Decision Support Models and Software for the Differential Immunophenotype Diagnostics of Leukosis and Lymphomas/ Lēmumu pieņemšanas modeļi un programmnodrošinājums diferenciālajai imūnajai fenotipiskajai leikožu un limfomu diagnostikai/ Модели принятия решений и программное обеспечение для дифференциальной иммунофенотипической диагностики лейкозов и лимфом

Open access

Abstract

This article describes the software and underlined decision support models for the immunophenotype diagnostics of leukosis (leukemia) and lymphomas adjusted for the marker or human leukocyte antigen (CD-antigen) coexpressions. Using the model knowledge base, the decision inference algorithm allows computing the degree of manifestation of the disease subtypes for the input immunophenotype features. Software provides the twostage diagnostics of the leukemia subtypes and the lymphoma diagnostics using the set of the developed rules, possibility to observe the diagnostic results and corresponding reference information. The patient data are organized according to the unified registration card, which provides the possibility to work at the different diagnostic levels: diagnostics of the extended groups of leukosis, diagnostics of the leukemia subtypes, diagnostics of the adult and child lymphomas.

[1] Visualization technologies in medicine. Diagnostics of the acute leukosis and the tumors of the central nervous system in children / O. Aleynikova etc. Minsk: UIIP NAS Belarus, 2007, 244 p.

[2] N. F. Matsatsinis, Y. Siskos. Intelligent support systems for marketing decisions, Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/978-1-4615-1147-2

[3] S. Krishna. Introduction to Database and Knowledge-base Systems. World Scientific Publishing, 1992, p. 328. ISBN 981-02-0619-4. http://dx.doi.org/10.1142/1374

[4] X. F. Zhao, I. Gojo, T. York, Y. Ning and M. R. Baer, “Diagnosis of biphenotypic acute leukemia: a paradigmatic approach,” Int. J. Clin. Exp. Pathol, vol. 3(1), pp. 75-86, 2010.

[5] M.C.Béné, “Biphenotypic, bilineal, ambiguous or mixed lineage: strange leukemias,” Haematol., vol. 94(7), pp. 891-893, 2009. http://dx.doi.org/10.3324/haematol.2009.007799

[6] S. Glanz, Medical-biological statistics. М: Praktika. 1999, 459 p.

[7] A. Agresti, An introduction to categorical data analysis, 2nd ed., JohnWiley & Sons, Inc., 2007, 371 p.

[8] J. W. Vardiman, “The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms,” Chem. Biol. Interact., vol. 184(1-2), pp. 16-20, 2010. http://dx.doi.org/10.1016/j.cbi.2009.10.009

[9] G. Basso, B. Buldini, L. De Zen and A. Orfao, “New methodologic approaches for immunophenotyping acute leukemias,” Haematologica, vol. 86(7), pp. 675-692, 2001.

[10] A. C. Seegmiller, S. H. Kroft, N. J. Karandikar and R. W. McKenna, “Characterization of Immunophenotypic Aberrancies in 200 Cases of B Acute Lymphoblastic Leukemia,” Am. J. Clin. Pathol., vol. 132(6), pp. 940-949, 2009. http://dx.doi.org/10.1309/AJCP8G5RMTWUEMUU

[11] A. Hejlsberg, M. Torgersen, S. Wiltamuth, P. Golde, The C# Programming Language (Covering C# 4.0), 4th ed.. Microsoft Corporation, 2011, 815 p.

[12] E. T. Ray. Learning XML, 2nd ed., O'Reilly Media, 2003, 418 p.

Information Technology and Management Science

The Journal of Riga Technical University

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 324 324 30
PDF Downloads 131 131 13