Sampling and collecting foliage elements for the determination of the foliar nutrients in ICOS ecosystem stations

Open access

Abstract

The nutritional status of plant canopies in terms of nutrients (C, N, P, K, Ca, Mg, Mn, Fe, Cu, Zn) exerts a strong influence on the carbon cycle and energy balance of terrestrial ecosystems. Therefore, in order to account for the spatial and temporal variations in nutritional status of the plant species composing the canopy, we detail the methodology applied to achieve consistent time-series of leaf mass to area ratio and nutrient content of the foliage within the footprint of the Integrated Carbon Observation System Ecosystem stations. The guidelines and defi-nitions apply to most terrestrial ecosystems.

Aerts R., 1996. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol., 84, 597-608.

Bakker C., Blair J.M., and Knapp A.K., 2003. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands? Oecologia, 137, 385-391.

Batos B.S., Orlovic Z., Miletic L., Rakonjac L., and Miljkovic D., 2014. Population variability and comparative analysis of macroelement concentrations in pedunculate oak (Quercus robur L.) leaves and surrounding soils. Archives Biol. Sci., 66, 1345-1355.

Bauer G., Schulze E.D., and Mund M., 1997. Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Tree Physiol., 17, 777-786.

BS EN ISO 11885:2009 (June 2009). Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).

BS EN ISO 16634-1:2008 (November 2008). Food products. Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Oil seeds and animal feeding stuffs.

Bump J.K., Peterson R.O., and Vucetich J.A., 2009. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology, 90, 3159-3167.

Chen J.M. and Black T.A., 1992. Defining leaf area index for non-flat leaves. Plant Cell Environ., 15, 421-429.

Conroy J.P., 1992. Influence of Elevated Atmospheric CO2 Concentrations on Plant Nutrition. Australian J. Botany, 40, 445-456.

Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., and Poorter H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian J. Botany, 51, 335-380, 10.1071/bt02124

Cotrufo M.F., Ineson P., and Scott A.Y., 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4, 43-54.

DD CEN ISO/TS 16634-2:2009 (March 2010), Food products. Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Cereals, pulses and milled cereal products.

Delzon S., Bosc A., Cantet L., and Loustau D., 2005. Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Annals Forest Sci., 62, 537-543.

Dillen S.Y., Op de Beeck M., Hufkens K., Buonanduci M., and Phillips N.G., 2012. Seasonal patterns of foliar reflectance in relation to photosynthetic capacity and color index in two co-occurring tree species, Quercus rubra and Betula papyrifera. Agric. Forest Meteorol., 160, 60-68.

Duquesnay A., Dupouey J.L., Clement A., Ulrich E., and Le Tacon F., 2000. Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in northeastern France. Tree Physiology, 20, 13-22.

Eriksson G., Jensen S., Kylin H., and Strachan W., 1989.The pine needle as a monitor of atmospheric pollution. Nature, 341, 42-44.

Fernandez-Martinez M., Vicca S., Janssens I.A., Sardans J., Luyssaert S., Campioli M., Chapin F.S., Ciais P., Malhi Y., Obersteiner M., Papale D., Piao S.L., Reichstein M., Roda F., and Penuelas J., 2014. Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4, 471.

Fleischer K., Rebel K. T., van der Molen M.K., Erisman J.W., Wassen M.J., van Loon E.E., Montagnani L., Gough C.M., Herbst M., Janssens I.A., Gianelle D., and Dolman A.J., 2013. The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochemical Cycles, 27, 187-199.

Flower-Ellis J.G.K. and Olsson L., 1993. Estimation of volume, total and projected area of Scots pine needles from their regression on length. Faculty of Forestry, Swedish University of Agricultural Sciences, Uppsala, Studia Forestalia Suecica, 190, 19p.

Fürst A., 2015. 17th Needle/Leaf Interlaboratory Comparision Test 2014/2015. Federal Research and Training Centre for Forests, Natural Hazards and Landscape Forest Foliar Co-ordinating Centre (BFW), Vienna, Austria, 36 S.

Garnier E. and Narvas M.-L., 2011. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development, 32, 365-399.

Gonzalez E., Muller E., Comin F.A., and Gonzalez-Sanchis M., 2010. Leaf nutrient concentration as an indicator of Populus and Tamarix response to flooding. Perspectives in Plant Ecology Evolution and Systematics, 12, 257-266.

Hollinger D.Y., Ollinger S.V., Richardson A.D., Meyers T.P., Dail D.B., Martin M.E., Scott N.A., Arkebauer T.J., Baldocchi D.D., Clark K.L., Curtis P.S., Davis K.J., Desai A.R., Dragoni D., Goulden M.L., Gu L., Katul G.G., Pallardy S.G., Paw K.T., Schmid H.P., Stoy P.C., Suyker A.E., and Verma S.B., 2010. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biol., 16, 696-710.

Hutchings M.J., John E.A., and Wijesinghe D.K., 2003. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 84, 2322-2334.

Jacquemoud S., Verhoef W., Baret F., Bacour C., Zarco-Tejada P.J., Asner G.P., Francois C., and Ustin S.L., 2009. PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing Environ., 113, S56-S66.

Jamieson M.A., Schwartzberg E.G., Raffa K.F., Reich P.B., and Lindroth R.L., 2015. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Global Change Biol., 21, 2698-2710.

Jonard M., Andre F., Dambrine E., Ponette Q., and Ulrich E., 2009. Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg broad-leaved plots of forest monitoring. Annals Forest Sci., 66,

Jonard M., Fürst A., Verstraeten A., Thimonier A., Timmermann V., Potočić N., Waldner P., Benham S., Hansen K., Merilä P., Ponette Q., de la Cruz A.C., Roskams P., Nicolas M., Croisé L., Ingerslev M., Matteucci G., Decinti B., Bascietto M., and Rautio P., 2015. Tree mineral nutrition is deteriorating in Europe. Global Change Biol., 21, 418-430.

Knyazikhin Y., Schull M.A., Stenberg P., Mottus M., Rautiainen M., Yang Y., Marshak A., Knyazikhin P.L.Y., Schull M. A., Stenberg P., Mottus M., Rautiainen M., Yang Y., Marshak A., Carmona P.L., Kaufmann R.K., Lewis P., Disney M.I., Vanderbilt V., Davis A.B., Baret F., Jacquemoud S., Lyapustin A., and Myneni R.B., 2013. Hyperspectral remote sensing of foliar nitrogen content. Proc. National Academy of Sciences of the United States of America, 110, E185-E192.

Ledgard S.F., Steele K.W., and Saunders W.M.H., 1982. Effects of cow urine and its major constituents on pasture properties. New Zealand J. Agric. Res., 25, 61-68.

Leuning R., Cromer R.N., and Rance S., 1991. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus-grandis. Oecologia, 88, 504-510.

Le Tacon F. and Toutain F., 1973. Variations saisonnières et stationnelles de la teneur en éléments minéraux des feuilles de hêtre (Fagus sylvatica) dans l’est de la France. Annales des Sciences Forestières, 30, 1-29.

Linder S., 1995. Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol. Bull. (Copenhagen), 44,178-190.

Maestre F.T., Bradford M.A., and Reynolds J.F., 2006. Soil heterogeneity and community composition jointly influence grassland biomass. J. Vegetation Sci., 17, 261-270.

Meir P., Kruijt B., Broadmeadow M., Barbosa E., Kull O., Carswell F., Nobre A., and Jarvis P.G., 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ., 25, 343-357.

Mercado L.M., Patino S., Domingues T.F., Fyllas N.M., Weedon G.P., Sitch S., Quesada C.A., Phillips O.L., Aragao L.E.O.C., Malhi Y., Dolman A.J., Restrepo-Coupe N., Saleska S.R., Baker T.R., Almeida S., Higuchi N., and Lloyd J., 2011. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Trans. Royal Society B-Biological Sci., 366, 3316-3329.

Meziane D. and Shipley B., 1999. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ., 22, 447-459.

Migita C., Chiba Y., and Tange T., 2007. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol., 27, 63-70.

NF ISO 11352 Février 2013. Qualité de l’eau - Estimation de l’incertitude de mesure basée sur des données de validation et de contrôle qualité. AFNOR Eds.

O’Grady A.P., Eyles A., Worledge D., and Battaglia M., 2010. Seasonal patterns of foliage respiration in dominant and suppressed Eucalyptus globulus canopies. Tree Physiol., 30, 957-968.

Ollinger S.V., Richardson A.D., Martin M.E., Hollinger D.Y., Frolking S.E., Reich P.B., Plourde L.C., Katul G.G., Munger J.W., Oren R., Smithb M.L., Paw-U K.T., Bolstad P.V., Cook B.D., Day M.C., Martin T.A., Monson R.K., and Schmid H.P., 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc. National Academy of Sciences of the United States of America, 105, 19336-19341.

Orgeas J., Ourcival J.M., and Bonin G., 2003. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecol., 164, 201-211.

Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., and Cornelissen J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian J. Botany, 61, 167-234.

Poorter H., Niinemets U., Poorter L., Wright I.J., and Villar R., 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.

Porté A. and Loustau D., 1998. Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiology, 18, 223-232.

Rautio P., Furst A., Stefan K., Raitio H., and Bartels U., 2016. Part XII: Sampling and Analysis of Needles and Leaves. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thunen Institute of Forest Ecosystems, Eberswalde, Germany, 19 p. + Annex (http://www.icp-forests.org/manual.htm), ISBN: 978-3-86576-162-0

Rosengren-Brinck U. and Nihlgård B., 1995. Nutritional Status in Needles of Norway Spruce in Relation to Water and Nutrient Supply. Ecological Bulletins, 44, 168-177.

Shipley B., 2002. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecol., 16, 682-689.

Shiyomi M., Okada M., Takahashi S., and Tang Y., 1998. Spatial pattern changes in aboveground plant biomass in a grazing pasture. Ecological Res. 13, 313-322.

Skidmore A.K., Ferwerda J.G., Mutanga O., Van Wieren S.E., Peel M., Grant R.C., Prins H.H.T., Balcik F.B., and Venus V., 2010. Forage quality of savannas – Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sensing Environ., 114, 64-72.

Steele K.W., 1982. Nitrogen in grassland soils. In: Nitrogen Fertilisers in New Zealand Agriculture (Ed. P.B. Lynch). Ray Richards Publisher, Auckland, New Zealand.

Stenberg P., Kangas T., Smolander H., and Linder S., 1999. Shoot structure, canopy openness, and light interception in Norway spruce. Plant Cell and Environ., 22, 1133-1142.

T90-220: ISO 11352:2012 (février 2013), Water quality – Estimation of measurement uncertainty based on validation and quality control data.

Turner M.G., Smithwick E.A.H., Tinker D.B., and Romme W.H., 2009. Variation in foliar nitrogen and aboveground net primary production in young postfire lodgepole pine. Canadian J. Forest Research Review, 39, 1024-1035.

Vieira S.R., Guedes Filho O., Chiba M.K., Mellis E.V., Falci Dechen S.C., and De Maria I.C., 2010. Spatial variability of leaf nutrient content and soybean yield grown for two years in a rhodic hapludox. Revista Brasileira De Ciencia Do Solo, 34, 1503-1514.

Wang D., Maughan M.W., Sun J.D., Feng X.H., Miguez F., Lee D., and Dietze M.C., 2012. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus x giganteus). Global Change Biol. Bioenergy, 4, 688-697.

XP V03-111 October, 1995. Analyse des produits agricoles et alimentaires - Protocole d’évaluation intralaboratoire d’une méthode alternative d’analyse qualitative par rapport à une méthode de référence (Food and agriculture products analysis – Procedure of intra-laboratory evaluation of an alternative method of quantitative analysis in comparison with a method of reference).

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 345 273
PDF Downloads 107 107 51