Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review

Open access


Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.

Anthoni P.M., Knohl A., Rebmann C., Freibauer A., Mund M., Ziegler W., Kolle O., and Schulze E.-D., 2004. Forest and agricultural land-use-dependent CO2 exchange in Thuringia, Germany. Glob. Change Biol., 10, 2005-2019, doi:10.1111/j.1365-2486.2004.00863.x.

ArcGis, 2012. Continents shapefile, (28 Dec 2017).

Arneth A., Harrison S.P., Zaehle S., et al., 2010. Terrestrial bio-geochemical feedbacks in the climate system. Nat. Geosci., 3, 525-532, doi:10.1038/ngeo905.

Arrouays D., Saby N.P.A., Boukir H., et al., 2018. Soil sampling and preparation for monitoring soil carbon. Int. Agrophys., 32, 633-643.

Aubinet M., Grelle A., Ibrom A., et al., 2000. Estimates of the annual net carbon and water exchange of European forests: The EUROFLUX Methodology. Advances. Ecol. Res., 30, 113-175.

Aubinet M., Moureaux C., Bodson B., Dufranne D., Heinesch B., Suleau M., Vancutsem F., and Vilret A., 2009. Carbon sequestration by a crop during a four year rotational cycle. Agr. Forest Meteorol., 149, 407-418, doi:10.1016/j. agrformet.2008.09.003.

Aurela M., Laurila T., and Tuovinen J.-P., 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys. Res. Lett, 31, L16119, doi:10.1029/2004G L020315.

Baldocchi D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol., 9, 479-492, doi:10.1046/j.1365-2486.2003.00629.x.

Baldocchi D., 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method. Glob. Change Biol, 20, 3600-3609, doi: 10.1111/gcb.12649.

Baldocchi D., 2008. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot., 56, 1-26, doi:10.1071/BT07151.

Baldocchi D., Black T.A., Curtis P.S., et al., 2005. Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int. J. Biometeorol., 49, 377-387, doi:10.1641/B580708.

Baldocchi D., Chu H., and Reichstein M., 2017. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agr. Forest Meteorol., 249, 520-533, doi:10.1016/j. agrformet.2017.05.015.

Baldocchi D., Falge E., Gu L., et al., 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am. Meteorol. Soc., 82(11), 2415-2434, doi: 10.1175/1520-0477(2001)08260;2415:fantts62;;2.

Baldocchi D., Reichstein M., Papale, D., Koteen L., Vargas R., Agarwal D., and Cook R., 2012. The role of trace gas flux networks in the Biogeosciences. EOS, 93(23), 217-224, doi:10.1029/2012EO230001.

Ballantyne A.P., Alden C.B., Miller J.B., Tans P.P., and White J.W.C., 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70-72, doi: 10.1038/nature11299.

Battin T.J., Luyssaert S., Kaplan L.A., Aufdenkampe A.K., Richter A., and Tranvik L.J., 2009. The boundless carbon cycle. Nat. Geosci., 2, 598-600, doi:10.1038/ngeo618.

Bellassen V. and Luyssaert S., 2014. Comment: Carbon sequestration: Managing forests in uncertain times. Nature, 506, 153-155, doi:10.1038/506153a.

Bloom A.A., Exbrayat J.-F., van der Velde I.R., Feng L., and Williams M., 2016. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. PNAS, 113(5), 1285-1290, doi/10.1073/pnas.1515160113.

Bonan G.B., Levis S., and Wieder W.R., 2012. A modeller’s perspective of long-term integrated data series of ecosystem-atmosphere processes. iLEAPS Newsletter, 12, September 2012, 6-9.

Bousquet P., Peylin P., Ciais P., Le Quéré C., Friedlingstein P., and Tans P.P., 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 1342-1346, doi:10.1126/science.290.5495.1342.

Bréda N.J.J., 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot., 54, 2403-2417.

Canadell J.G., Pataki D.E., Gifford R., Houghton R.A., Luo Y., Raupach M.R., Smith P., and Steffen W., 2007. Saturation of the Terrestrial Carbon Sink. In: Terrestrial Ecosystems in a Changing World (Eds J.G. Canadell, D. Pataki, L. Pitelka). The IGBP Series, Springer Verlag, Berlin, Heidelberg, 59-78.

Carrara A., Kolari P., Op de Beeck M., et al., 2018. Radiation measurements at ICOS ecosystem stations. Int. Agrophys., 32, 589-605.

Ceschia E., Béziat P., Dejoux J. F., et al., 2010. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agr. Ecosys. Environ., 139, 363-383, doi:10.1016/j.agee.2010.09.020.

Christensen T.R., Jackowicz-Korczyński M., Aurela M., Crill P., Heliasz M., Masetpanov M., and Friborg T., 2012. Monitoring the multi-year carbon balance of a subarctic palsa mire with Micrometeorological techniques. AMBIO, 41, 207-217, doi:10.1007/s13280-012-0302-5.

Chu H., Baldocchi D., John R., Wolf S., and Reichstein M., 2017. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res.-Biogeo., 122, 289-307, doi:10.1002/2016JG003576.

Ciais P., Dolman A.J., Bombelli A., et al., 2014. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11, 3547-3602, doi:10.5194/bg-11-3547-2014.

Ciais P., Reichstein M., Viovy N., et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533, doi:10.1038/nature03972.

Ciais P., Tans P.P., Trolier M., White J.W., and Francey R.J., 1995. A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269, 1098-1102, doi:10.1126/science.269.5227.1098.

Cole J.J., Caraco N.F., Kling G.W., and Kratz T.K., 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science, 265, 1568-1570, doi:10.1126/science. 265.5178.1568.

Cole J.J., Prairie Y.T., Caraco N.F., et al., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171-184, doi:10.1007/s10021-006-9013-8.

Conen F., Yakutin M.V., and Sambuu A.D., 2003. Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Glob. Change Biol., 9, 1515-1520, doi:10.1046/j.1529-8817.2003.00689.x.

Dai S.-Q., Li H., Xiong J., Ma J., Guo H.-Q., Xiao X., and Zhao B., 2018. Assessing the extent and impact of online data sharing in eddy covariance flux research. J. Geophys. Res-Biogeo., 123, 129-137, doi:10.1002/2017JG004277.

Danielewska A., Paoletti E., Clarke N., Olejnik J., Urbaniak M., Baran M., Siedlecki P., Hansen K., Lundin L., de Vries W., Nørgaard-Mikkelsen T., Dillen S., Fischer R., 2013. Towards the integration of research and monitoring at forest ecosystems in Europe. Forest Syst., 22, 535-545, doi:10.5424/fs/2013223-03675.

Dengel S., Graf A., Grünwald T., et al., 2018. Standardized precipitation measurements within ICOS: rain, snowfall and snow depth. Int. Agrophys., 32, 607-617.

Desjardins R.L. and Lemon E.R., 1974. Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes. Boundary-Layer Meteorology, 5(4), 475-488.

Etzold S., Ruehr N.K., Zweifel R., Dobbertin M., Zingg A., Pluess P., Häsler R., Eugster W., and Buchmann N., 2011. The carbon balance of two contrasting mountain forest ecosystems in Switzerland: similar annual trends, but seasonal differences. Ecosystems, 14(8), 1289-1309, doi:10.1007/s10021-011-9481-3.

Dušek J., Čížková H., Stellner S., Czerný R., and Květ J., 2012. Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh. Hydrobiologia, 692(1), 57-66, doi:10.1007/s10750-012-0998-z.

Eugster W., Moffat A., Ceschia E., et al., 2010. Management effects on European cropland respiration. Agric. Ecosys. Environ., 139, 346-362, doi:10.1016/j.agee.2010.09.001.

European Union, 2016. Urban Europe – Statistics on cities, towns and suburbs. EUROSTAT Statistical books, Luxembourg, European Union.

Falge E., Baldocchi D., Tenhunen J., et al., 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agr. Forest Meteorol., 113, 53-74, doi:10.1016/S0168-1923(02)00102-8.

Fernández-Martínez M., Vicca S., Janssens I., et al., 2017. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep-UK, 7, 9632, doi:10.1038/s41598-017-08755-8

Ferretti M. and Fischer R., 2013. Forest Monitoring: Methods for Terrestrial Investigations in Europe with an Overview of North America and Asia. Elsevier, Oxford.

Fisher J., Hayes D.J., Schwalm C.R., et al., 2018. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett., 13, 020202, doi:10.1088/1748-9326/aa9d9a.

Fonselius S., 1958. Map and coordinates of the chemical and CO2 stations Western Europe. Tellus, 10(1), 170-171.

Frank D., Reichstein M., Bahn M., et al., 2015. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol., 21, 2861-2880, doi: 10.1111/gcb.12916.

Gielen B., Acosta M., Altimir N., et al., 2018. Ancillary vegetation measurements at ICOS ecosystem stations. Int. Agrophys., 32, 645-664.

Gielen B., Op de Beeck M., Loustau D., Ceulemans R., Jordan A., and Papale D., 2017. Integrated Carbon Observation System (ICOS): An infrastructure to monitor the European greenhouse gas balance. In: Terrestrial ecosystem research infrastructures: Challenges and Opportunities (Eds Chabbi, H.W. Loescher). CRC Press, pp. 505-A. 520.

Gilmanov T.G., Aires L., Barcza Z., et al., 2010. Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol. Manag., 63, 16-39, doi:10.2111/REM-D-09-00072.1.

Gilmanov T.G., Soussana J.F., Aires L., et al., 2007. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric. Ecosys. Environ., 121, 93-120, doi:10.1016/j.agee.2006.12.008.

Goodwin P., Katavouta A., Roussenov V.M., Foster G.L., Rohling E.J., and Williams R.G., 2018. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci., 11, 102-107, doi:10.1038/s41561-017-0054-8.

Grünwald T. and Bernhofer C., 2007. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B, 59, 387-396, doi:10.1111/j.1600-0889.2007.00259.x.

Hari P., Andreae M. O., Kabat P., and Kulmala M., 2009. A comprehensive network of measuring stations to monitor climate change. Boreal Environ. Res., 14, 442-446.

Hari P., Petäjä T., Bäck J., et al., 2016. Conceptual design of a measurement network of the global change. Atmos. Chem. Phys., 16, 1017-1028, doi:10.5194/acp-16-1017-2016.

Helfter C., Campbell C., Dinsmore K.J., et al., 2015. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences, 12, 1799-1811, doi:10.5194/bg-12-1799-2015.

Heimann M. and Reichstein M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292, doi:10.1038/nature06591.

Holgerson M. and Raymond P.A., 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci., 9, 222-226, doi:10.1038/ngeo2654.

Hollinger D.Y., Aber J., Dail B., et al., 2004. Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob. Change Biol., 10, 1689-1706, doi:10.1111/j.1365-2486. 2004.00847.x.

Houweling S., Bergamaschi P., Chevallier F., Heimann M., Kaminski T., Krol M., Michalak A.M., and Patra P., 2017. Global inverse modelling of CH4 sources and sinks: An overview of methods. Atmos. Chem. Phys., 17, 235-256, doi:10.5194/acp-17-235-2017.

Hufkens K., Wingate L., Filippa G., et al., 2018. Assimilating phenology datasets automatically across ICOS ecosystem stations. Int. Agrophys., 32, 677-687.

Ilvesniemi H., Levula J., Ojansuu R., Kolari P., Kulmala L., Pumpanen J., Launiainen S., Vesala T., and Nikinmaa E., 2009. Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem. Boreal Environ. Res., 14, 731-753.

IPCC, 2013. Climate Change 2013: The physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds Stocker T.F., Qin D., Plattner G.-K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M.). Cambridge University Press, Cambridge, New York, doi:10.1017/CBO9781107415324.

Jackson R.B., Canadell J.G., Le Quéré C., Andrew R.M., Korsbakken J.I., Peters G.P., and Nakicenovic N., 2016. Reaching peak emissions, Nat. Clim. Change, 6, 7-10, doi:10.1038/nclimate2892.

Jung M., Le Maire G., Zaehle S., Luyssaert S., Vetter M., Churkina G., Ciais P., Viovy N., and Reichstein M., 2007. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences, 4, 647-656, doi:10.5194/bg-4-647-2007.

Jung M., Reichstein M., and Bondeau A., 2009. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001-2013, doi: 10.5194/bg-6-2001-2009.

Jung M., Reichstein M., Margolis H. A., et al., 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.

Kadygrov N., Broquet G., Chevallier F., Rivier L., Gerbig C., and Ciais P., 2015. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe. Atmos. Chem. Phys., 15, 12765-17787, doi:10.5194/acp-15-12765-2015.

Kaukolehto M. and Vesala T., 2014. From carbon-nitrogen research to standardization of greenhouse gas measurements, iLEAPS Newsletter, Special issue on Environmental Research Infrastructures, 20-22.

Keenan T.F., Hollinger D.Y., Bohrer G., Dragoni D., Munger J.W., Schmid H.P., and Richardson A.D., 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-327, doi:10.1890/12-0747.1.

Kempeneers P., Sedano F., Seebach L., Strobl P., and San-Miguel-Ayanz J., 2011. Data fusion of different spatial resolution remote sensing images applied to forest type mapping, IEEE Trans. Geosci. Remote Sensing, 49(12), 4977-4986.

Kirschke S., Bousquet P., Ciais P., et al., 2013. Three decades of global methane sources and sinks. Nat. Geosci., 6, 813-823, doi:10.1038/NGEO1955.

Kondo M., Ichii K., Takagi H.. and Sasakawa M., 2015. Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling. J. Geophys. Res.-Biogeosciences, 120, 1226-1245, doi:10.1002/2014 JG002866.

Kulmala M., 2018. Build a global Earth observatory. Nature, 553, 2-13, doi: 10.1038/d41586-017-08967-y.

Kumar J., Hoffman F.M., Hargrove W.W., and Collier N., 2016. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth Syst Sci Data Discuss, doi:10.5194/essd-2016-36.

Kutsch W., Aubinet M., Buchmann N., et al., 2010. The net biome production of full crop rotations in Europe. Agr. Ecosys. Environ., 139, 336-345.

Lafleur P.M., Roulet N.T., Bubier J.L., Frolking S., and Moore T.R., 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem. Cy., 17, 1036, doi:10.1029/2002GB001983.

Law B.E., Falge E., Gu L., et al., 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agr. Forest Meteorol., 113, 97-120, doi:10.1016/S0168-1923(02)00104-1.

Leip A., Skiba U., Vermeulen A., and Thompson R.L., 2018. A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmos. Environ., 174, 237-240, doi:10.1016/j.atmosenv.2017.12.006.

Le Quéré C., Andrew R.M., Canadell J.G., et al., 2016. Global Carbon Budget 2016. Earth Sys. Sci. Data, 8, 605-649, doi:10.5194/essd-8-605-2016.

Le Quéré C., Andrew R.M., Friedlingstein P., et al., 2018. Global Carbon Budget 2017. Earth Sys. Sci. Data, 10, 405-448, doi:10.5194/essd-10-405-2018.

Levin I., 2012. Earth Science: The balance of the carbon budget. Nature, 488, 35-36, doi:10.1038/488035a.

Liu H.Z., Feng J.W., Järvi L., and Vesala T., 2012. Four-year (2006-2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos. Chem. Phys., 12, 7881-7892, doi:10.5194/acp-12-7881-2012.

Loubet B., Laville P., Lehuger S., et al., 2011. Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France. Plant Soil, 343, 1/2, 109-137, doi:10.1007/s11104-011-0751-9.

Loustau D., Altimir N., Barbaste M., et al., 2018. Sampling and collecting foliage elements for the determination of foliar nutrients in ICOS ecosystem stations. Int. Agrophys., 32, 665-676.

Marcolla B., Cescatti A., Manca G., et al., 2011. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agr. Forest Meteorol., 151(9), 1223-1243, doi:10.1016/j.agrformet.2011.04.015.

Migliavacca M., Reichstein M., Richardson A.D., et al., 2011. Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob. Change Biol., 17, 390-409, doi:10.1111/j.1365-2486.2010.02243.x.

Miglietta F. and Peressotti A., 1999. MEDEFLU – Summer drought reduces carbon fluxes in Mediterranean forest. Global Change NewsLetter, 39, 15-16.

Millar R.J., Fuglestvedt J.S., Friedlingstein P., et al., 2017. Emission budgets and pathways consistent with limiting warming to 1.5°C. Nat. Geosci., 10, 741-747, doi: 10.1038/NGEO3031.

Montagnani L., Grünwald T., Kowalski A., et al., 2018. Estimating the storage term in eddy covariance measurements: the ICOS methodology. Int. Agrophys., 32, 551-567.

Nemitz E., Mammarella I., Ibrom A., et al., 2018. Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. Int. Agrophys., 32, 517-549.

Niu S., Luo Y., Dietze M.C., Keenan T.F., Shi Z., Li J., and Chapin II F.S., 2014. The role of data assimilation in predictive ecology. Ecosphere, 5(5), 65, doi:10.1890/ES13-00273.1.

NOAA, 2016. Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG), Version 2.3.6 August 17, 2016, The GSHHG Database is released under the GNU Lesser General Public license (

Nosek B.A., Alter G., Banks G.C., et al., 2015. Promoting an open research culture. Science, 348(6242), 1422-1425, doi:10.1126/science.aab2374.

Op de Beeck M., Gielen B., Merbold L., et al., 2018. Soil-meteorological measurements at ICOS monitoring stations in terrestrial ecosystems. Int. Agrophys., 32, 619-631.

Osborne B., Saunders M., Walmsley D., Jones M., and Smith P., 2010. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agr. Ecosys. Environ., 139, 293-301, doi:10.1016/j.agee. 2010.05.009.

Pan Y., Birdsey R.A., Fang J., et al., 2011. A Large and Persistent Carbon Sink in the World’s Forests. Science, 333, 6045, 988-993, doi: 10.1126/science.1201609.

Paoletti E., de Vries W., Mikkelsen T.N., Ibrom A., Larsen K.S., Tuovinen J.P., Serengil Y., Yurtseven I., Wieser G., and Matyssek R., 2014. Key Indicators of Air Pollution and Climate Change Impacts at Forest Supersites. In: Climate Change, Air Pollution and Global Challenges: Knowledge, Understanding and Perspectives from Forest Research (Eds Matyssek R., Clarke N., Cudlin P., Mikkelsen T.N., Tuovinen J.-P., Wieser G., Paoletti E.). Elsevier.

Papale D., Black T.A., Carvalhais N., et al., 2015. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. J. Geophys. Res-Biogeo., 120, 1941-1957, doi:10.1002/2015JG002997.

Pavelka M., Acosta M., Kiese R., et al., 2018. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int. Agrophys., 32, 569-587.

Päivinen R., Lehikoinen M., Schuck A., Häme T., Väätäinen S., Kennedy P., and Folving S., 2001. Combining Earth Observation Data and Forest Statistics. EFI Research Report 14. European Forest Institute, Joint Research Centre - European Commission. EUR 19911 EN. 101p.

Peichl M., Öquist M., Ottosson-Löfvenius M., et al., 2014. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide uptake in a boreal fen. Environ. Res. Lett., 9, 055006, doi:10.1088/1748-9326/9/5/055006.

Peters G.P., 2018. Beyond carbon budgets. Nat. Geosci., 11, 378-383, doi:10.1038/s41561-018-0142-4.

Pilegaard K., Ibrom A., Courtney M.S., Hummelshøj P., and Jensen N.O., 2011. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agr. Forest Meteorol., 151, 934-946, doi:10.1016/j.agrformet. 2011.02.013.

Prescher A.-K., Grünwald T., and Bernhofer C., 2010. Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agr. Forest. Meteorol., 150, 1016-1025, doi:10.1016/j.agrformet.2010.03.008.

Rebmann C., Aubinet M., Schmid H.P., et al., 2018. ICOS eddy covariance flux-station site setup. Int. Agrophys., 32, 471-494.

Reichstein M., Bahn M., Ciais P., Frank D., Mahecha M.D., Seneviratne S.I., Zscheischler J., Beer C., Buchmann N., Frank D., Papale D., Rammig A., Smith P., Thonicke K., van der Velde M., Vicca S., Walz A., and Wattenbach M., 2013. Climate extremes and the carbon cycle. Nature, 500, 287-295, doi:10.1038/nature12350.

Richardson A.D., Black T.A., Ciais P., et al., 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B, 365, 3227-3246, doi:10.1098/rstb.2010.0102.

Rinne J., Riutta T., Pihlatie M., Aurela M., Haapanala S., Tuovinen J.-P., Tuittila E.-S., and Vesala T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus, 59B, 449-457, doi:10.1111/j.1600-0889.2007.00261.x.

Rogelj J., den Elzen M., Höhne N., et al., 2016. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534, 631-639, doi:10.1038/nature18307.

Sabbatini S., Mammarella I., Arriga N., et al., 2018. Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys., 32, 495-515.

Saigusa N., Yamamoto S., Ohtsuka T., Murayama S., Kondo H., and Koizumi H., 2005. Inter-annual variability of carbon budget components in a cool-temperate deciduous forest in Japan (Takayama, AsiaFlux). Phyton-Annales Rei Botanicae, 45, 81-88.

Saunders M., Dengel S., Kolari P., et al., 2018. Assessing the impacts of site characteristics, management, disturbance and lateral fluxes on greenhouse gas dynamics. Int. Agrophys., 32, 457-469.

Schmid H.P., 2012. Future land-atmosphere observation platforms. iLEAPS newsletter, 12, September 2012, 4-5.

Schuck A., Van Brusselen J., Päivinen R., Häme T., Kennedy P., and Folving S., 2002. Compilation of a calibrated European forest map derived from NOAA-AVHRR data. European Forest Institute. EFI Internal Report 13, 44p. plus Annexes.

Schulze E.D., Ciais P., Luyssaert S., et al., 2010. The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob. Change Biol., 16, 1451-1469, doi:10.1111/j.1365-2486.2010.02215.x.

Schwalm C., Anderegg W.R.L., Michalak A.M., et al., 2017. Global patterns of drought recovery. Nature, 548, 202-205, doi: 10.1038/nature23021.

Schwalm C.R., Williams C.A., Schaefer K., et al., 2009. Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Glob. Change Biol., 16, 657-670, doi:10.1111/j.1365-2486.2009.01991.x.

Seneviratne S.I., Rogelj J., Séférian R., et al., 2018. The many possible climates from the Paris Agreement’s aim of 1.5°C warming. Nature, 558, 41-49, doi:10.1038/s41586-018-0181-4.

Skiba U., Jones S.K., Drewer J., et al., 2009. Biosphere atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first annual data sets. Agr. Ecosys. Environ., 133, 139-149, doi:10.1016/j.agee.2009. 05.018.

Smith P., Lanigan G., Kutsch W.L., et al., 2010. Measurements necessary for accessing the net ecosystem carbon budget of croplands. Agr. Ecosys. Environ., 139, 302-315, doi:10.1016/j.agee.2010.04.004.

Soegaard H., Nordstroem C., Friborg T., and Hansen B.U., 2000. Trace gas exchange in a high-arctic valley, 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modelling, and remote sensing. Global Biogeochem. Cy., 14 (3), 725-744, doi:10.1029/1999 GB001137.

Soussana J.F., Allard V., Pilegaard K., et al., 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric. Ecosys. Environ., 121, 121-134, doi:10.1016/j.agee.2006.12.022.

Soussana J.F., Tallec T., and Blanfort V., 2010. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4, 334-350, doi:10.1017/S1751731109990784.

Tranvik L.J., Downing, J.A., Cotner J.B., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54(6), 2298-2314, doi: 10.4319/lo.2009.54.6_part_2.2298.

UNECE ICP Forests Programme Co-ordinating Centre (Ed.), 2016. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde.

United Nations, 2014. Department of Economic and Social Affairs, Population Division: World Urbanization Prospects: The 2014 Revision, Highlights.

University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D., 2017. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2016). Centre for Environmental Data Analysis, 04 December 2017. doi:10.5285/58a8802721c94c66ae45c 3baa4d814d0.

Urbanski S., Barford C., Wofsy S., Kucharik C., Pyle E., Budney J., McKain K., Fitzjarrald D., Czikowsky M., and Munger J.W., 2007. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res., 112, G02020, doi:10.1029/2006JG000293.

Valentini R., Matteucci G., Dolman A.J. et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865, doi:10.1038/35009084.

van Vuuren D.P., Edmonds J., Kainuma M., et al., 2011. The representative concentration pathways: an overview. Climate Change, 109, 5-31, doi:10.1007/s10584-011-0148-z.

Velasco E. and Roth M., 2010. Cities as Net Sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass, 4, 1238-1259, doi:10.1111/j.1749-8198.2010. 00384.x.

Villani M.G., Bergamaschi P., Krol M., Meirink J.F., and Dentener F., 2010. Inverse modeling of European CH4 emissions: sensitivity to the observational network. Atmos. Chem. Phys., 10, 1249-1267, doi:10.5194/acp-10-1249-2010.

Vitale L., Di Tommasi P., D’Urso G., and Magliulo V., 2016. The response of ecosystem carbon fluxes to LAI and environmental drivers in a maize crop grown in two contrasting seasons. Int. J. Biometeorol., 60(3), 411-420, doi:10.1007/s00484-015-1038-2.

Wanninkhof R., Park G.-H., Takahashi T., et al., 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10, 1983-2000, doi:10.5194/bg-10-1983-2013.

Williams M., Richardson A.D., Reichstein M., et al., 2009. Improving land surface models with FLUXNET data. Biogeosciences, 6, 1341-1359, doi:10.5194/bg-6-1341-2009.

Wingate L., Ogée J., Cremonese E., et al., 2015. Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 12, 5995-6015, doi:10.5194/bg-12-5995-2015.

Wohlfahrt G., Hammerle A., Haslwanter A., et al., 2008. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management. J. Geophys. Res., 113, D08110, doi:10.1029/2007JD009286.

Wolf S., Keenan T.F., Fisher J.B., et al., 2016. Warm spring reduced carbon cycle impact oft he 2012 US summer drought. PNAS, 113(21), 5880-5885, doi:10.1073/pnas.1519620113.

Wu J., Larsen K.S., van der Linden L., Beier C., Pilegaard K., and Ibrom A., 2013. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agr. Forest Meteorol., 181, 94-107, doi:10.1016/j.agrformet. 013.07.012.

Xiao J., Liu S., and Stoy P.C., 2016. Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 13, 3665-3675, doi:10.5194/bg-13-3665-2016.

Zhu X.-J., Yu G.-R., He H.-L., et al., 2014. Geographical statistical assessment of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Global Planet Change, 118, 52-61, doi:10.1016/j.gloplacha. 2014.04.003.

Zscheischler J., Mahecha M.D., Avitabile V., et al., 2017. Reviews and syntheses: An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations. Biogeosciences, 14, 3685-3703, doi:10.5194/bg-14-3685-2017.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1278 1278 147
PDF Downloads 575 575 50