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ABSTRACT
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most frequent solid extra cranial tumor in children 

and is a major cause of death from neoplasia in infancy. Still little improvement in therapeutic options has been made, requiring a 

need for the development of new therapies. In our laboratory, we address still unsettled questions, which of mechanisms of action 

of DNA-damaging drugs both currently use for treatment of human neuroblastomas (doxorubicin, cis-platin, cyclophosphamide and 

etoposide) and another anticancer agent decreasing growth of neuroblastomas in vitro, ellipticine, are predominant mechanism(s) 

responsible for their antitumor action in neuroblastoma cell lines in vitro. Because hypoxia frequently occurs in tumors and strongly 

correlates with advanced disease and poor outcome caused by chemoresistance, the effects of hypoxia on efficiencies and mecha-

nisms of actions of these drugs in neuroblastomas are also investigated. Since the epigenetic structure of DNA and its lesions play a 

role in the origin of human neuroblastomas, pharmaceutical manipulation of the epigenome may offer other treatment options also 

for neuroblastomas. Therefore, the effects of histone deacetylase inhibitors on growth of neuroblastoma and combination of these 

compounds with doxorubicin, cis-platin, etoposide and ellipticine as well as mechanisms of such effects in human neuroblastona 

cell lines in vitro are also investigated. Such a study will increase our knowledge to explain the proper function of these drugs on the 

molecular level, which should be utilized for the development of new therapies for neuroblastomas. 
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i) neuroblastic or N-type: undifferentiated, round and 

small cells with scant cytoplasm; and ii) stromal or S-type: 

large hyaline, flattened and adherent differentiated cells. 

As neuroblastoma cells seem to have the capacity to dif-

ferentiate spontaneously in vivo and in vitro (Morgenstern 

et al., 2004), their heterogeneity could affect treatment 

outcome, in particular the response to apoptosis induced 

by chemotherapy. Neuroblastoma may regress spontane-

ously in infants, mature to benign ganglioneuromas in 

older children, or grow relentlessly and be rapidly fatal 

(Brodeur, 2003). Approximately 40% of all patients with 

neuroblastoma belong to the high-risk group (high-risk 

neuroblastoma), and therapeutic improvements in 

the past decade have not substantially improved their 

outlook in compared to other pediatric malignancies 

(Westermann and Schwab, 2002). Prognosis of high-risk 

neuroblastomas is poor, because drug resistance arises 

Introduction

Neuroblastoma, a tumor of the peripheral sympathetic 

nervous system, is the most frequent solid extra cranial 

tumor in children and is a major cause of death from 

neoplasia in infancy (Maris and Mathay, 1999; Schwab, 

1999). These tumors are biologically heterogeneous, 

with cell populations differing in their genetic programs, 

maturation stage and malignant potential (Brodeur, 

2003). Neuroblastoma consists of two principal neoplastic 

cells (Voigt et al., 2000; Hopkins-Donaldson et al., 2002): 
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in the majority of those patients, initially responding to 

chemotherapy, in spite of intensive therapy including 

megatherapy with subsequent hematopoietic progenitor 

cell transplantation, biotherapy and immunotherapy 

(Brodeur, 2003). Treatment of older children with widely 

disseminated neuroblastoma remains one of the greatest 

challenges for pediatric oncologists. However, still little 

improvement in therapeutic options has been made in the 

last decade, requiring a need for the development of new 

therapies. 

Drug-resistance in neuroblastomas

Drug-resistance in neuroblastomas might be caused by 

multiple factors, including overexpression of the genes for 

the multidrug-resistance-associated protein (MRP) and 

mdr-1 gene-encoded P-170 glycoprotein (Pgp) (Bates et al., 

1991; Bader et al., 1999). High levels of MRP gene expres-

sion are frequently found in neuroblastoma resistant to 

chemotherapeutic agents and are proven to correlate with 

poor outcome in patients with neuroblastoma (Norris 

et al., 1996; Peaston et al., 2001), whereas the contribu-

tion of mdr1 gene expression to the biology of childhood 

neuroblastomas is still a matter of debate (Kurowski and 

Berthold, 1998, Kucerova et al., 2001; de Cremoux et al., 

2007). Drug-resistance could be also caused by changes 

in apoptotic pathways. For example, mutations in p53 

or overexpression of Bcl-2, two regulators of apoptosis, 

contribute to neoplastic transformation by blocking 

apoptosis (Lara-Bohórquez et al., 2008). Protection of cell 

death by Bcl-2 does not require participation of another 

apoptotic regulator Bax, but it is most effective when 

Bcl-2 is in excess of Bax (Otter et al., 1998; Uccini et al., 

2006). Chemoresistance is usually not caused by a single 

mechanism, but it is complex phenomenon (Bedrnicek et 

al., 2005). Recent studies have provided a link between 

the malignant and drug-resistant phenotypes, indicating 

that in addition to the development of drug resistance, 

chemotherapy of tumors may cause various changes 

in their biological characteristics, including increased 

malignancy and metastatic potential (Emanuel et al., 

1999; Kotchetkov et al., 2005). 

Ellipticine as a promising drug for 
neuroblastoma treatment 

Even though currently used cytostatics, including cis-

platin, etoposide, doxorubicin, vincristine and cyclophos-

phamide (Maris et al., 2007) are effective for treatment of 

neuroblastomas, they failed in their actions for a variety 

of patients. Hence, in the past two decades, attempts have 

been made to improve outcomes in high-risk patients by 

delivering intensive induction therapy. Recently, we have 

suggested novel treatment of neuroblastomas, utilizing a 

drug targeting DNA, plant alkaloid ellipticine. We have 

found that treatment of human neuroblastoma IMR-32, 

UKF-NB-3 and UKF-NB-4 cell lines (Figure 1) with this 

agent resulted in strong inhibition of cell growth, followed 

by induction of apoptosis (Figure 2) (Poljaková et al., 

2008; 2009). These effects were associated with forma-

tion of two covalent ellipticine-derived DNA adducts, 

identical to those formed by the cytochrome P450- and 

peroxidase-mediated ellipticine metabolites, 13-hydroxy- 

and 12-hydroxyellipticine (Figure 3) (Stiborová et al., 

2001; 2004; 2007a). In addition, besides the formation of 

such covalent ellipticine-derived DNA adducts, participa-

tion of the mechanisms in ellipticine toxicity to neuro-

blastoma, such as intercalation into DNA (Auclair, 1987; 

Singh et al., 1994), and inhibition of DNA topoisomerase 

Figure 2. The induction of apoptosis in ellipticine-treated 
neuroblastoma UKF-NB-4 cells. The DNA fragmentation was 
assessed by gel electrophoresis. Cells were treated with vehicle 
and ellipticine for 48 h, and then the fragmentation of DNA was 
assessed by agarose gel electrophoresis. (Lane 1) marker; (lane 2) 
UKF-NB-4 cells treated with vehicle alone (DMSO); (lane 3) 0.1 μM 
ellipticine, (lane 4) 1 μM ellipticine, and (lane 5) 10 μM ellipticine 
[adapted from reference (Poljakova et al., 2009)].

Figure 1. Neuroblastoma cell lines UKF-NB-4 (200-fold magnifi -
cation) [adapted from reference (Poljakova et al., 2009)].



49
Also available online on intertox.sav.sk & versita.com/science/medicine/it

Interdisciplinary Toxicology. 2010; Vol. 3(2): 47–52

Copyright © 2010 Slovak Toxicology Society SETOX

II activity (Auclair, 1987; Monnot et al., 1991; Fossé et al., 

1992; Froelich-Ammon et al., 1995] that were found to 

be additional DNA-mediated mechanisms of ellipticine 

antitumor, mutagenic and cytotoxic activities [for a sum-

mary see (Stiborová et al., 2001; 2006; 2010)], cannot be 

excluded. Therefore, ellipticine and/or its more effective 

derivatives seem to be promising drugs for future clini-

cal applications (Poljaková et al., 2009). This suggestion, 

however, needs to be confirmed by further investigations 

including the in vivo studies. 

Hypoxia frequently occurs in tumors because of their 

fast growth and inadequate vascularisation. It strongly 

correlates with advanced disease and poor outcome 

caused by chemoresistance. The hypoxia inducible 

factor (HIF) is a transcription factor, which seems to be 

important for cells to adapt to hypoxia. Hypoxia-induced 

chemoresistance to cis-platin and doxorubicin in human 

non-small cell lung cancer cells is through the HIF path-

way and may be reversed by postransriptional blocking of 

this factor. (Song et al., 2006). However, even though this 

and other factors were suggested to influence cytostatic-

induced apoptosis of cancer cells and to contribute to 

induce chemoresistance of cells to drugs, their actual 

roles in neuroblastomas remain still to be investigated. 

In the case of the ellipticine toxic activity to neuroblas-

toma cells, hypoxic cell culture conditions resulted in a 

decrease in ellipticine toxicity to these cells. One of the 

reasons causing this effect might follow from a decrease 
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in formation of ellipticine-derived DNA adducts in neuro-

blastoma cells, but exact mechanisms of such effects still 

await further investigations (Poljaková et al., 2009). 

Most of the drugs shown to be toxic to neuroblasto-

mas and may be used for their treatment (doxorubicin, 

cisplatin, etoposide, cyclophosphamide and ellipticine) 

are known to be the DNA-damaging agents. Their effects 

include non-covalent DNA intercalation, inhibition of 

topoisomerase II, formation of covalent DNA adducts, 

DNA-DNA cross-links and/or free radical effects on 

DNA [for a summary see (Klener, 1996)]. The question, 

however, arises on the real contribution of these effects to 

overall cytotoxicity of these drugs to neuroblastoma cells. 

At the present time it is not known, whether these indi-

vidual effects synergize to contribute to antitumor and 

cytostatic activities of these drugs to neuroblastoma cells. 

Moreover, it is also not possible to demonstrate which of 

these effects predominate in their cytotoxic activities. 

Combination of DNA-damaging drugs 
and epigenetics-based therapy with 
histone deacetylase inhibitors may be a 
promising therapy for neuroblastomas 

The use of potent epigenetics-based therapy for cancer 

cells might restore the abnormally regulated epigenomes 

to a more normal state through epigenetic reprogramming 

(Witt et al., 2009). Thus, epigenetic therapy may be a prom-

ising and potent treatment for human neoplasia. Because 

the epigenetic structure of DNA and its lesions play a role 

in the origin of human neuroblastomas, pharmaceutical 

manipulation of the epigenome may offer other treatment 

options also for neuroblastomas (Furchert et al., 2007). 

Indeed, former studies demonstrated the cytotoxicity of 

a panel of histone deacetylases inhibitors to neuroblasto-

mas, resulting in growth inhibition of these tumor cells 

(Cinatl et al., 1996; Michaelis et al., 2004; 2007; Furchert 

et al., 2007). Histone deacetylases and histone acetyl 

transferases modify histone proteins and contribute to an 

epigenetic code recognized by proteins involved in regula-

tion of gene expression (Marks et al., 2003; 2004; Hooven, 

et al., 2005). In neoplastic cells, where overexpression of 

different histone deacetylases was frequently detected 

(for summary see, Bolden et al., 2006), the abundance 

of deacetylated histones is usually associated with DNA 

hypermethylation and gene silencing (Santini et al., 

2007). Treatment with histone deacetylase inhibitors 

induced the reactivation of growth regulatory genes and 

consequently apoptosis in these cells. One of the histone 

deacetylase inhibitors, valproic acid (Figure 4), inhibits 

growth and induces differentiation of human neuroblas-

toma cells in vitro at concentrations ranging from 0.5 to 2 

mM that have been achieved in human with no significant 

adverse effects (Cinatl et al., 1996; Hřebačková et al., 

2009). Ultrastructural features of valproic acid-treated 

cells were consistent with the neuronal type of differen-

tiation and are associated with decreased expression of 

N-myc oncoprotein and increased expression of neutral 

cell adhesion molecule in their membrane. In these cells 

valproic acid treatment synergized interferon-alpha lead-

ing to a massive accumulation of cells in G0/G1-phase. 

This drug also influences the resistance of neuroblastoma 

cells to several chemotherapeutics (Blaheta et al., 2007). 

Valproic acid reverts the enhanced adhesion properties 

of drug-resistant UKF-NB-2, UKF-NB-6 and SKNSH 

neuroblastoma cells accompanied by diminished N-myc 

and enhanced p73 protein levels (Blaheta et al., 2007). 

Therefore, this drug may provide an alternative approach 

to the treatment of drug-resistant neuroblastomas by 

blocking invasive processes (Blaheta et al., 2007). 

Recently, combination of histone deacetylase inhibi-

tors valproic acid and/or trichostatin A (Figure 4) with 

DNA methyltransferase inhibitor 5-azacytidine (Zhu 

and Otterson, 2003; Chai et al., 2008), or with anticancer 

drugs that act by targeting DNA, vepesid (VP-16), ellip-

ticine, doxorubicin, epirubicin, and cis-platin, enhances 

their efficacy in several tumour cells (Kim et al., 2003; 

Marchion et al., 2005a; 2005b; Catalano et al., 2006). Its 

effect on cytotoxic potential of drugs used for treatment 

of neuroblastomas has, however, not been evaluated. Our 

preliminary results suggest that the anticancer activity 

of ellipticine to neuroblastomas might be synergically 

increased by these histone deacetylase inhibitors. These 

preliminary data show that a higher sensitivity of neuro-

blastoma cells to ellipticine correlated with an increase 

in formation of covalent ellipticine-derived DNA adducts 

(unpublished data) that was found to be one of the most 

important DNA-damaging mechanisms of ellipticine 

action in neuroblastomas (Poljaková et al., 2009). However, 

the exact mechanisms of these features need further 

studies. Moreover, the effect of combination of valproic 

acid and trichostatin A with other DNA-damaging drugs 

used for neuroblastoma treatments (anthracyclines such 

as doxorubicin, platinum complexes, cyclophosphamide 

and etoposide) on growth of neuroblastoma cells and 

the mechanisms of such a drug combination have not 

yet been investigated. Hence, these subjects also await 

further examinations. 
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Figure 4. Valproic acid (A) and trichostatin A (B).
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Conclusions

Most of the above mentioned phenomena, which have 

not been properly explained as yet, are addressed in the 

grant project of the Grant Agency of Czech Republic 

(P301/10/0356) solved in our laboratory. Namely, the 

questions which of DNA-damaging mechanisms of action 

(non-covalent DNA intercalation, covalent DNA adducts 

formation, DNA-DNA cross-links and DNA strand-breaks 

induced by inhibition of topoisomerase II and radical 

effects) both for drugs currently used for treatment of 

human neuroblastoma cancers (doxorubicin, platinum 

complexes, cyclophosphamide and etoposide) and another 

anticancer agent decreasing growth of neuroblastoma 

cells in vitro, ellipticine, are predominant mechanism(s) 

responsible for their antitumor action. Their effects in 

combination with histone deacetylase inhibitors such as 

valproic acid and/or trichostatin A and mechanisms of 

such effects are other questions that are also investigated. 

Such a study will increase our knowledge to explain the 

proper function of these drugs on the molecular level, 

which should be utilized for the development of new 

therapies for neuroblastomas. 

Because metabolism of these agents, leading either 

to covalent modification of DNA by them or to their 

detoxication, are dependent on expression and activities 

of enzymes biotransforming drugs such as cytochromes 

P450 and/or peroxidases for ellipticine (Stiborová et al., 

2001; 2003a; 2003b; 2004; 2006; 2007a; 2007b; 2008; 

2010), etoposide (van Schaik, 2008) or cyclophosphamide 

(Oesch-Bartlmowicz and Oesch, 2004; van Schaik, 2005; 

2008; Wang and Tompkins, 2008) and reductases such as 

NADPH:cytochrome P450 reductase, carbonyl reductase 

(secondary-alcohol:NADPH oxidoreductase) and/or 

NADPH:quinone oxidoreductase for doxorubicin (Merk 

and Jugert, 1991; Gavelova et al., 2008; Lal et al., 2010), 

investigation of their expression levels and activities will 

be another aim of our research. 

A successful solution of the above features seems to 

have unquestionable practical importance, as it could be 

utilized for enhancing efficiency of the studied drugs, both 

of those currently used for neuroblastoma treatment and a 

novel anticancer agent, ellipticine, utilizing their combine 

effects with inhibitors of histone deactylases. The results 

might, therefore, be utilized for the development of new 

therapies for neuroblastomas. In the case of ellipticine, 

the results will also be promising for ellipticine utilization 

in cytochrome P450- and/or peroxidase-mediated gene 

therapy and for preparation of such ellipticine derivatives 

that will be appropriate for tumor targeting.
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