Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

Open access

Abstract

Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

Abtew W. and Melesse A., 2013. Evaporation and evapotranspiration: Measurements and estimations. Springer Sci., 53, 62, http://doi.org/10.1007/978-94-007-4737-1

Adams S.R., Cockshull K.E., and Cave C.R.J., 2001. Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88(5), 869-877, http://dx.doi.org/10.1006/anbo.2001.1524

Ajwang P.O. and Tantau H.J., 2005. Prediction of the effect of insect-proof screens on climate in a naturally ventilated greenhouse in humid tropical climates. Acta Horticulturae, Int. Soc. Horticultural Sci. (ISHS), Leuven, Belgium, pp. 449-456, https://doi.org/10.17660/ActaHortic.2005.691.54

ASABE Standard (ANSI/ASAE EP406.4) 2015. Heating, ventilating and cooling greenhouses, American Society of Agricultural and Biological Engineers. St. Joseph, MI, USA. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.2050&rep=rep1&type=pdf

Argus, 2009. Understanding and Using VPD Argus Application Note, Argus Control Systems Ltd. White Rock. http://www.arguscontrols.com/resources/VPD_Application_Note.pdf

Barker J.C., 1990. Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). J. Horticultural Sci., 65(3), 323-331, https://doi.org/10.1080/00221589.1990.11516061

Baudoin W., Nono-Womdim R., Lutaladio N., Hodder A., Castilla N., Leonardi C., De Pascale S., Qaryouti M., and Duffy R., 2013. Good agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas, Fao.

Chen R., Kang S., Hao X., Li F., Du T., Qiu R., and Chen J., 2015. Variations in tomato yield and quality in relation to soil properties and evapotranspiration under greenhouse condition. Scientia Hort., 197(3), 318-328. http://dx.doi.org/10.1016/j.scienta.2015.09.047

Cherie E., 2010. The Complete Guide to Growing Tomatoes: A Complete Step-by-Step Guide Including Heirloom Tomatoes (Back-to-Basics Gardening).

Choi J.H., Chung G.C., and Suh S.R., 1997. Effect of night humidity on the vegetative growth and the mineral composition of tomato and strawberry plants. Scientia Hort., 70(4), 293-299, http://www.sciencedirect.com/science/article/pii/S0304423897000551

Cohen S., Raveh E., Li Y., Grava A., Goldschmidh E.E., 2005. Physiological responses of leaves, tree growth and fruit yield of grapefruit trees under reflective shade screens. Scientia Hort., 107(1), 25-35. http://www.sciencedirect.com/science/article/pii/S0304423805002128

Criddle R.S., Smith B.N., and Hansen L.D., 1997. A respiration based description of plant growth rate responses to temperature. Planta, 201(4), 441-445, https://doi.org/10.1007/s004250050087.

Dimokas G., Tchamitchian M., and Kittas C., 2009. Calibration and validation of a biological model to simulate the development and production of tomatoes in Mediterranean greenhouses during winter period. Biosystems Eng., 103(2), 217-227, http://dx.doi.org/10.1016/j.biosystemseng.2009.01.004.

Duchowski P. and Brazaitytë A., 2001. Tomato photosynthesis monitoring in investigations on tolerance to low temperatures. In: Acta Horticulturae. Int. Soc. Horticultural Sci. (ISHS), Leuven, Belgium, 335-339, https://doi.org/10.17660/ActaHortic.2001.562.39.

El-Attal A., 1995. Decision model for hydroponic tomato production (HYTOMOD) using utility theory, Ph.D. Thesis, Ohio State University, Columbus, Ohio.

Factsheet, 2015. Understanding Humidity Control in Greenhouses. Publication of the Canadian Ministry of Agriculture. British Columbia. Available at: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agricultureand-seafood/animal-and-crops/crop-production/understanding_humidity_control.pdf.

Gallardo M., Thompson R.B., Rodriguez J.S., Rodriguez F., Fernández M.D., Sánchez J.A., and Magán J.J., 2009. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agricultural Water Manag., 96(12), 1773-1784.

Garcia M.L., Medrano E., Sanchez-Guerrero M.C., and Lorenzo P., 2011. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosystems Eng., 108(2), 133-143.

Gautier H., Guichard S., and Tchamitchian M., 2001. Modulation of competition between fruits and leaves by flower pruning and water fogging, and consequences on tomato leaf and fruit growth. Annals of Botany, 88(4), 645-652, http://dx.doi.org/10.1006/anbo.2001.1518.

Grange R.I. and Hand D.W., 1987. A review of the effects of atmospheric humidity on the growth of horticultural crops. J. Horticultural Sci., 62(2), 125-134, https://doi.org/10.1080/14620316.1987.11515760.

Harel D., Fadida H., Slepoy A., Gantz S., and Shilo K., 2014. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy., 4(1), 167-177.

Hochmuth G.J. and Hochmuth R.C., 2012. Production of greenhouse tomatoes - Florida greenhouse vegetable production handbook, Selection of Cultivars. Production, 3, 1-18.

Hoffman G.J., 1979. Humidity. Controlled Environment Guidelines Plant Res., 141-172.

Holder R. and Cockshull K.E., 1990. Effects of humidity on the growth and yield of glasshouse tomatoes. J. Hort. Sci., 65(1), 31-39, https://doi.org/10.1080/00221589.1990.11516025.

Huang Y., Li Y., and Wen X., 2011. The effect of relative humidity on pollen vigor and fruit setting rate of greenhouse tomato under high temperature condition. Acta Agric. Boreali-Occident. Sin, 11, 1-20.

Iraqi Dr., Gagnon S., Dubé S., and Gosselin A., 1995. Vapor pressure deficit (VPD) effects on the physiology and yield of greenhouse tomato. HortScience, 30(4), 846-846.

Jain N., 2012. Tomato cultivation in open fields and greenhouses. A guideline booklet. NaanDanJain Irrigation Ltd. Israel. http://www.naandanjain.com/uploads/catalogerfiles/tomato-2/Tomato_eng_booklet _190812final%20.pdf

Janse J. and Welles G.W.H., 1984. Effects of energy saving measures on keeping quality of tomato and cucumber fruits. In Symposium on Quality of Vegetables. Jun 18. 163, 261-270, https://doi.org/10.17660/ActaHortic.1984.163.29

Jensen M.E., Burman R.D., and Allen R.G., 1990. Evapotranspiration and Irrigation Water Requirements. Book - Manual of Practice No.: 70. American Society of Civil Engineers, New York, NY, https://doi.org/10.1061/9780784414057

Jones J.B., 2013. Instructions for Growing Tomatoes in the Garden and Green-House. GroSystems, Anderson, SC, USA.

Jones J.W., Dayan E., Allen L.H., Van Keulen H., and Challa H., 1991. A dynamic tomato growth and yield model (TOMGRO). Trans. ASAE, 34(2), 663-0672.

Jones J.W., Kenig A., and Vallejos C.E., 1999. Reduced state- variable tomato growth model. Trans. ASAE, 42, 255-265.

Kawasaki Y., Satoshi M., Yoshinori K., and Koki K., 2014. Effect of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperatures. J. Japanese Society Horticultural Sci., 83(4), 295-301, doi:

Khayat E., Ravad D., and Zieslin N., 1985. The effects of various night-temperature regimes on the vegetative growth and fruit production of tomato plants. Sci. Hort., 27(1), 9-13, http://www.sciencedirect.com/science/article/pii/0304423885900494.

Kittas C., Karamanis M., and Katsoulas N., 2005. Air temperature regime in a forced ventilated greenhouse with rose crop. Energy Buildings, 37(8), 807-812, http://www.sciencedirect.com/science/article/pii/S0378778804003433

de Koning A.N.M., 1994. Development and dry matter distribution in glasshouse tomato : a quantitative approach. [S.l.]: De Koning. Available at: http://edepot.wur.nl/205947.

Leonardi C., Baille A., and Guichard S., 2000. Predicting transpiration of shaded and non-shaded tomato fruits under greenhouse environments. Scientia Hort., 84(3), 297-307, http://www.sciencedirect.com/science/article/pii/S0304423899001302.

Li Y., Wen X., Li L., and Song M., 2014. The effect of root-zone temperature on temperature difference between leaf and air in tomato plants. Acta Hortic., 1107, 251-256, DOI: 10.17660/ActaHortic.2015.1107.34

Liu F., Cohen Y., Fuchs M., Plaut Z., and Grava A., 2006. The effect of vapor pressure deficit on leaf area and water transport in flower stems of soil-less culture rose. Agricultural Water Manag., 81(1-2), 216-224.

Lu N., Nukaya T., Kamimura T., Zhang D., Kurimoto I., Takagaki M., Maruo T., Kozai T. and Yamori W., 2015. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae, 197, 17-23, https://www.sciencedirect.com/science/article/pii/S0304423815302752

Mahajan G. and Singh K.G., 2006. Response of Greenhouse tomato to irrigation and fertigation. Agric. Water Manag., 84(1), 202-206, http://www.sciencedirect.com/science/article/pii/S0378377406000953

Morison J.I. and Morecroft M.D., 2008. Plant growth and climate change. John Wiley and Sons. http://doi.wiley.com/10.1002/9780470988695

Nepi M., Cresti L., Guarnieri M., and Pacini E., 2010. Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrida and Cucurbita pepo pollen. Plant Systematics Evolution, 284(1-2), 57-64.

Ntatsi G., Savvas D., Huntenburg K., Druege U., Hincha D.K., Zuther E., and Schwarz D., 2014. A study on ABA involvement in the response of tomato to suboptimal root temperature using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED1. Environmental and experimental botany, 97, 11-21. https://www.sciencedirect.com/science/article/pii/S0098847213001408

Olson S.M., Stall W.M., Vallad G.E., Webb S.E., Smith S.A., Simonne E.H., McAvoy E.J., Santos B.M., and Ozores- Hampton M., 2012. Tomato production in Florida. EDIS. University of Florida Extension Circ HS739: University of Florida/IFAS.

Omafra S., 2005. Growing Greenhouse Vegetables. Guelph, Ontario, Canada: Ontario Ministry of Agriculture, Food, and Rural Affairs.

Peet M., Sato S., Clément C., and Pressman E., 2002. August. Heat stress increases sensitivity of pollen, fruit and seed production in tomatoes (Lycopersicon esculentum Mill.) to non-optimal vapor pressure deficits. Acta Horticulturae. Int. Soc. Hort. Sci. (ISHS), Leuven, Belgium, 209-215, https://doi.org/10.17660/ActaHortic.2003.618.23

Picken A.J.F., 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hort. Sci., 59(1), 1-13, https://doi.org/10.1080/00221589.1984.11515163

Popovski K., 1997. Greenhouse climate factors. Geo-heat center Quarterly Bulletin, 18(1), 14-20.

Portree J., 1996. Greenhouse vegetable production guide for commercial growers. Province of British Columbia Ministry of Agriculture, Fisheries and Food.

Prenger J.J. and Ling P.P., 2001. Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD).

Prenger J.J. and Ling P.P., 2007. Ohio State University Fact Sheet Food, Agricultural and Biological Engineering Greenhouse Condensation Control - An Introduction. AEX-800-00, 1-3.

Sato S., Kamiyama M., Iwata T., Makita N., Furukawa H., and Ikeda H., 2006. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals Botany, 97(5), 731-738.

Sato S., Peet M.M., and Thomas J.F., 2000. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell Environ., 23(7), 719-726,: http://dx.doi.org/10.1046/j.1365-3040.2000.00589.x

Schwarz D., Thompson A.J., and Kläring H.-P., 2014. Guidelines to use tomato in experiments with a controlled environment. Frontiers Plant Sci., 5 (November), 625. http://www.ncbi.nlm.nih.gov/pubmed/25477888%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4235429

Shamshiri R., 2017. Measuring optimality degrees of microclimate parameters in protected cultivation of tomato under tropical climate condition. Measurement, http://www.sciencedirect.com/science/article/pii/S0263224117301276

Shamshiri R., Ahmad D., Zakaria A., Ismail W.I.W., Man H.C. and Yamin M., 2016a. Evaluation of the Reduced State-Variable TOMGRO Model using Boundary Data. 2016 ASABE Annual Int. Meeting, July, 17-20, 2016. Orlando, Florida, USA. http://elibrary.asabe.org/abstract.asp?aid=46785&t=5

Shamshiri R., Ahmad D., Ismail W.I.W., Man H.C., Zakaria A., Yamin M., and van Beveren P., 2016b. Comparative evaluation of naturally ventilated screenhouse and evaporative cooled greenhouse based on optimal vapor pressure deficit. ASABE Annual Int. Meeting, July, 17-20, Orlando, Florida, USA, doi:

Shamshiri R.R., Mahadi M.R., Thorp K.R., Ismail W.I.W., Ahmad D., and Man H.C., 2017a. Adaptive Management framework for evaluating and adjusting microclimate parameters in tropical greenhouse crop production systems. In: Plant Engineering (Ed. S. Jurić). Rijeka: InTech., http://dx.doi.org/10.5772/intechopen.69972

Shamshiri R., Che Man H., Zakaria A.J., Beveren P.V., Wan Ismail W.I., and Ahmad D., 2017b. Membership function model for defining optimality of vapor pressure deficit in closed-field cultivation of tomato. Acta Horticulturae. Int. Soci. Hort. Sci. (ISHS), Leuven, Belgium, 281-290, https://doi.org/10.17660/ActaHortic.2017.1152.38

Shamshiri R., van Beveren P., Che Man H., and Zakaria A.J., 2017c. Dynamic assessment of air temperature for tomato (Lycopersicon esculentum Mill.) cultivation in a naturally ventilated net-screen greenhouse under tropical lowlands climate. J. Agric. Sci. Technol., 19(1), 59-72.

Shamshiri R., Ismail W.I.W., and Ahmad D., 2014. Experimental evaluation of air temperature, relative humidity and vapor pressure deficit in tropical lowland plant production environments. Advances Environ. Biol., 8(22), 5-13.

Shishido Y. and Kumakura H., 1994. Effects of root temperature on photosynthesis, transpiration, translocation and distribution of 14C-photoassimilates and root respiration in tomato. J. Japanese Soc. Hort. Sci., 63(1), 81-89.

Short T.H., Draper C.M., and Donnell M.A., 2005. Web-based decision support system for hydroponic vegetable production. Acta Horticulturae, Int. Soc. Hort. Sci. (ISHS), Leuven, Belgium, 867-870, https://doi.org/10.17660/ActaHortic.2005.691.107.

Schrevens E., Tenorio J., Cooman A., and Medina A., 2005. Simulation of greenhouse management for the cultivation of tomato in the high altitude tropics. Acta Hort., 691(2002), 75-82.

Stockle C.O. and Kiniry J.R., 1990. Variability in crop radiation- use efficiency associated with vapor-pressure deficit. Field Crops Res., 25(3-4), 171-181.

Tindall J.A., Mills H.A., and Radcliffe D.E., 1990. The effect of root zone temperature on nutrient uptake of tomato. J. Plant Nutrition, 13(8), 939-956, https://doi.org/10.1080/01904169009364127

Triguii M., Barringtoni S.F., and Gauthier L., 1999. Effects of humidity on tomato. Canadian Agricultural Eng., 41(3), 135-140.

Van Ploeg D. and Heuvelink E., 2005. Influence of sub-optimal temperature on tomato growth and yield: a review. J. Hort. Sci. Biotechnol., 80(6), 652-659, https://doi.org/10.1080/14620316.2005.11511994

Vanthoor B.H.E., Stanghellini C., Van Henten E.J., and De Visser P.H.B., 2011. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates. Biosystems Eng., 110(4), 363-377, http://dx.doi.org/10.1016/j.biosystemseng.2011.06.001

Vermeulen K., Aerts J.-M., Dekock J., Bleyaert P., Berckmans D., and Steppe K., 2012. Automated leaf temperature monitoring of glasshouse tomato plants by using a leaf energy balance model. Computers and Electronics in Agriculture, 87, 19-31, http://dx.doi.org/10.1016/j.compag.2012.05.003

Viuda-Martos M., Sanchez-Zapata E., Sayas-Barberá E., Sendra E., Perez-Alvarez J.A., and Fernández-López J., 2014. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Critical reviews in food science and nutrition, 54(8), 1032-1049, http://www.ncbi.nlm.nih.gov/pubmed/24499120

Vogelezang J.V.M., 1993. Bench heating for potplant cultivation: analysis of effects of root-and air temperature on growth, development and production. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, the Netherland.

Xu J., Li Y., Wang R.Z., Liu W., and Zhou P., 2015. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Applied Energy, 138, 291-301, http://linkinghub.elsevier.com/retrieve/pii/S0306261914011118

Zhang D., Zhongdian Z., Jianming L., Yibo C., Qingjie D., and Tonghua P., 2015. Regulation of vapor pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer season. PloS one, 10(7), p.e0133919.

Zolnier S., Gates R.S., Buxton J., and Mach C., 2000. Psychrometric and ventilation constraints for vapor pressure deficit control. Computers and Electronics in Agriculture, 26(3), 343-359.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1087 1087 186
PDF Downloads 1165 1165 234