coupling of the inelastic 
flexural deformations and inelastic shear deformations. Only 
near the failure, at high values of the horizontal force, the shear 
component of the computed total displacement differed much 
from the flexural one, being even two times higher than the 
latter. The method also provides the basic means for a 
satisfactory prediction of the strains in concrete and steel 
reinforcement for the most part of the loading range. The 
comparison between computed and experimental results proved 
a good agreement concerning the strength capacity as it results 
from Table 2. Referring to the displacements values, it was 
proved a surprisingly good agreement in the elastic range. It is 
felt that the greater difference resulted in the inelastic range 
could originate in the influence of some factors which have not 
been considered by the model, such as: the horizontal sliding at 
the base of the wall, the greater width of the inclined cracks and 
the second order geometrical effects. 
 

   

Figure 13. Shear wall D21. General view (left) and detailed view 
of the compressed zone degradation at the base cross - section 

(right) 
  

 

Figure 14. Shear wall D22. Detail of the the degradation of the 
compressed zone of the base cross - section 

 
 

3. CONCLUSIONS 

As result of findings presented in this paper, there can be 
formulated the following conclusions: 
 
• The calculation method of the reinforced concrete flexural 

governed shear walls presented above can be a useful tool 
for a rather accurate prediction of the behaviour of these 
important structural members, both in the elastic and 
inelastic range. The main characteristics of this behaviour 
are computed or revealed, such as: failure mode, strength 
capacity, flexural and shear displacements; 

 
• The method takes into account the main factors which 

influence the behaviour of the structural walls: the shape of 
the cross-section, the constitutive curves for the concrete in 
compression and for reinforcement steel (in compression 
and in tension, considering the strengthening after 
yielding), the amount and the distribution of the 
reinforcement steel in the cross-section; 

 
 
• The comparison between calculated and experimental 

results proved a rather good accordance but additional 
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comparative work is required until a final conclusion could 
be formulated. 
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