Statistical modelling of agrometeorological time series by exponential smoothing

Open access

Abstract

Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, long-term meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.

Allen R.G., Pereira L.S., Raes D., and Smith M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No. 56, FAO, Rome.

Asseng S., McIntosh P.C., Wang G., and Khimashia N., 2012. Optimal N fertiliser management based on a seasonal forecast. Eur. J. Agron., 38, 66-73.

Baranowski P., Krzyszczak J., Sławiński C., Hoffmann H., Kozyra J., Nieróbca A., Siwek K., and Gluza A., 2015. Multifractal analysis of meteorological time series to assess climate impacts. Climate Res., 65, 39-52.

Bartos I. and Jánosi I.M., 2006. Nonlinear correlations of daily temperature records over land. Nonlinear Process Geophys., 13, 571-576.

Bilgili M., Sahin B., and Yasar A., 2007. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renewable Energy, 32, 2350-60.

Brown R.G., 1959. Statistical forecasting for inventory control. New York, McGraw-Hill.

Brown R.G., 1963. Smoothing, forecasting and prediction of discrete time series. Prentice-Hall, New Jersey.

Cadenasa E. and Rivera W., 2010. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renewable Energy, 35(12), 2732-2738.

Chan Z.S.H., Ngan H.W., Rad A.B., David A.K., and Kasabov N., 2006. Short-term ANN load forecasting from limited data using generalization learning strategies. Neurocomputing, 70, 409-19.

Dong Z., Yang D., Reindl T., and Walsh W.M., 2013. Short-term solar irradiance forecasting using exponential smoothing state space model. Energy, 55, 1104-1113.

Gardner E.S., 1985. Exponential smoothing: The state of the art. J. Forecasting, 4, 1-38.

Gardner J.E.S., 2006. Exponential smoothing: the state of the art-part II. Int. J. Forecasting, 22, 637-666.

Ghiassi M., Saidan H., and Zimbra D.K., 2005. A dynamic artificial neural network model for forecasting time series events. Int. J. Forecasting, 21, 341-362.

Holt C.C., 2004. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecasting, 20, 5-10.

Hyndman R.J. and Khandakar Y., 2008. Automatic Time Series Forecasting: The forecast Package for R. J. Statistical Software, 27(3), 1-22.

Hyndman R.J., Koehler A.B., Ord J.K., and Snyder R.D., 2008. Forecasting with exponential smoothing. The State Space Approach Springer-Verlag, Berlin, Heidelberg.

Hyndman R.J., Koehler A.B., Snyder R.D., and Grose S., 2002. A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecasting, 18, 439-454.

Lin G. and Fu Z., 2008. A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Physica A, 387(2-3), 573-579.

Magno R., Angeli L., Chiesi M., and Pasqui M., 2014. Prototype of a drought monitoring and forecasting system for the Tuscany region. Adv. Sci. Res., 11, 7-10.

Makridakis S. and Hibon M., 2000. The M3-Competition: results, conclusions and implications. Int. J. Forecasting, 16, 451-476.

McSharry P.E., 2011. Validation and forecasting accuracy in models of climate change: Comments. Int. J. Forecasting, 27, 996-999.

Meehl G.A., Goddard L., Murphy J., Stouffer R.J., Boer G., Danabasoglu, G., et al., 2009. Decadal prediction: can it be skilful? Bull. Am. Meteorol. Soc., 90, 1467-1485.

Muth J.F., 1960. Optimal properties of exponentially weighted forecasts. J. Am. Statistical Association, 55, 299-306.

Niu M., Sun S., Wu J., and Zhang Y., 2015. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application. Math. Probl. Eng., Article ID 351354, 13 p.

Pinson P., McSharry P.E., and Madsen H., 2010. Reliability diagrams for nonparametric density forecasts of continuous variables: accounting for serial correlation. Quarterly J. Royal Meteorological Soc., 136(646), 77-90.

Pirttioja N., Carter T.R., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.F., Dumont B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak J., Lorite I.J., Minet J., Minguez M.I., Montesino M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., Semenov M.A., Sławiński C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Res., 65, 87-105.

Porter J.R. and Semenov M.A., 2005. Crop responses to climatic variation. Philos. Trans. R. Soc. B-Biol. Sci., 360(1463), 2021-2035.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Reikard G., 2009. Predicting solar radiation at high resolutions: a comparison of time series forecasts. Solar Energy, 83(3), 342-349.

Schlenker W. and Roberts M.J., 2006. Nonlinear effects of weather on corn yields. Rev. Agric. Econ., 28(3), 391-398.

Smith D.M., Cusack S., Colman A.W., Folland C.K., Harris G.R., and Murphy J.M., 2007. Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796-799.

Toscano P., Gioli B., Genesio L., Vaccari F.P., et al., 2014. Durum wheat quality prediction in Mediterranean environments: from local to regional scale. Eur. J. Agron., 61, 1-9.

Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud Z., and Semenov M.A., 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change, 4, 637-643.

Winters P.R., 1960. Forecasting sales by exponentially weighted moving averages. Management Sci., 6, 324-342.

Yusof F. and Kane I.L., 2012. Modelling monthly rainfall time series using ETS state space and SARIMA models. Int. J. Current Res., 4(9), 195-200.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 212 14
PDF Downloads 92 92 4