Calorific evaluation and energy potential of grape pomace

Open access

Abstract

This article deals with energetic evaluation and potential of pomace – a waste product originating during production of grape wine. Calorimetric analysis of 19 grapevine varieties was performed in 2013 and 2014. The aim was to specify their combustible limit and the gross calorific value. The evaluations were performed on pristine pomace, pomace without seeds, and only on seeds themselves. The results obtained imply that pomace is an interesting energetic resource with a gross calorific value of 16.07-18.97 MJ kg−1. Lower calorific values were detected in pomace after seed separation ie 14.60-17.75 MJ kg−1; on the contrary, seeds alone had the highest calorific values of 19.78-21.13 MJ kg−1. It can be assumed from the results of energetic evaluation of pomace in Czech Republic conditions that, by purposeful and efficient usage of pomace, 6.4 GWh of electric energy and 28 GWh of thermal energy can be generated.

Allen J., Browne M., Hunter A., Boyd J., and Palmer H., 1998. Logistics management and costs of biomass fuel supply. Int. J. Phys. Distr. Log. Manag., 28, 463-477.

Annamalai K., Sweeten J.M., and Ramalingan S.C., 1987. Estimation of grossheating values of biomass fuels. Trans ASAE, 30, 4, 1205-1208.

Baydar N.G., Özkan G., and Çetin E.S., 2007. Characterization of grape seed and pomace oil extracts. Grasas Aceites, 58, 1, 29-33.

Berndes G., Hoogwijk M., and Van den Broek R., 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy, 25(1), 1-28.

Bird D., 2012. Understanding wine technology. UK: DBQA Pulishing, Newarkl, UK.

Boselli M., Volpe B., and Di Vaio C., 1995. Effect of seed number per berry on mineral composition of grapevine (Vitis vinifera L.) berries. J. Hort. Sci., 70(3), 509-515.

Burg P., Dědina M., Hejtmánková A., Hejtmánková K., Jelínek A., Lachman J., Lipavský J., Mašán V., Pivec V., Skala O., Střalková R., Táborský J., and Zemánek P., 2014. Studies of biologically active substances in seeds and young wood grapevine and the possibilities of obtaining seed oils (in Czech). Folia Univ. agric. Silvic. Mendel. Brun. Monography. Brno: MENDELU in Brno, 7(7), 66-68.

ČSN EN 14346:2007. Characterization of waste – Calculation of dry matter and water content (in Czech).

ČSN ISO 1928:1999. Solid fuels – Determination of gross calorific value by the calorimetric method in pressure vessel and calculate calorific value (in Czech).

Freppaz D., Minciardi R., Robba M., Rovatti M., Sacile R., and Taramasso A., 2004. Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenergy, 26(1), 15-25.

Grassi G. and Bridgwater A.V., 1990. Biomass for energy and environment, agriculture and industry in Europe – A strategy for the future Commission of the European Communities.

Hamelinck C.N., Suurs R.A.A., and Faaij A.P.C., 2005. International bioenergy transport costs and energy balance. Biomass Bioenergy, 29(2), 114-134.

Hardie W.J., O’Brien T.P., and Jaudzems V.G., 1996. Morphology, anatomy and development of the pericarp afteranthesis in grape Vitis vinifera L. Austral. J. Grape Wine, Res. 2, 97-142.

Hoogwijk M., Faaij A., Van den Broek R., Berndes G., Gielen D., and Turkenburg W., 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy, 25(2), 119-133.

Hulteberg P.C. and Karlsson H.T., 2009. A study of combined biomass gasification and electrolysis for hydrogen production. Int. J. Hydrogen Energy, 34, 772-782.

Iakovou E., Karagiannidis A., Vlachos D., Toka A., and Malamakis A., 2010. Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag., 30, 1860-1870.

Jackson R.S., 2008. Wine science: principles and applications. Amsterdam: Elsevier/Academic Press, San Diego, USA.

Karagiannidis A., Wittmaier M., Langer S., Bilitewski B., and Malamakis A., 2009. Thermal processing of waste organic substrates: developing and applying anintegrated framework for feasibility assessment in developing countries. Renew. Sustain. Energy Rev., 13, 2156-2162.

McCormick K. and Kåberger T., 2007. Key barriers for bio-energy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass Bioenergy, 31(7), 443-452.

Ohnishi M., Hirosh S., Kawaguchi M., Ito S., and Fujino Y., 1990. Chemical composition of lipids, especially triacyglycerol, in grape seeds. Agric. Biol. Chem., 54, 1035-1042.

Organisation Internetionale de la Vignet et du Vin (OIV), 2009. Internationaler Kodex der önologischen Praxis (in German). Bremen, Germany.

Pardo J.E., Fernandéz E., Rubio M., Alvarruiz A., and Alonso G.L., 2009. Characterization of grape seed oil from different grape varieties (Vitis vinifera) Eur. J. Lipid Sci. Technol., 111, 188-193.

Skala O., 2011. Research obtaining the biologically active substances (BAL) from grape seeds to improve the metabolism of farm animals as a basis for designing the best available techniques (bat) (in Czech). Periodic Message, 34, pages 15-21.

Souček J. and Burg P., 2010. Determination of calorific value of wood chips vine shoot from vines (in Czech). Acta Univ. agric. Silvic. Mendel. Brun., 58(1), 185-190.

Tangolar S.G., Ozogul Y., Tangolar S., and Torun A., 2009. Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr., 60, 32-39.

Yamamoto H., Fujino J., and Yamaji K., 2001. Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model. Biomass Bioenergy, 21(3), 185-203.

Walg O., 2007. Taschenbuch der Weinbautechnik (in German). Kaiserslautern: Rohr-Druck, Kaiserslautern, Germany.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 115 11
PDF Downloads 102 86 16