Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens

Open access

Abstract

In this study, we sought to find and employ positive effects of UV-A irradiation on cultivation and quality of microgreens. Therefore, the goal of our study was to investigate the influence of 366, 390, and 402 nm UV-A LED wavelengths, supplemental for the basal solid-state lighting system at two UV-A irradiation levels on the growth and phytochemical contents of different microgreen plants. Depending on the species, supplemental UV-A irradiation can improve antioxidant properties of microgreens. In many cases, a significant increase in the investigated phytochemicals was found under 366 and 390 nm UV-A wavelengths at the photon flux density (12.4 μmol m-2 s-1). The most pronounced effect of supplemental UV-A irradiation was detected in pak choi microgreens. Almost all supplemental UV-A irradiation treatments resulted in increased leaf area and fresh weight, in higher 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging activity, total phenols, anthocyanins, ascorbic acid, and α-tocopherol.

Brazaitytė A., Duchovskis P., Urbonavičiūtė A., Samuolienė G., Jankauskienė J., Kasiulevičiūtė-Bonakėrė A., Bliznikas Z., Novičkovas A., Breivė K., and Žukauskas A., 2009. The effect of light-emitting diodes lighting on cucumber transplant and after-effect on yield. Zemdirbyste-Agriculture, 96(3), 102-118.

Brazaitytė A., Duchovskis P., Urbonavičiūtė A., Samuolienė G., Jankauskienė J., Sakalauskaitė J., Šabajevienė G., Sirtautas R., and Novičkovas A., 2010. The effect of light-emitting diodes lighting on growth of tomato transplants. Zemdirbyste-Agriculture, 97(2), 89-98.

Fernandez-Orozco R., Zieliński H., and Piskuła M.K., 2003. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung/Food, 47(5), 291-299.

Geniatakis E., Fousaki M., and Chaniotakis N.A., 2003. Direct potentiometric measurement of nitrate in seeds and produce. Communications in Soil Science and Plant Analysis, 34, 571-579.

Helsper J.P.F.G., Ric de Vos C.H., Maas F.M., Jonker H.H., van den Broeck H.C., Jordi W., Pot C.S., Keizer L. C.P. and Schapendonk A.H.C.M., 2003. Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure. Physiologia Plantarum, 117, 171-178.

Hollósy F., 2002. Effects of ultraviolet radiation on plant cells. Micron, 33, 179-197.

Iwai M., Mari Ohta M., Tsuchiya H., and Suzuki T., 2010. Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Functional Foods, 2, 66-70.

Janghel E.K., Gupta V.K., Rai M.K., and Rai J.K., 2007. Micro determination of ascorbic acid using methyl viologen. Talanta, 72, 1013-1016.

Kataoka I., Sugiyama A., and Beppu K., 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). J. Japanese Society Horticultural Sci., 72, 1-6.

Krizek D.T., Britz S.J., and Mirecki R.M., 1998. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum, 103, 1-7.

Lee N.Y., Lee M.J. , Kim Y.K., Park J.C , Park H.K., Choi J.S., Hyun J.-N., Kim K.-J., Park K.-H., Jae-Kwon Ko, and Jung-Gon Kim, 2010. Effect of light emitting diode radiation on antioxidant activity of barley leaf. J. Korean Society Applied Biological Chem., 53, 658-690.

Li Q. and Kubota C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Botany, 67, 59-64.

Lin C.T., 2000. Blue light plant receptors. Trends in Plant Sci., 5(8), 337-342.

Lin K.-H., Huang M.-Y., Huang W.-D., Hsu M.-H., Yang Z.-W., and Yang C.-M., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Hort., 150, 86-91.

Morrow R.C., 2008. LED lighting in horticulture. Hort Sci., 43, 1947-1950.

Munne´-Bosch S., 2005. The role of α-tocopherol in plant stress tolerance. J. Plant Physiol., 162, 743-748.

Phyo A.K. and Chung N-J., 2013. Response of single leaf photosynthesis and transpiration to red light and UV-A radiation in two different plant-type rice cultivars (Oryza sativa L.), Australian J. Crop Sci., 7(1), 119-129.

Ragaee S., Abdel-Aal E.M., and Maher N., 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem., 95, 32-38.

Samuolienė G., Brazaitytė A., Jankauskienė J., Viršilė A., Sirtautas R., Novičkovas A., Sakalauskienė S., Sakalauskaitė J., and Duchovskis P., 2013. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Central Eur. J. Biol., 8(12), 1241-1249.

Santamaria P., 2006. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric., 86, 10-17.

Silva N.C.B., Macedo A.F., Lage C.L.S., Esquibel M.A., and Sato A., 2005. Developmental effects of additional ultraviolet a radiation, growth regulators and tyrosine in Alternanthera brasiliana (L.) Kuntze cultured in vitro. Brazilian Archives Biol. Technol., 48(5), 779-786.

Stanciu G., Lupşor S., and Sava C., 2009. Spectrophotometric characterizations of anthocyans extracted from black grapes skin. Ovidijus University Annals Chemistry, 20(2), 205-208.

Stutte G.W., Edney S., and Skerritt T., 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Hort Sci., 44, 79-82.

Tarakanov I., Yakovleva O., Konovalova I., Paliutina G., and Anisimov A., 2012. Light emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hort., 956, 171-178.

Treadwell D.D., Hochmuth R., Landrum L., and Laughlin W., 2010. Microgreens: A new specialty crop. HS1164. Institute of Food and Agricultural Sciences, University of Florida.

Tsormpatsidis E., Henbest R.G.C., Davis F.J., Battey N.H., Hadley P., and Wagstaffe A., 2008. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ. Exp. Botany, 63, 232-239.

Turcsáinyi E. and Vass I., 2000. Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex. Phochemistry Photobiol., 72(4), 513-520.

Wenke L. and Qichang Y., 2012. Effects of day-night supplemental UV-A on growth, photosynthetic pigments and antioxidant system of pea seedlings in glasshouse. African J. Biotechn., 11(82), 14786-14791.

Wheeler R.M., 2008. A historical background of plant lighting: an introduction to the workshop. Hort Sci., 43(7), 1942-1743.

Xiao Z., Lester G.E., Luo Y. and Wang Q., 2012. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem., 60, 7644-7651.

Zhou B., Li Y., Xu Z., Yan H., Homma S., and Kawabata S., 2007. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J. Exp. Botany, 58(7), 1771-1781.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 395 21
PDF Downloads 339 339 31