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ABSTRACT
Nitric oxide (NO) is a small gas molecule derived from at least three isoforms of the enzyme termed nitric oxide synthase (NOS). More 

than 15 years ago, the question of feedback regulation of NOS activity and expression by its own product was raised. Since then, a 

number of trials have verified the existence of negative feedback loop both in vitro and in vivo. NO, whether released from exogenous 

donors or applied in authentic NO solution, is able to inhibit NOS activity and also intervenes in NOS expression processes by its 

effect on transcriptional nuclear factor NF-κB. The existence of negative feedback regulation of NOS may provide a powerful tool for 

experimental and clinical use, especially in inflammation, when massive NOS expression may be detrimental. 
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Nitric oxide synthase

The enzyme, which NO is derived from, bears the name 

‘nitric oxide synthase’ (NOS, EC 1.14.13.39). To date, 

NOS has been purified in at least three isoforms, which 

can be distinguished by their origin from different genes, 

diverse localization within the cell, specific regulation 

and various sensitivity to inhibitors, with about 51–57% 

homology between the human isoforms (Geller & Billiar, 

1998; Alderton et al., 2001).

The typical nomenclature of NOS isoforms is derived 

from the tissue of the first isolation, although occurrence 

of particular isoforms is not strictly limited to a certain 

type of cells. Thus the isoform first purified from rat brain 

tissue is called neuronal NOS (nNOS) or NOS I (Bredt et 

al., 1990). In addition to neurons, nNOS may be exprimed 

also in skeletal muscles, lung epithelial cells, kidneys, 

adrenal glands, skin, hypophysis, vascular smooth muscle 

cells and other cells and tissues (Boulanger et al., 1998; 

Förstermann et al., 1998; Esper et al., 2006). 

NO synthesized by nNOS participates primarily in 

neurotransmission and neuromodulation. In the nucleus 

tractus solitarii and rostral ventrolateral medulla, the 

function of nNOS is related to central control of blood 

pressure (Chang et al., 2003; Lin et al., 2007). In the 

periphery, NO acts as neurotransmitter in perivascular 

vasodilatory nerves named ‘nitrergic’ and sometimes 

is considered to be the main neurotransmitter of the 

inhibitory non-adrenergic non-cholinergic system 

(Antošová et al., 2005). However, in the case of eNOS 

knock-out mice, nNOS was also able to supply the role of 

Physiological function of nitric oxide 
synthase feedback regulation

Nitric oxide (NO) is a small gas molecule participating 

in physiological processes in diverse cells from protozoan 

parasite Leishmania donovani to mammalian neurocytes 

(Basu et al., 1997). Nevertheless, many biochemical char-

acteristics of its synthesis remain as yet unknown.

It seems almost unbelievable what a long time has 

passed since Hermann found in 1865 that NO combines 

with hemoglobin. Later NO was shown to react with the 

heme groups and nearly hundred years later the kinetics 

and equilibrium of the reaction of NO with hemoglobin 

was described (Gibson & Roughton, 1957). The ability 

of NO to activate heme protein guanylate cyclase and 

to increase the level of cyclic guanosine monophosphate 

(cGMP) in various tissues (Arnold et al., 1977) raised 

the question about the physiological role of NO and the 

ensuing quest for an answer gave birth to the discovery 

of NO-mediated cGMP-dependent vasorelaxation 

(Rapoport & Murad, 1983).

During the following ten years, the nature of divergent 

physiological functions of NO was discovered along with 

distinct isoforms of NO-synthesizing enzyme.
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eNOS in vasorelaxation (Meng et al., 1998). Additionally, 

nNOS-derived NO functions also in synaptic plasticity, 

including hippocampal long-term potentiation, and plays 

an important role in stress and adaptive responses of 

the organism (Bon & Garthwaite, 2003; Púzserová et al., 

2006; Bernátová et al., 2007a). 

Endothelial NOS (eNOS) or NOS III was purified 

from bovine aortic endothelial cells (Pollock et al., 1991) 

and may be found also in cardiomyocytes, hepatocytes, 

thrombocytes, vascular smooth muscle cells, lung epi-

thelial cells and others (Förstermann et al., 1998; Arnal 

et al., 1999; Strapková et al., 2008). In the cell, eNOS is 

typically targeted into plasmalemmal invaginations 

termed ‘caveolae’, which inhibits eNOS function. Increase 

in intracellular Ca2+ concentration, e.g. by shear stress, 

leads to the formation of calcium/calmodulin complex 

(Ca2+/CaM), which enables eNOS to dissociate from 

caveolae and become catalytically active (Alderton et al., 

2001). Endothelial NO has a variety of physiological func-

tions, including vasodilatation, inhibition of thrombocyte 

adhesion and aggregation and antiatherogenic effects 

(Esper et al., 2006).

Both isoforms mentioned above are considered to be 

expressed constitutively. At least in some tissues their 

activity is Ca2+-dependent and their NO production 

reaches picomolar levels (Strapková & Nosáľová, 2001).

Inducible NOS (iNOS) or NOS II is the last of three 

isoforms of NO-synthesizing enzyme, purified for the 

first time from activated macrophages (Hevel et al., 

1991). By contrast to so-called constitutive isoforms 

(nNOS and eNOS), iNOS had been earlier thought to be 

Ca2+-independent and expressed after induction under 

inflammatory conditions (Geller & Billiar, 1998).

While induction of iNOS expression in murine and 

rat cells requires incubation with just one bacterial 

lipopolysacharide (LPS), IL-1β, IL-6, TNF-α or an other 

compound, in the majority of human cells it requires 

a complex cytokine combination (Kleinert et al., 2004). 

After stimulation, a variety of cells are able to express 

iNOS, e.g. hepatocytes, monocytes, mast cells, cardiac 

myocytes, glial cells or vascular smooth muscle cells 

(Michel & Feron, 1997; Aktan, 2004). In contradistinction 

to the generally held opinion, some specific cells such 

as murine ileal epithelium, epithelium of bronchi and 

bronchioles of lamb and sheep or human airway epithe-

lium showed also constitutive expression of iNOS (Guo 

et al., 1995; Hoffman et al., 1997; Sherman et al., 1999). 

This may be further enhanced in the presence of certain 

factors such as LPS (Gath et al., 1996) or oxidative stress 

(Cooke & Davidge, 2002) and, on the contrary, suppressed 

by glucocorticoid treatment (Guo et al., 1995).

Once induced, iNOS produces continuously high 

levels of NO up to micromolar range, until the enzyme is 

degraded (Geller & Billiar, 1998). The high output of NO 

from iNOS acts in antimicrobial, antiviral, antiparasitic 

and tumoricidal processes (MacMicking et al., 1997; 

Geller & Billiar, 1998) and the cytotoxic effect of NO is 

involved in immunological and tissue-damaging actions 

(Bogdan, 2001). On the other hand, excessive production 

of NO participates in the pathophysiology of several 

autoimmune diseases (for example Crohn’s disease, rheu-

matoid arthritis), chronic inflammatory diseases (such 

as asthma), acute lung injury and meconium aspiration 

syndrome or various degenerative diseases (Kröncke et 

al., 1998; Bogdan, 2001).

Enzymatic action of NOS

Only a homodimeric enzyme is able to produce NO 

coupling L-arginine oxidation to NADPH consumption 

and releasing L-citrulline as coproduct. Several cofactors 

are necessary for stable dimerization of NOS and NO 

synthesis. For each monomer, heme and flavins (flavin 

adenine dinucleotide and flavin mononucleotide) as pros-

thetic groups are required to tightly bind to the molecule. 

Ca2+/CaM and 5,6,7,8-tetrahydrobiopterin (BH4) binding 

to monomer provide both dimerization and solely enzy-

matic action, while zinc ion is required one per dimer for 

stabilization (Geller & Billiar, 1998; Alderton et al., 2001).

Ca2+/CaM binding to NOS dimer reflects intracellular 

Ca2+ concentration and if it decreases, the bond dissoci-

ates and electron transport stops (Daff et al., 1999). This 

is the basis for the activity of constitutively expressed 

NO synthases to be calcium-regulated. Synthesis of NO 

during catalytic activity of iNOS had been formerly con-

sidered to be Ca2+-independent, but contrary to previous 

views, the activity of iNOS isolated from guinea-pig lungs 

could be inhibited by chelation of Ca2+ ions (Shirato et al., 

1998). Likewise, human iNOS seems to require at least 

a low level of calcium for optimal binding of calmodulin 

(Geller & Billiar, 1998).

Yet another factor, BH4, is crucial for physiological 

action of NOS, especially for iNOS (Alderton et al., 2001). 

In the absence of BH4 (or L-arginine), the phenomenon 

called “uncoupling” occurs, which means that NADPH 

consumption proceeds independently of L-arginine 

oxidation. NOS will utilize NADPH, but in that case 

the product of reaction is superoxide anion (O2
–) and 

H2O2 (Gorren & Mayer, 2002). At limiting concentra-

tions, the situation becomes more complicated. If there 

is just one BH4 per NOS dimer, the BH4-free subunit 

will produce O2
– in the uncoupled reaction, while the 

BH4-supplemented subunit will produce NO (Gorren et 

al., 1996). Taking into consideration that NO and super-

oxide can react together rapidly forming peroxynitrite, 

NO synthase may act as peroxynitrite synthase (Andrew 

& Mayer, 1999). As a consequence, the bioavailability of 

BH4 for NOS further declines, as peroxynitrite oxidizes 

BH4 to inactive dihydro-L-biopterin (Milstien & Katusic, 

1999) and more NOS reactions become uncoupled.

Excessive formation of O2
– or peroxynitrite after 

cytokine-mediated NOS expression, for example in acute 

lung injury (such as in meconium aspiration syndrome), 

may exceed the capacity of the oxidant defense system 

leading to oxidative stress. This may potentiate the lung 

injury and inhibit lung surfactant production (Mokra & 

Mokry, 2007; 2010)
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Feedback regulation of NOS activity

Potential NO-mediated oxidative damage requires 

detailed regulation of NOS activity as well as NOS 

expression.

Besides carefully managed conditions of dimer acti-

vation by cofactors, the question of feedback regulation 

of NOS activity and expression by its own product has 

been raised when Rogers & Ignarro (1992) found that 

during in vitro determination of NOS activity the rate of 

L-citrulline formation was not linear. The above men-

tioned authors showed that addition of oxyhemoglobin 

(a strong NO scavenger) made the rate of NO formation 

linear, while addition of superoxide dismutase (which 

increases the half-life of NO) inhibited NOS activity 

and made the rate of NO production more non-linear. 

As the decrease of NOS activity was observed even 

after admixing authentic NO or exogenous NO donors 

to the enzymatic reaction, the authors for the first 

time hypothesized the existence of binding between 

heme-iron and NO, which was considered to represent 

a negative feedback regulation of NOS activity (Rogers 

& Ignarro, 1992). 

Consequently, the assay was repeated with iNOS from 

activated murine macrophages (Assreuy et al., 1993) and 

rat alveolar macrophages (Griscavage et al., 1993), which 

means that feedback regulation is not only a matter of 

"constitutive" isoforms. Since then, a number of trials 

verified the existence of this negative feedback loop 

both in vitro and in vivo (Park et al., 1994; Buga et al., 

1993; Ravichandran et al., 1995; Grumbach et al., 2005; 

Bernátová et al., 2007b; Zhen et al., 2008).

Chemical basis of feedback regulation of NOS activity
The chemical basis of NO-NOS interaction is not com-

pletely understood. The heme-iron bond in the NOS 

molecule may occur in both reduced (ferrous) and oxi-

dized (ferric) form and even formation of both ferric- and 

ferrous-nitrosyl complexes with NOS exists (Hurshman & 

Marletta, 1995), leading to NOS inhibition.

The ferrous-nitrosyl complex is considered to be a 

natural part of catalysis (Abu-Soud et al., 1995) and it 

is formed during the first seconds after NO synthesis 

initiation by the heme binding of newly generated NO 

(Santolini et al., 2001b). Particular NOS isoforms differ 

by the rate of autoinhibition. For example, the majority 

(70–90%) of nNOS was present at its ferrous-nitrosyl 

complex regardless of the NO concentration in solution 

(Abu-Soud et al., 1995). By contrast, iNOS heme-NO 

complex consists of a rather ferric-nitrosyl complex 

formed rapidly and depending on NO concentration, 

although a minor amount of ferrous heme-NO complex 

forms in iNOS, suggesting that its regulation also involves 

generated NO binding (Santolini et al., 2001b). Regarding 

eNOS, it seems to form relatively little heme-NO complex 

with the lowest formation rate (Abu-Soud et al., 2000).

For all iNOS, eNOS and nNOS, a loss of activity 

appears when heme binds NO that accumulates in a 

solution as a consequence of chemical equilibrium 

(Santolini et al., 2001a). To examine the susceptibility 

of the particular NOS isoforms to self-inhibition by NO, 

Scott and his colleagues (2002) constructed inhibition 

curves of each NOS isoform to NO donor S-nitroso-N-

acetyl-penicillamine (SNAP). The calculated IC50 values 

for SNAP were 1 800 μM for iNOS, 200 μM for eNOS 

and 51 μM for nNOS. The high level of NO produced by 

inducible isoform may thus inhibit the activity of consti-

tutive isoforms, which becomes especially apparent under 

conditions of increased iNOS activity, e.g. in sepsis (Scott 

et al., 2002) or meconium-induced inflammation (Li et al., 

2001).

The existence of negative feedback regulation may 

contribute to the beneficial effect of inhaled NO on per-

sistent pulmonary hypertension or meconium aspiration 

syndrome in newborns (Ichinose et al., 2004). However, 

to date data about the direct effect of inhaled NO on 

pulmonary inflammation processes are missing.

Feedback regulation of NOS expression

After the feedback regulation of NOS activity by NO had 

been proven, the next step was to determine whether 

feedback regulation of NOS expression existed and the 

attention of scientists focused on the regulatory action of 

both exogenous and endogenous NO.

The first observation of NO intervention in tran-

scriptional processes was made by Park et al. (1994) who 

incubated the culture of astroglial cells with hemoglobin 

and found increased iNOS mRNA after induction com-

pared to the control, which was completely abolished in 

the presence of exogenous NO donor. 

Chemical basis of feedback regulation of NOS expression
Now it is clear that NO, whether released from exogenous 

donors or applied in authentic NO solution, is able to 

inhibit iNOS expression in concentrations close to the 

physiological range (Colasanti et al., 1995). This is true 

also for eNOS. The presence of NO donor reduced the 

rate of eNOS mRNA increase, which is the physiologi-

cal reaction of endothelial cells to laminar shear stress 

(Grumbach et al., 2005).

We also know that the promoter region of iNOS gene 

contains several binding sites for NF-κB (Hecker et al., 

1997), which plays a central role in the regulation of NOS 

expression (Colasanti et al., 1995; Kleinert et al., 2004). 

This clarifies also the linkage between inflammation 

and iNOS expression. The inhibitory effect of NO on 

NF-κB was proved also for eNOS (Grumbach et al., 2005, 

Figure 1), however, there is no accordance about the site 

of NO inhibitory action on NF-κB. According to what 

has been found, NO may inhibit activation of NF-κB 

(Colasanti et al., 1995), NF-κB binding to DNA (Park et 

al., 1997) or induce and stabilize the inhibitor of NF-κB 

(Peng et al., 1995; Davis et al., 2004). In addition, it is pos-

sible that NO intervenes with feedback regulation of NOS 

expression at multiple levels. Further, feedback regulation 

of NOS expression was assumed to be transmitted by 
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cGMP as a decrease of eNOS expression was found after 

pretreatment with exogenous cGMP (Vaziri & Wang, 

1999). From this point of view, the molecular tracks of a 

negative loop between NO and NOS isoform expression 

has not been satisfactorily elucidated as yet. 

Oxidative stress and NOS expression

Considering NF-κB contribution to NOS expression, we 

cannot neglect the role of oxidative stress. The production 

of reactive oxygen species (ROS) during exercise led to 

NF-κB activation and, afterwards, to expression of both 

eNOS and iNOS in rat skeletal muscles (Gomez-Cabrera 

et al., 2005). Moreover, induction of oxidative stress by 

glutathione depletion caused up-regulation of renal and 

aortic eNOS and iNOS in animals (Zhen et al., 2008). This 

finding is logical, because under conditions of oxidative 

stress, the NO regulatory process of NOS expression may 

be interrupted. As O2
– serves as NO scavenger (forming 

peroxynitrite), the bioavailability of NO for the tissue is 

limited. The following up-regulation of NOS has to com-

pensate NO deficiency. However, under conditions of oxi-

dative stress, the essential cofactors of NO synthesis may 

be inactivated and NOS itself may produce ROS and thus 

worsen the situation. Participation of ROS in compensa-

tory NOS expression became apparent after antioxidant 

treatment where eNOS and iNOS were down-regulated in 

rat kidneys, aorta and heart (Vaziri et al., 2000).

Aims for the future

The existence of negative feedback regulation of NOS 

expression and activity by its product NO provides a 

powerful tool for experimental and clinical use. Chronic 

administration of low doses of NOS inhibitor enhances 

NOS activity and NO production in vascular tissues via 

feedback regulation (Kopincová et al., 2008). Thus NO, 

whether inhaled or derived from exogenous NO donors, 

should stop processes leading to massive iNOS expres-

sion and activity in situations when it is detrimental, e.g. 

in inflammatory processes. However, the ”user’s manual” 

for this tool needs to be further elucidated.
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Figure 1. Negative feedback regulatory eff ect ( ———) of nitric oxide (NO) to endothelial 
nitric oxide synthase (eNOS) expression mediated via nuclear factor κB (NF-κB). 
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