Effect of saliva from horse fly Hybomitra bimaculata on kinetic properties of Na, K-ATPase: possible role in regulation of relaxation

Open access

Effect of saliva from horse fly Hybomitra bimaculata on kinetic properties of Na, K-ATPase: possible role in regulation of relaxation

The possible involvement of salivary gland extract (SGE) from horse flies in modifying hyperpolarization and relaxation via alterations in functional properties of sarcolemmal Na, K-ATPase in the host tissue was tested in vitro by application of various amounts of SGE from Hybomitra bimaculata.

SGE in the amount of 3 μg proteins representing approximately the equivalent of one salivary gland of Hybomitra bimaculata induced a stimulatory effect on Na, K-ATPase at all ATP concentrations applied. This effect resulted from the improved ATP-binding site affinity in the Na, K-ATPase molecule, as implicated by the reduction in KM. Increasing the amount of SGE to 6.5 μg resulted in inhibition of the enzyme, which was characterized by reduction in Vmax and also KM. This suggests that in the presence of relatively high Hybomitra bimaculata SGE concentration some SGE components affect Na, K-ATPase, when ATP is already bound to the enzyme.

Our results indicate that SGE from the horse fly Hybomitra bimaculata contain at least two different biologically active compounds modifying the acute recovery and maintenance of excitability during contractile activity in the host tissue by affecting Na, K-ATPase with opposite effects, depending on the ratio of SGE-proteins to proteins of the host tissue.

Ashida T and Blaustein MP. (1987). Regulation of cell calcium and contractility in mammalian smooth muscle: the role of sodium-calcium exchange. J Physiol London 392: 617-635.

Blanco G and Mercer RW. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275 (Renal Physiol. 44): F633-F650.

Borin ML, Tribe RM and Blaustein MP. (1994). Increased intracellular Na+ augments mobilization of Ca2+ from SR in vascular smooth muscle cells. Am J Physiol 266 (Cell Physiol 35): C311-C317.

Clausen T. (1996). The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance. Acta Physiol Scand 156: 227-235.

Deleze J. (1960). Possible reasons for drop of resting potential of mammalian heart preparations during hyphothermia. Circ Res 8: 553-557.

Dhalla NS, Ziegelhoffer A, Harrow JA. (1977). Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55:1211-1234.

Ewart HS and Klip A. (1995). Hormonal regulation of the Na+-K+- ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269 (Cell Physiol 38): C295-C311.

Glitsch HG. (2001). Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev 81:1791-1826.

Hamlyn JM, Ringel R, Schaeffer J, Levinson PD, Hamilton BP, Kowarki AA and Blaustein MP. (1982). A circulating inhibitor of Na, K-ATPase, associated with essential hypertension. Nature 300: 650-652.

Kazimírová M, Sulanová M, Kozánek M, Takác P, Labuda M and Nuttall PA. (2001). Identification of anticoagulant activities in salivary gland extracts of four horsefly species (Diptera, tabanidae). Haemostasis 31: 294-305.

Kazimírová M, Sulanová M, Trimnellt AR, Kozánek M, Vidlicka L, Labuda M and Nuttall PA. (2002). Anticoagulant activities in salivary glands of tabanid flies. Med Vet Entomol 16: 301-309.

Lerner EA, Ribeiro JMC, Nelson JR and Lerner MR. (1991). Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Journal of Biological Chemistry 266: 11234-11236.

Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ. (1951). Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.

Overbeck HW. (1987). The vascular Na, K-pump in experimental hypertension. Hypertension 10: I95-I100.

Rajská P, Pecháňová O, Takáč P, Kazimírová M, Roller L, Vidlička L, Čiampor F, Labuda M and Nuttal PA. (2003). Vasodilatory activity in horsefly and deerfl y salivary glands. Med Vet Entomol 17: 395-402.

Rajská P, Knezl V, Kazimírová M, Takáč P, Roller L, Vidlička L, Čiampor F, Labuda M, Weston-Davies W and Nuttal PA. (2007). Effects of horsefly (Tabanidae) salivary gland extracts on isolated perfused rat heart. Med Vet Entomol 21: 384-389.

Ribeiro JMC. (1992). Characterization of a vasodilator from the salivary glands of the yellow fever mosquito Aedes aegypti. J Exp Biol 165: 61-71.

Ribeiro JMC, Hazzard JMH, Nussenzveig RH, Champagne DE and Walker FA. (1993). Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260: 539-541.

Somlyo AV, Haeusler G, Somlyo AP. (1970). Cyclic adenosine monophosphate-dependent action on vascular smooth muscle membrane potential. Science 169: 490-491.

Takac P, Nunn MA, Meszaros J, Pechanova O, Vrbjar N, Vlasakova P, Kozanek M, Kazimirova M, Hart G, Nuttall PA and Labuda M. (2006). Vasotab, a vaso-active peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands. J Exp Biol 209: 343-352.

Taussky HH, and Shorr EE. (1953). A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202: 675-685.

Vrbjar N, Soós J, and Ziegelhöffer A. (1984). Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na+ + K+)-ATPase. Gen Physiol Biophys 3: 317-325.

Xu X, Yang H, Ma D, Wu J, Wang Y, Song Y, 3 Wang X, Lu Y, Yang J and Lai R. (2008). Toward an understanding of the molecular mechanism for successfully blood-feeding by proteomics analysis coupling with pharmacological testing of horse fly salivary glands. Mol Cell Proteomics 7: 582-590.

Yan X, Feng H, Yu H, Yang X, Liu J and Lai R. (2008). An immunoregulatory peptide from salivary glands of the horsefly, Hybomitra atriperoides. Dev Comp Immunol 32: 1242-1247.

Zhao R, Yu X, Yu H, Han W, Zhai L, Han J and Liu J. (2009). Immunoregulatory peptides from salivary glands of the horsefly, Tabanus pleskei. Comp Biochem Physiol B-Biochem Mol Biol Vol. 154: 1-5.

Interdisciplinary Toxicology

The Journal of Institute of Experimental Pharmacology of Slovak Academy of Sciences

Journal Information

CiteScore 2017: 2.36

SCImago Journal Rank (SJR) 2017: 0.580
Source Normalized Impact per Paper (SNIP) 2017: 1.134


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 207 16
PDF Downloads 37 36 3