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ABSTRACT
Deoxynivalenol (DON) is one of several mycotoxins produced by certain Fusarium species that frequently infect corn, wheat, oats, 
barley, rice, and other grains in the field or during storage. The exposure risk to human is directly through foods of plant origin (cereal 
grains) or indirectly through foods of animal origin (kidney, liver, milk, eggs). It has been detected in buckwheat, popcorn, sorgum, 
triticale, and other food products including flour, bread, breakfast cereals, noodles, infant foods, pancakes, malt and beer. DON affects 
animal and human health causing acute temporary nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and fever. This 
review briefly summarizes toxicities of this mycotoxin as well as effects on reproduction and their antagonistic and synergic actions. 
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the brain, where it runs dopaminergic receptors. The 
emetic effects of this mycotoxin were firstly described 
in Japanese men consuming mouldy barley containing 
Fusarium fungi in 1972 (Ueno, 1985; Ueno, 1988). DON is 
probably the best known and most common contaminant 
of grains and their subsequent products. Its occurrence 
in food and feed represent more than 90 % of the total 
number of samples and it is a potential marker of the 
occurrence of other mycotoxins.

Chemically DON is a member of the trichothecenes 
family of mycotoxins (Figure 1). Structurally, it is a polar 
organic compound, which belong to the type B trichot-
hecenes and its chemical name is 12,13-epoxy-3α,7α,15-
trihydroxytrichothec-9-en-8-on (Nagy et al., 2005). In 
its molecule it contains 3 free hydroxy groups (-OH), 
which are associated with its toxicity. From its chemical 
structure its physical and chemical properties shown in 
Table 1 follow. 

One of the most important physicochemical property 
of DON is its ability to withstand high temperatures, 
which is the risk of its occurrence in food (Hughes et al., 
1999). Numerous studies have documented that DON was 
heat-stable. DON is very stable under temperature within 
the interval from 170 °C to 350 °C, with no reduction of 
DON concentration after 30 min at 170 °C. However, DON 
levels are reduced in cooked pasta and noodles because 
of leaching into the cooking water (Manthey et al., 2004; 

Introduction

Fusarium mycotoxins are the largest group of mycotox-
ins, which includes more than 140 known metabolites 
of fungi. They are synthesized by many species of fungi, 
mainly by Fusarium (F. graminearum and F. culmorum). 
Due to the high toxicity of Fusarium mycotoxins and high 
occurrence of the fungi species producing them, these 
mycotoxins belong to the most animal and human health 
endangering ones. They are abundant in cereals and their 
products (Yazar & Omurtag, 2008). Deoxynivalenol, niva-
lenol and T-2 toxin belong to the most occurred Fusarium 
mycotoxins. 

Trichothecenes and deoxynivalenol

Deoxynivalenol (DON) is a natural-occurring mycotoxin 
mainly produced by Fusarium graminearum (Kushiro, 
2008). It is also know as vomitoxin due to his strong emetic 
effects after consumption, because it is transported into 
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Sugita-Konishi et al., 2006; Visconti et al., 2004), because 
DON is water-soluble, but no reduction of its concentra-
tion was observed during frying DON-contaminated food 
in oil. Some evidence indicates that DON levels may be 
reduced during the processing, mainly boiling in water, 
Chinese noodles containing Kansui: a commercial prepa-
ration of potassium and sodium carbonate and phosphate 
salts (Kushiro, 2008).

Deoxynivalenol in human and animal health
Potential impact of DON on human health may occur 
after ingestion of contaminated foods from oats, barley, 
wheat, corn or other grains. DON was detected also in 
buckwheat, sorghum, popcorn and other foods for human 
consumption, such as flour, bread, noodles, beer and 
malt (Pestka and Zhou, 2000). For more details also see 
“Deoxynivalenol. Safety Evaluation of Certain mycotoxins 
in food” (www.inchem.org). Danger resulting from this is 
that the toxin still remains in foods and feeds after basic 
culinary treatment. DON does not constitute a significant 
threat to public health. In a few cases short-term nausea 
and vomiting have been recorded (Perkowski et al., 1990). 
Other effects include diarrhea, abdominal pain, headache, 
dizziness and fever. Research on beer samples showed the 
presence of DON in fermented beers in Holland, which 
ranged from 26 to 41 mg/L [0.088 to 0.14 μM]. In the case 
of German beers this figure goes above 200 ng/ml [0.675 
μM] (Schothorst and Jekel, 2003). Another beer samples 
obtained from the European chain stores showed values 
ranging from 4.0 to 56.7 ng/mL [0.013 and 0.191 μM] 
(Papadopoulou-Bouraoui et al., 2004). Scheme of poten-
tial detoxification of DON is shown in Figure 2.

In animals that were exposed to the DON it was found 
the subsequent transfer of this toxin to animal products. 
However, the rate of transmission was low. DON concen-
trations were monitored in the blood plasma, bile, liver, 
kidneys, thigh muscle and the dorsal fat in pigs which 
were feed over 11 weeks of 25 or 50% contaminated wheat 
with 2.5 mg/kg DON. The content of DON in muscle tis-
sue was 2.2 ng/g in pigs fed by 25% contaminated wheat 

and 5.2 ng/g in pigs fed by 50% contaminated wheat. In 
the liver, the content was 3.6 ng/g for 25% experimental 
animals, and 4.8 ng/g for 50%. In the kidneys, this content 
was app. same for both experimental variants as 19.3 ng/g. 
In addition, metabolite de-epoxy-DON was detected only 
in liver (0–2.4 ng/g) (Doll et al., 2008). The maximum 
recalculating factor (the sum of the DON and de-epoxy-
DON in tissues divided by concentration of DON admin-
istered in the diet) was 0.0043 for muscle 0.0064 for liver 
and 0.0319 in the kidney (Doll et al., 2008). These factors 
are very similar to those of other studies performed on 
pigs, which were fed with a diet contaminated by DON 
(6.68 mg/kg) for 12 weeks. The highest recalculating fac-
tors were 0.0031, 0.0059 and 0.0193 for muscle, liver and 
kidneys, respectively. DON was also detected in the dorsal 
fat in pigs (Goyarts et al., 2007). In spite of the consuming 
animal tissues exposed to the DON secondary intoxica-
tion is negligible.

Other animal products, which may be hazardous to 
humans, are eggs. Nevertheless, DON level in eggs com-
pared to other raw materials of animal origin is negligible 
as it follows from the study with hens fed diets containing 
DON (~20 mg/kg [67 μmol/kg]) (Sypecka et al., 2004). 
The other concern is milk. Some studies conclude that 
DON can be transferred from dairy cows to their milk. 
Nevertheless, Keese et al. showed that there were no DON 
contamination of milk coming from dairy cows that were 
fed diets containing DON and other Fusarium toxins. 
However, the presence of its metabolite de-epoxy-DON 
in the quantity of 1–1.5 mg/kg was demonstrated (Keese 
et al., 2008). On the other hand, simulation of DON 
metabolism predicts the DON concentration in milk 
1 mg/kg (Coffey & Cummins, 2008), but this simulation 
have not been confirmed experimentally

Acute toxicity 
Numerous DON toxicity studies in animals have targeted 
a specific toxicological outcome or mechanism, and 
thus provided insight into potential hazards (Pestka 
& Smolinski, 2005). DON is less toxic than other 

Table 1. Physico-chemical properties of deoxynivalenol.

Property Information

Name Deoxynivalenol (DON), vomitoxin

IUPAC name 12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-en-8on

Molecular formula H15O20O6

Molar mass 296.32 g/mol

Physical state colourless fine needles

Boiling Point (°C) 543.9 ± 50.0 °C

Melting Point (°C) 151–153 °C

Flash Point (°C) 206.9 ± 2.5

Vapour Pressure 
(Torr) 4.26×10–14 25 °C

Soluble in: polar organic solvents (e.g., aqueous methanol, ethanol, 
chloroform, acetonitrile, and ethyl acetate) and water
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Figure 1. Chemical structure of deoxynivalenol (DON).
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trichothecenes such as T-2 toxin, however, extremely 
high DON doses (i.e. unlikely to be encountered in food) 
can cause shock-like death. LD50 for mice ranges from 49 
to 70 mg/kg (intraperitoneal DON injection) (Forsell et 
al., 1987) and 46 to 78 mg/kg (oral DON administration) 
(Yoshizawa et al., 1983). LD50 for 10-day old duckling is 
27 mg/kg when the toxin is administered subcutaneously 
(Yoshizawa & Morooka, 1973) and 140 mg/kg for 1-day-
old broiler chicks with DON oral administration (Huff et 
al., 1981; Pestka, 2007).

Male B6C3F1 mice were orally administered DON 
(25 mg/kg [84 μmol/kg]) to assess the kinetics of DON 
distribution and clearance. DON was detectable in the 
plasma, liver, spleen, and brain from 5 minutes up to 24 
hours post administration. DON was detectable also in 
the heart and kidney from 5 minutes up to 8 hours post 
administration. The highest plasma concentrations were 
detected from 5 to 15 minutes after dosing. DON concen-
trations (mg/kg) in other tissues 5 minutes after dosing 
were 19.5 ± 1.9 in liver, 7.6 ± 0.5 in kidney, 7.3 ± 0.8 in 
spleen, 6.8 ± 0.9 in heart, and 0.8 ± 0.1 in the brain (Pestka 
et al., 2008). Clearance followed two-compartment kinet-
ics (t(1/2)α = 20.4 minutes, t(1/2)β = 11.8 hours) (Pestka et 

al., 2008). The other study shows that in male B6C3F1 
mice with orally given DON (25 mg/kg [84 μmol/kg]), 
the highest levels of DON were detected in kidney, heart, 
plasma, liver. thymus, spleen and brain 30 minutes post 
administration. 

Short-term and sub-chronic exposure 
Overall, studies showed that short-term and sub-chronic 
exposure to DON decreased body weight, weight gain, 
and feed consumption in rats and mice. Haematological 
effects were also observed. Conflicting results are 
observed for the effect of DON on organ weights reported 
that spleen and liver weights and the liver-body and 
kidney-body weight ratios increased in Sprague-Dawley 
rats gavaged with DON (Pestka, 2007; Pestka & Smolinski, 
2005). In the other studies, there is reported no effect on 
organ weight or organ-body weight ratios in rats and mice 
(Gouze et al., 2006; Sprando et al., 2005). DON induced 
lesions in the non-glandular stomach, and caused thymic 
lymphoid depletion, increased incidences and mean 
severity of spleenic haematopoiesis, and increased mean 
severity of sternal bone marrow adipocyte deposition in 
rats at the highest dose (Sprando et al., 2005).
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Figure 2. Scheme of the possible way of deoynivalenol detoxification. The first and one the most important pathways using for detoxifying of 
DON is cytochrome P450, which serves to catalyze the oxidation of organic substances. This pathway, however, can cause that free hydroxyl 
groups of DON can be cleaved and DON-radical can be more dangerous. The DON-radical can be scavenged by enzymatic (glutathione peroxi-
dase (GPx), catalase, superoxide dismutase) or non-enzymatic (reduced glutathione (GSH), metallothionein (MT) and vitamins) ways. Neverthe-
less, cytochrome P450 can be followed phase II, in which glutathione-S-transferase can form conjugate with GSH and DON, which results in 
detoxification of the xenobiotic.



97
Also available online on intertox.sav.sk & versita.com/science/medicine/it

Interdisciplinary Toxicology. 2010; Vol. 3(3): 94–99

Copyright © 2010 Slovak Toxicology Society SETOX

Chronic toxicity
Female B6C7F1 mice (7 weeks old) were fed experimental 
diets for 16 weeks that contained DON (20 mg/kg [67 μmol/
kg]). DON reduced the mean daily food consumption 
(2.94 ± 0.66 g vs. 3.6 ± 0.48 g), the mean body weight gain 
(2.76 ± 0.84 g vs.12.94 ± 1.68 g), and total body weight, and 
increased serum immunoglobulin A (IgA) levels in treated 
vs. control mice starting 8 weeks after diet initiation. 
Serum IgA immune complex (IgA-IC) levels and mesan-
gial IgA deposition increased starting 16 weeks after 
diet initiation. DON also increased ex vivo IgA secretion 
from the spleen and Peyer’s patches (Iverson et al., 1995).

Synergistic/antagonistic effects 
In Salmonella typhimurium strain TA98, the combina-
tion of DON and aflatoxin B1 (AFB1) had a greater muta-
genic effect than AFB1 alone. Additionally, a synergistic 
interaction between DON and nivalenol (NIV) was found 
(Tajima et al., 2002). The direct toxic effect of DON on the 
growth and on the expression of Salmonella pathogenicity 
island 1 (SPI-1) and SPI-2 virulence genes of Salmonella 
Typhimurium was also determined. At low non-cytotoxic 
concentrations, as it can be found in the serum of pigs, DON 
did not have any effect on either growth or virulence gene 
expression of Salmonella Typhimurium. However, higher 
concentration DON (0.025 g/mL) significantly promoted 
the uptake of Salmonella Typhimurium into macrophages. 
These results suggest that low but relevant concentrations 
of DON modulate the innate immune system and could 
thus increase the susceptibility of pigs to infections with 
Salmonella Typhimurium (Vandenbroucke et al., 2009).

A synergistic carcinogenic effect was observed in 
NIH mice when Sterigmatocystin and DON were both 
administered. The number of animals with lung adeno-
carcinomas and glandular stomach dysplasia increased. In 
mouse fibroblast L929 cells, a mixture containing DON, 
NIV, T-2 toxin, zearalenone, and fumonisin B1 produced 
greater inhibition of DNA synthesis than with treatment 
of each mycotoxin alone. Additionally, a synergistic 
interaction between DON and NIV has been determined 
(Madhyastha et al., 1994).

Cytotoxicity
Numerous studies have been conducted in a variety of 
cell lines to assess the cytotoxic effects of DON. In mouse 
thymocytes in vivo, DON (0.5–8.0 mg/kg [2–27 μmol/kg]) 
dose-dependently induced significant increases in apop-
tosis rates compared to controls. In addition, DON (4 
and 8 mg/kg [13–27 μmol/kg]) significantly decreased the 
proliferation indexes of the treated cells (Bony et al., 2007; 
Ouyang et al., 1996). Explants from weanling pigs were 
exposed to 0, 0.2, 1, 5 μM DON in the culture medium for 
4 h. Preliminary cultures had shown that 10 and 30 μM 
DON induced necrosis of the explants after 4 h of incuba-
tion (Kolf-Clauw et al., 2009).

Reproductive and teratological effects 
In three-month-old nulliparous female NMRI mice, 
intraperitoneal injection of DON (3.3, 4.2, 5, or 10 mg/kg 

[11, 14, 17, or 34 μmol/kg] on gestation days 7 and 9 or 
1.6, 2.5, or 3 mg/kg [5.4, 8.4. or 10 μmol/kg] daily on ges-
tation days 7–10) produced high maternal deaths at the 
two higher doses. In embryos, the number of resorptions 
was dose-dependently increased in treated animals com-
pared to controls. Skeletal abnormalities were observed. 
Exencephaly was mainly seen at 75 or 100 μg/30 g during 
the four-day treatment. At the higher dose and shorter 
exposure period, neural arch defects or fusion were 
mostly detected. In both experiments, vertebral bodies 
showed various deformities, hemivertebrae (except with 
75 μg/30 g given for four days), and fused, branched, and/
or cervical ribs (Debouck et al., 2001). 

Carcinogenicity
The International Agency for Research on Cancer (IARC) 
concluded in 1993 that “There is inadequate evidence in 
experimental animals for the carcinogenicity of deoxyni-
valenol.” Overall, DON was placed in Group 3, “not 
classifiable as to its carcinogenicity to humans.” (Some 
naturally occurring substances: Food items and constitu-
ents, heterocyclic aromatic amines and mycotoxins, www.
iarc.fr). Subsequently, a two-year carcinogenicity study in 
mice was published. Dietary administration of DON did 
not result in an increased incidence of neoplasms in males 
or females. Particularly, in males, there was a decreased 
incidence of liver neoplasms, probably a result of lower 
body weights (Iverson et al., 1995). 

Genotoxicity
In Chinese hamster V79 cells, DON fractions from 
samples of wheat (30 ng/mL [0.10 μM]), barley (200 ng/mL 
[0.675 μM]), and corn (300 ng/mL [1.01 μM]) induced chro-
mosome aberrations, mostly chromatid breaks (Hsia et al., 
2004). DON (1–10 μmol) induced DNA damage in Vero 
cells (increased number of cells with long tails, tail DNA, 
tail length, and tail motion) in a dose- and time-dependent 
manner. Short-term incubations (4 hours) mainly induced 
an increase of the number of DNA fragments while longer 
incubation time (16 hours) mainly caused small size DNA 
fragments (Sun et al., 2002). Results from the Comet assay 
showed that DON increased mean tail moment in human 
Caco-2 cells in a dose-dependent manner at concentra-
tions (0.01–0.05 μM [3–15 ng/mL]) that did not induce 
apoptosis. Furthermore, dividing cells exhibited greater 
sensitivity to DON than differentiated cells (Bony et al., 
2007).

Immunotoxicity
Many studies of host resistance, mitogen-induced lym-
phocyte proliferation, and humoral immune response 
have yielded a common theme that trichothecenes are 
both immunostimulatory and immunosuppressive 
depending on dose, exposure frequency and timing 
relative to functional immune assay (Pestka et al., 2004). 
Numerous immunotoxicity studies are cited in the JECFA 
monograph under the following topics: altered host resis-
tance and humoral and cell-mediated responses, altered 
serum IgA levels, IgA-associated nephropathy, cytokine 
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expression, and apoptosis in lymphoid tissue. Copious 
studies have since been conducted (Gray & Pestka, 2007; 
Chung et al., 2003; Kinser et al., 2005; Pestka & Zhou, 
2000; Sugita-Konishi & Pestka, 2001; Uzarski et al., 2003; 
Wong et al., 2002; Yang et al., 2000). Additional in vitro 
studies showed that DON inhibited nuclear protein 
binding to NRE-A, an IL-2 promoter negative regulatory 
element, in murine lymphoma EL-4 T cells, induced 
cytotoxicity and apoptosis in WEHI-231 B cells, induced 
p38 activation, and increased IL-8 production (Zhou et 
al., 2005).

Conclusions

Numerous investigations have been conducted in several 
animal species to clarify DON’s tissue targets, mecha-
nisms of action and limit doses for adverse effects. This 
approach provides a simple strategy that can be used to 
answer relevant questions of how dose, species, age, gen-
der, genetic background and route/duration of exposure 
impact DON uptake and clearance in both animals and 
humans.
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