Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems

Open access

Abstract

Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.

Acosta M., Pavelka M., Montagnani L., Kutsch W., Lindroth A., Juszczak R., and Janouš D., 2013. Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe-from boreal to alpine forest. Geoderma, 192, 295-303.

Arias-Navarro C., Díaz-Pinés E., Kiese R., Rosenstock T.S., Rufino M.C., Stern D., Neufeldt H., Verchot L.V., and Butterbach-Bahl K., 2013. Gas pooling: a sampling technique to overcome spatial heterogeneity of soil carbon dioxide and nitrous oxide fluxes. Soil Biol. Biochem., 67, 20-23.

Aubinet M., Vesala T., and Papale D., (Eds), 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media, Dordrecht, Heidelberg, London, New York.

Bahn M., Kutsch W.L., Heinemeyer A., and Janssens I.A., 2009. Towards a standardized protocol for the measurement of soil CO2 efflux. In: Soil Carbon Dynamics: An Integrated Methodology (Eds W.L. Kutsch, M. Bahn, A. Heinemeyer). Cambridge University Press, 272-281.

Bain W.G., Hutyra L., Patterson D.C., Bright A.V., Daube B.C., Munger J.W., and Wofsy S.C., 2005. Wind-induced error in the measurement of soil respiration using closed dynamic chamber. Agric. For. Meteorol., 131, 225-232.

Brümmer C., Lyshede B., Lempio D., Delorme J.P., Rüffer J.J., Fuß R., Moffat A. M., Hurkuck M., Ibrom A., Ambus P., Flessa H., and Kuscht W.L., 2017. Gas chromatography vs. quantum cascade laser-based N2O flux measurements using a novel chamber design. Biogeosciences, 14(6), 1365-1381.

Butterbach-Bahl K., Sander B.O., Pelster D., and Díaz-Pinés E., 2016. Quantifying greenhouse gas emissions from managed and natural soils. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Small-holder Agriculture (pp. 71-96). Springer International Publishing.

Christiansen J.R., Korhonen J.F.J., Juszczak R., Giebels M., and Pihlatie M., 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant Soil, 343, 171-185.

Darenova E., Pavelka M., and Acosta M., 2014. Diurnal deviations in the relationship between CO2 efflux and temperature: A case study. Catena, 123, 263-269.

Davidson E.A., Savage K., Verchot L.V., and Navarro R., 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol., 113(1), 21-37.

Denmead O.T., 2008. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil, 309(1), 5-24.

De Klein C., and Harvey M., (Eds), 2013. Nitrous Oxide Chamber Methodology Guidelines, Global Research Alliance on Agricultural Greenhouse Gases. Publisher: Ministry of Primary Industries, Wellington, New Zealand.

Fang C. and Moncrieff J.B., 1996. An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil. Funct. Ecol., 297-305.

Graf A., Weihermüller L., Huisman J.A., Herbst M., Bauer J., and Vereecken H., 2008. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences, 5, 1175-1188.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Heinemeyer A. and McNamara N.P., 2011. Comparing the closed static versus the closed dynamic chamber flux methodology: Implications for soil respiration studies. Plant Soil, 346(1-2), 145-151.

Hensen A., Groot T.T., Van den Bulk W.C.M., Vermeulen A.T., Olesen J.E., and Schelde K., 2006. Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale. Agric. Ecosyst. Environ., 112, 146-152.

Hutchinson G.L. and Mosier A.R., 1981. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J., 45(2), 311-316.

Korkiakoski M., Minkkinen K., Ojanen P., Penttilä T., Koskinen M., Laurila T., and Lohila A., 2017. Methane 1208 exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small 1209 fluxes. Biogeosciences 14, 1947-1967.

Kutsch W.L., Staack A., Wötzel J., Middelhoff U., and Kappen L., 2001. Field measurements of root respiration and total soil respiration in an alder forest. New Phytol., 150, 157-168.

Kutsch W.L., Bahn M., and Heinemeyer A., 2009. Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, United Kingdom.

Le Dantec V., Epron D., and Dufrene E., 1999. Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil, 214, 125-132.

Livingston G.P. and Hutchinson G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. Biogenic trace gases: measuring emissions from soil and water, 14-51.

Longdoz B., Yernaux M., and Aubinet M., 2000. Soil CO2 efflux measurements in a mixed forest: impact of chamber distances, spatial variability and seasonal evolution. Glob. Change Biol., 6, 907-17.

Lundegårdh H., 1927. Carbon dioxide evolution of soil and crop growth. Soil Science, 23(6), 417-453.

Lundegårdh H., 1928. Comment on calculating soil respiration. Biochemische Zeitschrift, 194: 453-453.

Mariko S., Nishimura N., Mo W., Matsui Y., Kibe T., and Koizumi H., 2000. Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan. Ecol. Res., 15(4), 363-372.

Merbold L., Ziegler W., Mukelabai M.M., and Kutsch W.L., 2011. Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia. Biogeosciences, 8, 147-164.

Merbold L., Steinlin C., and Hagedorn F., 2013. Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland. Biogeosciences, 10(5), 3185-3203.

Parkin T.B. and Venterea R.T., 2010. Sampling Protocols. Chapter 3. Chamber-based trace gas flux measurements. In: Sampling Protocols (Ed R.F. Follet), p.3-1 to 3-39. Available at: www.ars.usda.gov/research/GRACEnet.

Pavelka M., Acosta M., Marek M.V., Kutsch W., and Janouš D., 2007. Dependence of Q10 values on the depth of the soil temperature measuring point. Plant Soil, 292, 171-179.

Pihlatie M., Pumpanen J., Rinne J., Ilvesniemi H., Simojoki A., Hari P., and Vesala T., 2007. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus, 59B, 458-469.

Pihlatie M.K., Christiansen J.R., Aaltonen H., Korhonen J.F., Nordbo A., Rasilo T., and Jones S., 2013. Comparison of static chambers to measure CH4 emissions from soils. Agric. For. Meteorol., 171, 124-136.

Pumpanen J., Kolari P., Ilvesniemi H., Minkkinen K., Vesala T., Niinistö S., and Janssens I., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol., 123(3), 159-176.

Pumpanen J., Ilvesniemi H., Kulmala L., Siivola E., Laakso H., Kolari P., Helenelund C., Laakso M., Uusimaa M., and Hari P., 2008. Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci. Soc. Am. J., 72, 1187-1196.

Pumpanen J., Longdoz B., and Kutsch W.L., 2009. Field measurements of soil respiration: principles and constraints, potentials and limitations of different methods. In: Soil Carbon Dynamics: An Integrated Methodology (Eds W.L. Kutsch, M. Bahn, A. Heinemeyer). Cambridge University Press, 16-33.

Rochette P. and Bertrand N., 2003. Soil air sample storage and handling using polypropylene syringes and glass vials. Can. J. Soil Sci. 83(5), 631-637.

Sánchez-Cańete E.P., Scott R.L., Haren J., and Barron-Gafford G.A., 2016. Improving the accuracy of the gradient method for determining soil carbon dioxide efflux. J. Geophysical Research: Biogeosciences, 122(1), 50-64.

Savage K.E. and Davidson E.A., 2003. A comparison of manual and automated systems for soil CO2 flux measurements: Trade-offs between spatial and temporal resolution. J. Exp. Bot., 54(384), 891-899.

Subke J.A. and Bahn M., 2010. On the ‘temperature sensitivity’ of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biol. Biochem., 42(9), 1653-1656.

Suzuki S., Ishizuka S., Kitamura K., Yamanoi K., and Nakai Y., 2006. Continuous estimation of winter carbon dioxide efflux from the snow surface in a deciduous broadleaf forest. J. Geophys. Res. Atmos., 111(D17), 1-9.

Wang K., Zheng X., Pihlatie M., Vesala T., Liu C., Haapanala S., Mammarella I., Rannik U., and Liu H., 2013. Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agric. For. Meteor., 171, 9-19.

Wohlfahrt G., Anfang C., Bahn M., Haslwanter A., Newesely C., Schmitt M., Drösler M., Pfadenhauer J., and Cernusca A., 2005. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric. For. Meteorol., 128(3), 141-162.

WMO, 2016. World Meteorological Organization, Greenhouse Gas Bulletin 12, http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html

Xu L., Furtaw M.D., Madsen R.A., Garcia R.L., Anderson D.J., and McDermitt D.K., 2006. On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. J. Geophys. Res-Atmos., 111(D8).

Yim M.H., Joo S.J., Shutou K., and Nakane K., 2003. Spatial variability of soil respiration in a larch plantation: estimation of the number of sampling points required. For. Ecol. Manage., 175(1), 585-588.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 360 360 261
PDF Downloads 189 189 61