Forecasting daily meteorological time series using ARIMA and regression models

Open access

Abstract

The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

Abdul-Aziz A.R., Anokye M., Kwame A., Munyakazi L., and Nsowah-Nuamah N.N.N., 2013. Modeling and forecasting rainfall pattern in ghana as a seasonal arima process: The case of Ashanti Region. Int. J. Humanities Social Sci., 3(3), 224-233.

Afrifa-Yamoah E., Bashiru I.I. Saeed, and Karim A., 2016. Sarima Modelling and Forecasting of Monthly Rainfall in the Brong Ahafo Region of Ghana. World Environment, 6(1), 1-9.

Akpanta C.A., Okorie I.E., and Okoye N.N., 2015. SARIMA Modelling of the frequency of monthly rainfall in Umuahia, Abia state of Nigeria. American J. Mathematics Statistics, 5, 82-87.

Ampaw E.M., Akuffo B., Opoku L.S., and Lartey S., 2013. Time series modeling of rainfall in new Juaben municipality of the Eastern region of Ghana. Contemporary Res. Business Social Sci.s, 4(8), 116-129.

Anitha K., Boiroju N.K., and Reddy P.R., 2014. Forecasting of monthly mean of maximum surface air temperature in India. Int. J. Statistika Mathematika, 9(1), 14-19.

Balyani Y., Niya G.F., and Bayaat A., 2014. A study and prediction of annual temperature in Shiraz using ARIMA model. J. Geographic Space, 12(38), 127-144.

Baranowski P., Krzyszczak J., Sławiński C., Hoffmann H., Kozyra J., Nieróbca A., Siwek K., and Gluza A., 2015. Multifractal Analysis of Meteorological Time Series to Assess Climate Impacts. Climate Res., 65, 39-52.

Box G.E.P. and Jenkins G., 1970. Time Series Analysis: forecasting and control. San Francisco, Holden-Day.

Box G.E.P., Jenkins G., and Reinsel G., 2008. Time series analysis. Wiley Press, New Jersey, USA.

Box G.E.P. and Tiao G.C., 1975. Intervention Analysis with Applications to Economic and Environmental Problems. JASA, 70, 70-79.

Brockwell P.J. and Davis R.A., 1991. Time Series: Theory and Methods. 2nd edition. Springer-Verlag, New York.

Dabral P.P. and Murry M.Z., 2017. Modelling and Forecasting of Rainfall Time Series Using SARIMA. Environmental Processes, 1-21.

El-Mallah E.S. and Elsharkawy S.G., 2016. Time-series modeling and short term prediction of annual temperature trend on Coast Libya using the box-Jenkins ARIMA Model. Advances Res., 6(5), 1-11.

Etuk H.E., Moffat U.I., and Chims E.B., 2013. Modelling monthly rainfall data of portharcourt, Nigeria by seasonal box-Jenkins method. Int. J. Sci., 2, 60-67.

Fronzek S., Pirttioja N., Carter T.R., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Sławiński C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2018. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 159, 209-224, doi:

Harvey A., 1989. Forecasting Structural Time Series Model and the Kalman Filter. Cambridge University Press, New York.

Hoffmann H., Baranowski P., Krzyszczak J., Zubik M., Sławiński C., Gaiser T., and Ewert F., 2017. Temporal properties of spatially aggregated meteorological time series. Agric. Forest Meteorol., 234, 247-257, https://doi.org/10.1016/j.agrformet.2016.12.012

Hyndman R., 2010. Forecasting with long seasonal periods. http://robjhyndman.com/hyndsight/longseasonality

Hyndman R.J. and Koehler A.B., 2006. Another look at measures of forecast accuracy. Int. J. Forecasting, 22(4), 679-688.

Hyndman R.J., Koehler A.B., Ord J.K., and Snyder R.D., 2008. Forecasting with Exponential Smoothing: The State Space Approach. Springer-Verlag Inc., New York.

Khedhiri S., 2014. Forecasting temperature record in PEI, Canada. Letters in Spatial and Resource Sciences, 9, 43-55, doi 10.1007/s12076-014-0135-x

Krzyszczak J., Baranowski P., Hoffmann H., Zubik M., and Sławiński C., 2017a. Analysis of Climate Dynamics Across a European Transect Using a Multifractal Method, In: Advances in Time Series Analysis and Forecasting (Eds I. Rojas, H. Pomares, O. Valenzuela). Selected Contributions from ITISE 2016. Springer Int. Publishing, Cham., doi:

Krzyszczak J., Baranowski P., Zubik M., and Hoffmann H., 2017b. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. Forest Meteorol., 239, 223-235.

Lamorski K., Pastuszka T., Krzyszczak J., Sławiński C., and Witkowska-Walczak B., 2013. Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone J., 12(4), https://doi.org/10.2136/vzj2013.05.0085.

Lobell B.D., Sibley A., and Ortiz-Monasterio J.I., 2012. Extreme heat effects on wheat senescence in India. Nature Climate Change, 2, 186-189.

Lobell D.B., Hammer G.L., Mclean G., Messina C., Roberts M.J., and Schlenker W., 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497-501.

Mahsin M., Akhter Y., and Begum M., 2012. Modeling rainfall in Dhaka District of Bangladesh using time series analysis. J. Mathematical Modelling Appl., 1, 67-73.

Muhammet B., 2012. The analyse of precipitation and temperature in Afyonkarahisar (Turkey) in respect of box-Jenkins technique. J. Academic Social Sci. Studies, 5(8), 196-212.

Murat M., Malinowska I., Hoffmann H., and Baranowski P., 2016. Statistical modeling of agrometeorological time series by exponential smoothing. Int. Agrophys., 30(1), 57-66.

Osarumwense O.I., 2013. Applicability of box Jenkins SARIMA model in rainfall forecasting: A case study of Port-Harcourt South South Nigeria. Canadian J. Computing in Mathematics, Natural Sciences, Engineering Medicine, 4(1), 1-4.

Pirttioja N., Carter T.R., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Sławiński C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 65, 87-105, doi:

Porter J.R. and Semenov M.A., 2005. Crop responses to climatic variation. Philosophical Trans. Royal Society B: Biological Sci., 360(1463), 2021-2035.

Ruiz-Ramos M., Ferrise R., Rodríguez A., Lorite I.J., Bindi M., Carter T.R., Fronzek S., Palosuo T., Pirttioja N., Baranowski P., Buis S., Cammarano D., Chen Y., Dumont B., Ewert F., Gaiser T., Hlavinka P., Hoffmann H., Höhn J.G., Jurecka F., Kersebaum K.C., Krzyszczak J., Lana M., Mechiche-Alami A., Minet J., Montesino

M., Nendel C., Porter J.R., Ruget F., Semenov M.A., Steinmetz Z., Stratonovitch P., Supit I., Tao F., Trnka M., de Wit A., and Rötter R.P., 2018. Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 159, 260-274, doi:

Semenov M.A. and Shewry P.R., 2011. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 1, 66.

Sillmann J. and Roeckner E., 2008. Indices for extreme events in projections of anthropogenic climate change. Climate Change, 86, 83-104.

Tanusree D.R. and Kishore K.D., 2016. Modeling of mean temperature of four stations in Assam. Int. J. Advanced Res., 4(12), 366-370.

Walczak R.T., Witkowska-Walczak B., and Baranowski P., 1997. Soil structure parameters in models of crop growth and yield prediction. Physical submodels. Int. Agrophysics, 11, 111-127.

Winters P.R., 1960. Forecasting sales by exponentially weighted moving averages. Management Sci., 6, 324-342.

Venäläinen A., Tuomenvirta H., Pirinen P., and Drebs A., 2005. A basic Finnish climate data set 1961-2000-description and illustration. Finnish Meteorological Institute Reports 5. Finnish Meteorological Institute, Helsinki, Finland.

Yusof F. and Kane I.L., 2012. Modelling monthly rainfall time series using ETS state space and SARIMA models Int. J. Current Res., 4(9), 195-200.

Zakaria S., Al-Ansari N., Knutsson S., and Al-Badrany T., 2012. ARIMA models for weekly rainfall in the semi-arid Sinjar district at Iraq. J. Earth Sci. Geotechnical Eng., 2(3), 25-55.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 633 633 87
PDF Downloads 576 576 104