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ABSTRACT
We investigated the effects of N'-nitrosodimethylamine (NDMA) induced toxicity on red blood cell rheology in male rats and identi-

fied bands in proteomic profiles of brain which can be used as novel markers. Polyacrylamide gel electrophoresis (PAGE) profiles 

exhibited constitutive as well as induced expression of the polypeptides. Remarkably, the molecular weight range of the polypeptides 

(8–150 kDa) corresponded to that of the family of heat shock proteins. Our results revealed significant changes in blood parameters 

and showed the presence of acanthocytes, tear drop cells, spicules and cobot rings in the treated categories. Lactate dehydrogenase 

and esterase zymograms displayed a shift to anaerobic metabolism generating hypoxia-like conditions. This study strongly suggests 

that NDMA treatment causes acute toxicity leading to cell membrane destruction and alters protein profiles in rats. It is therefore 

recommended that caution should be exercised in using NDMA to avoid risks, and if at all necessary strategies should be designed 

to combat such conditions. 
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It is widely accepted that NDMA induces hepatic 

fibrosis and cirrhosis (Haggerty & Holsapple, 1990), 

and the toxicity is caused by intermediary metabolites 

produced during metabolism of NDMA rather than by 

the parent compound itself. The relatively safe concen-

trations vary in different animals, e.g. in rats the oral 

LD50 of NDMA has been reported to be 40 mg/kg body 

weight (ATSDR, 1989). Other compounds which similarly 

to NDMA induce hepatic fibrosis in laboratory animals 

are: nitrosodiethylamine (NDEA), thioacetamide and 

carbon tetrachloride (George & Chandrakasan, 2000; 

Shimizu et al., 2001; Palacios et al., 2008; Smyth et al., 

2009; Karantonis et al., 2010). The available literature 

suggests that NDMA-induced hepatic fibrosis in rats 

is a very successful and reproducible model for various 

clinical and toxicological studies. Hepatic fibrosis (HF) 

is a pathological condition in which abnormal, tough 

and non-functional fibrous connective tissue, especially 

mature collagen fibers, accumulates in the extracellular 

matrix (ECM) (Wells, 2005). The imbalance between 

ECM synthesis and its degradation causes stimulation 

of inflammatory immune cells to secrete cytokines, 

Introduction

N'-nitrosodimethylamine (NDMA) is a potent hepatotoxin 

and carcinogen. Occupational exposure to NDMA may 

happen in a large number of places including industries 

such as tanneries, pesticide manufacturing plants, rubber 

and tire manufacturing plants, alkylamine manufacture/

use industries, fish processing industries, foundries, and 

dye manufacturing plants (Mitch et al., 2003). Under 

certain conditions, NDMA may be found in outdoor air, 

surface waters (rivers and lakes, for example), and soil 

(ATSDR, 1989; Mitch et al., 2003). Most reactions require 

a source of nitrite and a secondary, tertiary or quaternary 

amine to form NDMA (Smith & Loeppky, 1967; Fiddler et 

al., 1972; Kimoto et al., 1981). 
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growth factors and other molecules to activate hepatic 

stellate cells (HSCs). The activated HSCs, being prolifera-

tive and fibrogenic, express α-smooth muscle actin and 

various other connective tissue proteins such as collagen 

types I, III and IV to cause hepatic fibrosis (Friedman, 

1993; Pinzani & Marra, 2001; Lotersztajin et al., 2005). 

Induction of fibrosis by NDMA causes hypoalbuminemia, 

due to increase in urinary excretion of protein catabolites 

(George & Chandrakasan, 2000), and it alters activities of 

various enzymes such as LDH, ALP, AST, ALT (Ahmad 

et al., 2009a). 

It has also been reported that increased oxidative 

stress is involved in the pathogenesis of hepatic fibrosis 

(Jenkins, 1985). The higher generation of free radicals by 

NDMA is a contributor to the increased oxidative stress 

(Jenkins, 1985) that causes lipid peroxidation, which may 

decrease fluidity of lipid phase of biomembranes. Since 

red blood cell and nerve cell membranes are rich in 

polyunsaturated fatty acids, both of these cell types are 

assumed to be highly sensitive to the peroxidative process 

caused by NDMA. 

We previously demonstrated that NDMA induced 

hepatic fibrosis in rats within 21 days, which could 

be reversed following administration of Operculina 

turpethum extract (Ahmad et al., 2009a). The present 

attempt aimed at identifying changes in proteomic 

profiles of soluble proteins of rat brains produced due to 

toxicity generated by NDMA. We identified proteins and 

polypeptides which could serve as novel and convenient 

markers of monitoring in vivo toxicity. No previous study 

has dealt with in vivo toxic effects of NDMA on brain 

polypeptides and RBC rheology in the rat. Effects on 

RBC membrane and induction of hepatic fibrosis have 

been taken as known markers of toxicity evaluation for a 

variety of chemical compounds, including NDMA (Brkic 

et al., 2008; Fetoui et al., 2008; Ahmad et al., 2009a). 

Additional markers which substantiate these findings 

are: lactate dehydrogenase (LDH) and esterases (Est). 

These are important respective enzymes required for 

proper glucose metabolism in the brain and for motor 

functioning.

Materials and methods

Chemicals and reagents
Acrylamide, N'-nitrosodimethylamine (NDMA), 

nicotinamide adenine dinucleotide (β-NAD), nitro blue 

tetrazolium (NBT), phenazine methosulphate (PMS) were 

purchased from Sigma-Aldrich. α- and β-naphthylacetate, 

giemsa stain were purchased from Qualigens Fine 

Chemicals, India. All other chemicals and reagents used 

were of analytical grade. 

Animals
Adult healthy male albino rats of the Wistar strain, 

7–8 weeks old weighing around 145±10 g, were used for 

experiments. The rats were housed in well aerated poly-

carbonate cages with proper humane care at the animal 

house facility in the department, with light: dark exposure 

of 12:12 hrs. The rats were acclimatized for a week and 

fed regularly with sterilized diet and water available ad 

libitum.

Induction of hepatic fi brosis
The animals were divided into two groups comprising fif-

teen rats each. One group received intraperitoneal injec-

tions of NDMA in doses of 1 mg/100 g body weight (10 μL 

diluted to 1 mL with 0.15 M sterile NaCl), while the other 

group served as control and received the same amount 

of 0.15 M sterile NaCl through intraperitoneal injections. 

The injections were given on the first three consecutive 

days of each week for a period of three weeks without 

anesthesia. Three rats from each group were sacrificed on 

days 4, 7, 11, 14 and 21 from the start of the experiment. 

The experimental animals were procured and sacrificed 

according to the University Ethical Regulations. 

Blood smear preparation
Freshly collected blood was taken and divided into two 

halves. One half was used for blood cell counts and deter-

mination of hemoglobin, while the other half was used for 

preparing permanent smears of RBCs for further investi-

gation. The slides were fixed in methanol for 12–15 min 

and stained with Giemsa for 8–10 min. These slides 

were fixed in DPX and randomly selected for rheological 

studies. 

Assessment of hepatic fi brosis
Hematoxylin and eosin (H&E) staining of liver sections 

(5 μm) was done to assess the development of hepatic 

fibrosis histochemically. Stained slides were examined 

and photographed under Nikon microscope with an LCD 

attachment (Model: 80i). 

Brain homogenate preparation
The brains were immediately dissected out in sterilized 

condition avoiding contamination of neighboring tissues. 

They were weighed and homogenized in pre-chilled 

50 mM Tris-HCl buffer (pH 7.5) maintaining tissue to 

buffer ratio 1:4 (w/v). The homogenates were centrifuged 

at 12,000 rpm for 15 min. The clear supernatants were 

processed for protein determination and stored in dif-

ferent aliquots with equal volumes of glycerol containing 

5 mM PMSF at –20 °C for further analysis.

Protein determination
Protein concentration in different brain homogenate 

samples of controls and treated animals was determined 

by the method of Bradford (1976) using Coomassie Blue 

as color reagent and bovine serum albumin as standard. 

Optical density (absorbance) was taken at 595 nm on a 

UV-1700 Pharma-spec UV-Visible spectrophotometer.

Protein profi ling of brain homogenates
For non-denaturing polyacrylamide gel electrophoresis 

(PAGE), the protocol of Laemmeli (1970) was followed 

with the modification that the gels were lacking SDS. Gels 
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were 7.5% in acrylamide containing 15% glycerol. Equal 

amounts of protein were loaded in each well on polyacryl-

amide gels and the runs were made for 5 hrs at 9 V, 35 mA/

gel. Staining of gels was done in Coommassie Brilliant 

Blue for the identification of protein bands followed by 

destaining in 5% glacial acetic acid. 

Molecular weight determination of polypeptides 
and their localization by silver staining
The process was done in denaturing condition where the 

PA gels, running buffers and samples had SDS in their 

known molarities (Laemmli, 1970). The gels were run for 

three hrs at 16V, 60mA/gel at room temperature. After the 

run was over, the gels were directly processed for silver 

staining (Nesterenko et al., 1994). Replica gels were also 

run under similar conditions and used for CBB staining 

after overnight wash in 5% acetic acid. 

Visualization of lactate dehydrogenase (LDH) 
and esterase (Est) isoenzymes
Electrophoresis was carried out according to the protocol 

described previously (Ahmad & Hasnain, 2005). For LDH 

staining, gels were incubated in reaction mixture con-

taining substrates, intermediates and coenzymes in their 

evaluated concentrations (Ahmad et al., 2009b). Gels for 

Est staining were separately incubated in reaction mix-

ture containing each α-naphthyl acetate and β-naphthyl 

acetate (5.58 × 10–3 mM) as substrates at 25 °C. 

Documentation, densitometry and quantitative 
assessment of PAGE profi les
H&E stained sections of liver biopsies were visualized and 

photographed under microscope (Nikon, Model: 80i) with 

in-built microprocessor. Blood smear slides were photo-

graphed under microscope (Nikon, Model: 80i) attached 

to camera (Nikon). 

Stained PA-gels were documented using SONY-

CYBERSHOT digital camera (Zoom-4×, 12 Megapixels) 

and by direct scanning on an all-in-one HP Deskjet (F370) 

computer assembly. Data from both records were used for 

further processing and analysis. Gel-scans were processed 

through Adobe Photoshop (version 7.0) to obtain the best 

contrast for densitometric analysis through software. 

Densitometry of the selected gel-scans was done using 

Scion Imaging (Scion Corporation; Beta release, 4.0) and 

GelPro (Media Cybernetics, USA) software programs.

Statistical analysis
The values of all blood-related parameters of control and 

treated specimens were compared and presented as mean 

± SD (n=5). To test the significant differences among the 

obtained values and enzyme activities, Student’s t-test 

was applied at p<0.05. 

Results

Toxicity due to NDMA treatment was assessed by the 

in vivo induction of hepatic fibrosis for 21 days. It was 

confirmed by H & E staining of liver biopsies. Stained 

liver sections of rats showed disruption in normal liver 

architecture, inflammation, hemorrhage and fibrosis with 

distinct deposition of thick collagen fibers within 21 days 

of NDMA treatment (Figure 1). 

Table 1 demonstrates changes in peripheral blood of 

rats treated with NDMA for 21 days, details are given 

under Materials and Methods. Significant increase in 

hemoglobin, total leukocyte count (TLC), neutrophils 

and hemolyzed RBC count (p<0.05) can be observed. 

Similarly, a significant decline in the levels of lympho-

cytes of the order of 17% as compared to controls and 

intact RBC count is recorded (p<0.05). Stained RBC 

smears show the presence of acanthocytes, dacryocytes 

(tear drop cells), spicules (crenated) and cobot rings in 

treated samples indicating anemia and liver dysfunction 

Table 1. Some blood-related parameters in control and NDMA-
treated samples of rats. 

Parameter Control Treated 

Hemoglobin (gm %) 5.7±0.95 8.0±1.02*

Total leukocyte count (m/cu mm) 3170±109 37190±145*

Differential leukocyte count
Neutrophils (% )
Lymphocytes (%) 
Eosinophils (%)
Monocytes (%)
Basophils (%)

19±1.8
74±3.69
02±0.11
04±0.31
01±0.2

38±2.07*

57±3.88**

0
05±0.44

0

Intact RBCs count (106 cells/mL) 7.2±1.11 5.9±0.98**

Hemolyzed RBC (%) 2.5±0.19 48±3.04*

The obtained values are expressed as mean ± SD (n=5). 
*p<0.05, in control and treated samples
**p<0.01, in control and treated samples

Figure 1. Hematoxylin and eosin (H&E) staining of rat liver sec-
tions during the pathogenesis of NDMA-induced hepatic fi brosis 
(a) Control liver (×125). (b) NDMA, day-7 (×250). Severe conges-
tion and hemorrhagic necrosis. (c) NDMA, day 14 (×250). Severe 
neutrophilic infi ltration and fatty changes. (d) NDMA, day 21 
(×125). Marked hepatic fi brosis (arrow) and deposition of colla-
gen fi bers. 
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(Figure 2). Increase in the number of these cell types was 

time and dose dependent. 

Native-PAGE profiles showed the presence of nineteen 

protein bands in soluble brain proteins of the control and 

treated samples (Figure 3a). Densitometric analysis of gel-

scans revealed quantitative differences in protein band # 

3, 6, 7, 9, 15, 17, 18 and 19 (shown with arrow heads). Their 

expression was time-specific and correlated with changes 

in the stages of pathogenesis. Representative profiles in 

SDS-PAGE revealed the existence of thirty-seven and 

thirty-nine polypeptides in the respective control and 

treated samples of soluble brain proteins (Figure 3b). 

Three polypeptides of the molecular weights 184, 139, and 

31 kDa observed in control samples were totally absent 

at any stage of treatment with NDMA. In SDS-PAGE 

profiles of brain, six novel polypeptides of the molecular 

weights 147, 123, 81, 33, 25 and 18 kDa were detected in 

the treated groups (Figure 3b). A novel stage-specific poly-

peptide (Mr=25 kDa) was detected in a significant amount 

(p<0.05) on day 4 of the treatment and at following stages. 

During the present study, we compared zymograms 

of lactate dehydrogenase (LDH) and esterases (Est) in the 

soluble fraction of brain samples of control and treated 

animals. In the control samples, the isoenzyme rank 

was LDH-3>LDH-4>LDH-1>LDH-5>LDH-2. On day 4 

Table 2. Values showing the relative presence of acetylcholine esterases and aryl esterases in the brain of control and NDMA-treated rats. 

Esterases Control Day-4 Day-7 Day-11 Day-14 Day-21

ArylEst 39.7±2.88 38.66±2.2 35.77±2.92 46.38±3.41 50.12±3.92 53.54±3.56
AchEst 43.9±3.01 42.08±2.99 41.26±2.87 34.64±2.2 33.92±2.6 31.15±2.43
AchEst: ArylEst 1.1057 1.0884 1.1534 0.7468 0.67677* 0.581*

The data are represented as mean ± standard deviation (n=5).
*p<0.05, in control and treated samples

Figure 2. Plates showing red blood cells of rats stained with 
Giemsa. (a) Normal morphology of RBC in control samples 
(×600). NDMA-treated samples demonstrated visible membrane 
destructions and presence of diff erent cell shapes. (b) Spicules, 
crenated (—). (c) Spicules and acanthocytes (). (d) Spicules, 
dacryocytes (tear drop, —) and cobot rings (—).
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Figure 3. Typical polyacrylamide gel electrophoretic (PAGE) pro-
fi les of brain homogenates (a) native PAGE: C, Control samples 
(untreated); 4, 7, 11, 14 and 21 represents days of NDMA treat-
ments given to the rats. (b) Protein profi les under denatured 
conditions (SDS-PAGE): M, Molecular weight marker (chicken 
actomyosin); C, control samples; 4, 7, 11, 14 and 21 represent 
days on which NDMA was administered to rats. Arrows () indi-
cate the peptide (s) showing diff erences.

of NDMA treatment, significant changes in isoenzyme 

levels were noted that did not alter the ranking and order 

of preference of LDH isoenzymes in the tissue investi-

gated. On day 7 of treatment, abrupt up-regulation in the 

activity of LDH-5, concomitant with down-regulation of 

LDH-1 and -4, was noted in treated fractions (Figure 4a). 

This switchover persisted up to the end of treatment and 

led to a change in the overall rank of LDH isoenzymes: 

LDH-3>LDH-5>LDH-4>LDH-1>LDH-2. No apparent 

change in LDH heterotetramers of brain was detected 
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during the treatment and induction of fibrosis (Figure 4a, 

inset). 

Typical zymograms of esterases of control and 

NDMA-treated group of rats demonstrate the presence of 

butyryl cholinesterase (BchEst), paraoxonase/arylesterase 

(ArylEst) and acetylcholinesterase (AchEst) in the brain. 

Relative quantities of AchEst to ArylEst show a significant 

decline (p<0.05) (Table 2) and display a typical shift in the 

levels of AchEst to ArylEst after day 7 in the treated group 

of rats (Figure 4b). 

Discussion

We had previously shown that N'-nitrosodimethyl-amine 

(NDMA) treatment in rats in the specified concentrations 

induced hepatic fibrosis (HF) within 21 days (Ahmad et al., 

2009a). During the present investigations, HF was again 

successfully induced by NDMA in rats treated for 21 days 

under identical conditions. Hematoxylin and eosin stain-

ing of liver sections confirmed changes characteristic of 

intensive HF, i.e. inflammation, disruption of normal liver 

architecture, hemorrhage and distinct deposition of thick 

collagen fibers (Figure 1). In a search for easy monitoring 

of biochemical markers for early neurotoxicity detection, 

apart from RBC related parameters and the enzyme 

levels, we focused on electrophoretic profiles of proteins/

polypeptides with increasing duration and course of HF 

to help identify participant(s) in the molecular cascade 

of the neurotoxic stimulus of the insult (Haggerty, 1990; 

Jellinger, 2001). 

Our findings in this investigation established a cor-

relation between NDMA-induced HF and changes in 

clinical blood parameters and brain polypeptides. In 

NDMA-treated rats, the intact RBC counts decreased 

while hemolyzed RBC count, hemoglobin, TLC, and 

neutrophils increased significantly (p<0.05). Thus, the 

blood parameters strongly indicated acute toxicity in 

NDMA-treated rats. Oxidation of NDMA within RBCs 

may have led to free radical generation and hemolysis, 

which consequently caused hemoglobin release exerting a 

multitude of toxic effects (Everse & Hsia, 1997; Armutcu et 

al., 2005). One of the most important effects highlighted 

by these authors is the liberation of iron from RBCs. Iron 

ion plays an important role as a redox catalyst and its 

liberation will therefore increase the total pro-oxidant 

potential. Lipid peroxidation mediated by free radical 

generation is believed to be an important cause of dam-

age to cell membranes, since polyunsaturated fatty acids 

of the cellular membranes are degraded by free radicals 

that ultimately disrupt membrane integrity (Armutcu et 

al., 2005).

In native PA gel profiles, the total number of protein 

bands in soluble brain proteins of control as well as the 

treated groups was nineteen (Figure 3a). However, few 

polypeptides showed significant quantitative differences 

(p<0.05), depending also on the duration of NDMA 

treatment. Four categories were recognized : (i) gradual 

quantitative decrease in band #3 and 6 corresponding 

with the increasing duration of NDMA treatment; (ii) 

abrupt increase in bands #7 and 9 on day 21 of treatment; 

(iii) sudden increase in bands #15 and 18 on day 4 followed 

by a gradual decrease up to day 21 of treatment; and, (iv) 

rapid decrease in band #17 and 19 on day 4 followed by 

a continuous increase up to day 21 of treatment. It is 

thus obvious that HF induction by NDMA brings about 

quantitative changes in soluble proteins of the treated rat 

brains, which indicates their diagnostic value. Because 

of the concomitance with the changes in RBC rheology, 

which are an accepted marker of toxicity, the quantitative 

changes observed in brain protein bands are also indica-

tors of toxic effects of NDMA.

Quantitative changes in protein profiles can occur not 

only at transcriptional and translational levels but distur-

bances in folding and assembly of polypeptides may also 

appear. We therefore analyzed NDMA-treated samples by 

SDS-PAGE and detected a total of 37 polypeptides in the 

control group and 39 in the treated samples, However, the 

differences were more pronounced in terms of molecular 

weights : (i), four polypeptides with Mr 184, 139, 31 and 

17 kDa were specific to control samples (ii), six polypep-

tides of Mr 147, 122, 81, 33, 25 and 18 kDa were specific to 
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activities in brain of rats during progression of hepatic fi brosis. 
(a) LDH and, (b) Esterases.
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treatment groups (iii), a single polypeptide of Mr 25 kDa 

showed temporal expression from day 4 of treatment 

onwards (Figure 3b). Cells display stress-response charac-

terized by induction of a variety of proteins, including pro-

teins of the heat shock family in response to environmen-

tal and pathophysiological stimuli (Hightower & White, 

1981; Brown, 1994; Richter-Landsberg & Goldbaum, 

2003). Many of the gene products are induced by a variety 

of injurious stimuli belonging to the stress-protein family 

and fall within the molecular weight range of 8–150 kDa 

(Gonzalez et al., 1991; Benjamin and McMillan, 1998; 

Richter-Landsberg and Goldbaum, 2003). We suggest 

that NDMA-induced injury in rats limits oxygen carried 

to brain cells because of a decrease in intact RBC count. 

This would produce a stressful (hypoxic) condition result-

ing in induction and expression of proteins with Mr 93, 

47and 33 kDa, which belong to the heat shock protein 

(hsp) family. However, as reported by previous workers, 

constitutive protein forms of Mr=100, 72 and 27 kDa were 

also present (Hightower & White, 1981; Brown, 1994; 

Richter-Landsberg & Goldbaum, 2003). Although the 

function of all the proteins belonging to the hsp family 

is not yet known, it is assumed that constitutive forms or 

molecular chaperones are important in post-translational 

processing, such as protein folding, transport between 

organelles and proteolysis (Mayer & Brown, 1994; Massa 

et al., 1996; Benjamin & McMillan, 1998). It is also likely 

that the three inducible forms detected in electrophoretic 

profiles of soluble brain proteins in NDMA-treated rats 

have similar functions and participate in stabilizing and 

refolding partially denatured proteins or promoting their 

degradation (Nagata & Hosokawa, 1996; Pratt, 1998; 

Landry & Huot, 1999). 

Some reports have shown that nitroso compounds 

create a hypoxic environment (Jenkins et al., 1985; 

Haggerty & Holsapple, 1990). The significance of lactate 

dehydrogenase isoenzymes as indices of hypoxia/anoxia 

in various vertebrates has often been emphasized (Singh 

& Kanungo, 1968; Jakob et al., 1993; Crawford & Davies, 

1994; Ahmad & Hasnain, 2005). In NDMA-treated rats 

from day 7 onwards, a switchover of homotetramer 

LDH-1 (H4) to LDH-5 (M4) was noticed in the treated ani-

mals (Figure 4a). Similarly, a shift of acetylcholinesterases 

(AchEst) to arylesterases (ArylEst) was also observed in 

brain extracts of NDMA-administered rats (Figure 4b). 

Since an increase in LDH-5 (M4) indicates hypoxic stress, 

it is obvious that NDMA generated a hypoxia-like condi-

tion in brain cells. Moreover, the coexistence of LDH-1 

with AchEst indicates that LDH-1 is present in nerve 

fragments due to entrapped cytoplasm in the axon and is 

probably consumed by these cells (Johnson, 1960; Benzi, 

et al., 1980; Laughton, et al., 2000). 

In light of the above findings it can be concluded 

that RBC hemolysis, abnormal protein profiles and a 

high degree of enzymatic variations in the brain are the 

consequences of NDMA-induced toxicity in rats. In addi-

tion, these changes are also associated with the onset of 

hepatic fibrosis on day 7. Our results showed for the first 

time that certain protein bands and polypeptides of the 

soluble fraction of the brain are suitable markers of toxic-

ity produced by NDMA and similar compounds. This 

finding should help elucidate the detailed mechanism 

of toxicity by using a combination of molecular biology 

techniques with proteomic profiles and other parameters, 

thus extending available experimental models. The out-

come will help in designing remedies to treat pertinent 

conditions.
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