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Abstract 
The purpose of the present study was to demonstrate an inductive approach for 
dynamically modelling sport-related injuries with a probabilistic graphical model. 
Dynamic Bayesian Network (DBN), a well-known machine learning method, was 
employed to illustrate how sport practitioners could utilize a simula tory 
environment to augment the training management process. 23 University of Iowa 
female student-athletes (from 3 undisclosed teams) were regularly monitored with 
common athlete monitoring technologies, throughout the 2016 competitive season, 
as a part of their routine health and well-being surveillance. The presented work 
investigated the ability of these technologies to model injury occurrences in a 
dynamic, temporal dimension. To verify validity, DBN model accuracy was 
compared with the performance of its static counterpart. After 3 rounds of 5-fold 
cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold 
whereas static Bayesian network did not achieve baseline accuracy. Conclusive 
DBN suggested subjectively-reported stress two days prior, subjective interna l 
perceived exertions one day prior, direct current potential and sympathetic tone the 
day of, as the most impactful towards injury manifestation. 

KEYWORDS: PROBABILISTIC GRAPHICAL MODEL; TEMPORAL REASONING; 
SPORT EPIDEMIOLOGY; ETIOLOGY 
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Introduction 

Injuries within collegiate athletics are of great significance, not only to the athletes themselves, 
but to the team and ultimately the institution. Beyond protecting the health and well-being of 
student-athletes, injuries that result in lost time alter team structure, reduce cohesion, and impair 
performance (Gabbett, 2016). Sport medicine professionals are classically responsible for 
‘predicting’ when athletes may become more susceptible to injury in hopes to abate these 
unfortunate events. Despite the vast devotion to musculoskeletal injury mitigation however, 
conventional investigations into the etiology of sports injuries have struggled to push agendas 
with non-dynamic, frequentist methodology (Meeuwisse, 1994; Quatman, Quatman, & Hewett, 
2009). Such analyses are restricted by the inherent assumptions, which ultimately attenuate 
interpretations, and thus predictability, of such events. Alternatively, forecasting events that 
occur within high-dimensional, dynamic systems warrants the utility of modern sophisticated 
modeling and requires robust computational power. Therefore, if sports medicine professiona ls 
wish to curtail injury occurrences in such complex nonlinear organisms, then the predictive 
models employed must appreciate both the erratic internal milieu as well as the multifar ious 
external mediators.  
Consequently, there has been a recent challenge towards the profession, calling for a shift in 
modeling strategies to reflect the dynamic nature of sport-related injuries (Cook, 2016). 
Generally, there are two antagonistic views concerning the epistemology of causality: deductive 
versus inductive – and sport epidemiology has classically peered through the deductive lens 
(Quatman, Quatman, & Hewett 2009). Rather than deducing predictions from set hypotheses 
and comparing how well the predictions accord with what actually happened, an inductive 
approach starts by gleaning observations, discerns a pattern (usually algorithmically), and 
subsequently infers how the parameters relate to the phenomena being captured (Williamson, 
2005, 118-129). To a large extent, the field of machine learning is fundamentally inductive by 
promoting the formation and integration of high-dimensional interactions (Biermann, 1987). 
Complex system-based thinking for instance, which involves a high degree of conditiona l 
independencies where the timing of such relationships are important, have traditionally turned 
to various machine learning approaches, such as network-based models, when attempting to 
answer such complicated questions (Nicholson,  Holmes, Lindon, & Wilson, 2004).  

At its core, a simulatory network is a simplified abstract of the real world, which generates 
predictions of systemic behaviors under different conditions (Friedman, 2004). Network-based 
approaches are certainly not new to other domains solving complex, dynamic problems, such as 
bioinformatics (Zou & Conzen, 2005), health-care (Lucas, van der Gaag, & Abu-Hanna, 2004), 
even econometrics (Gemela, 2001). An attractive feature of simulatory networks is the ability 
for agents to test theoretical interventions in lieu of discovering associative observations from 
finite datasets (Galea, Riddle, & Kaplan, 2010). Although this ideological influence seems to 
have a delayed entry into sport epidemiology, support for this type of higher- level modelling to 
ameliorate sport practitioners’ decision-making process is undoubtedly gaining headway 
(Bittencourt et al., 2016).   

The previous dogmatic conjecture that high external training load is the culprit of non-contact 
injury occurrences has recently been debunked. Sport epidemiology literature is repeatedly 
revealing strong evidence that the mismanagement of training load is rather a key contributor 
towards non-contact injurious events (Blanch & Gabbett, 2015; Gabbett, 2016; Drew & Finch, 
2016; Hulin, Gabbett, Lawson, Captui, & Sampson, 2015). Specifically, inappropriate 
fluctuations in external training loads are likely responsible for non-contact, soft-tissue injur ies 
and hence are viewed as mitigable in the sports medicine community (Gabbett, 2010).  
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This idea of appropriately prescribing training loads based upon an athletes’ physiological (and 
psychological) readiness has certainly prompted the vast array of athlete monitor ing 
technologies in recent years.  
In general, the goal of athlete monitoring is to capture how athletes are coping with imposed 
stressors to potentially express untoward fatigue trends, and thus, allow practitioners to instigate 
appropriate interventions in hopes to combat maladaptation (Soligard 2016). However, relying 
on parameters in isolation to detect when athletes are entering a maladaptive state has yet to be 
validated. Rather, shifting from risk factor identification to complex pattern recognition has been 
called upon (Bittencourt et al., 2016). For instance, conjoining internal and external training 
loads, in addition to corroborating athletes’ subjective with objective responses, can ultima te ly 
create a so-called ‘web of determinants’ (Phillippe & Mansi, 1998) to elicit insight regarding the 
readiness of a particular athlete (Halson, 2014). This type of comprehensive approach can be 
advantageous for practitioners when attempting to determine if athletes are adapting in the 
intended direction. Furthermore, practitioners planning the chronological sequence of training 
could theoretically simulate prospective athlete responses to multivariate interventions (which 
may not necessarily reside in the original dataset) and subsequently compare the predictions to 
counterfactual outcomes, perhaps replacing conventional periodization models.  

Although this obligatory shift in methodology is well-accepted, there is a paucity of documented 
exploration of complex, simulatory applications towards sport injury etiology (Soligard et al., 
2016). Therefore, in response to the aforementioned challenge, the purpose of this treatise is to 
explicitly demonstrate an inductive approach for dynamically modelling sport-related injur ious 
events via probabilistic graphical models. The type of probabilistic graphical model 
implemented is called a Dynamic Bayesian Network (DBN), which was chosen due to its well-
established framework for temporal uncertainty management (Larranaga & Moral, 2011). To 
preserve practicality for practitioners, the network entails variables commonly captured when 
monitoring athlete readiness in collegiate and professional settings. A secondary purpose is to 
illustrate how practitioners could utilize DBNs to stochastically simulate how an athlete may 
acutely adapt in response to training. Such simulatory environment could greatly augment the 
training management process by allowing practitioners to play out the potential effects of various 
loading patterns prior to administration.  

Background 

Serving under the umbrella of artificial intelligence, Bayesian Networks present a marriage 
between probability and graphical theory. This conjugation allows for interpretable and flexib le 
representations of probabilistic relationships and, perhaps more importantly, has the ability to 
withstand omnidirectional interactions that are commonly encountered in dynamical systems 
(Coffey, 1998). The product of a Bayesian Network is a directed acyclic graph in which each 
node (discrete random variable) is annotated with quantitative probability information and is 
connected by arcs, representing direct dependencies between variables (Korb & Nicholson, 
2011, 1-28). The absence of an arc between variables indicates a lack of dependency between 
respective variables. When discussing network construction, it is common to apply a family 
metaphor, that is, a node is described as a parent of a child when there is a directional arc from 
the former node to the latter node (Korb & Nicholson, 2011, 29-54). The resultant network 
topology specifies, in graphical terms, the dependencies and conditional independenc ies 
amongst variables in a multivariate context (Fuster-Parra et al., 2014).  
It is imperative to note the Bayesian interpretation of probability is first, mental rather than 
physical, and secondly, is symbolic of an agent’s rational degree of belief (Williamson, 2005, 4-
13). To clarify, when evidence is provided for a random variable, the degree of belief is updated 
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to 1.0 (100% probability), which is termed instantiation (Korb & Nicholson, 2011, 29-54). When 
a random variable is instantiated, the degree of belief descends to the respective child, which 
subsequently updates the child’s degree of belief. Within a fully-connected network, 
instantiating a variable simultaneously updates all other nodes throughout the network allowing 
immediate visual and computational interpretation of omnidirectional inference. This 
mechanistic chain of events is a summary by which inference is interpreted, and thus predicted, 
which is called belief propagation (Pearl, 1988, 143-238).  

Formally, a Bayesian Network represents a set of random variables Xi = {X1, …, Xn} as a product 
of conditional probabilities (Russell & Norvig 2003, 492-536). Intuitively, an arc between 
variables within a constructed network signifies that the parents of Xi (Pa(Xi)) have a direct 
influence on Xi, denoted as P(Xi | Pa(Xi)) (Russell & Norvig 2003, 492-536).  The resulting 
product is of the form 

 ( ,… , ) =  (  | ( )) (1) 

called the chain rule for Bayesian Networks (Koller & Friedman, 2009, 43-102). Another useful 
concept is the Markov Blanket of Xi in a given network, which constitutes Xi’s parents, Xi’s 
children, and the parents of Xi’s children (Russell & Norvig, 2003, 492-536). Let V denote a set 
of random variables, P be their probability distribution, and Xi  V. A Markov Blanket (MB) of 
Xi is thus the set of variables conditionally independent (I) of all other nodes in the network given 
its MB (Neapolitan, 2004): 

 ( , (  { }) | ). (2) 

Qualitatively, the Markov Blanket entails the smallest set of variables carrying information about 
Xi that cannot be obtained from any other variable (Korb & Nicholson, 2011, 29-54).  

Our focus thus far has been describing probabilistic reasoning in the context of static worlds, in 
which random variables possess a single fixed value. However, when a question includes a 
temporal component, like the adaptive state of an athlete for example, the underlying distribut ion 
of a random variable changes over time. To capture this dynamic feature requires the utility of 
Dynamic Bayesian Networks, which model the stochastic evolution of a random variable over 
time (Friedman, Murphy, & Russell, 1998). For the most part, the underlying principles of DBNs 
do not deviate far from the aforementioned constructs. However, a key difference is their ability 
to predict distributions over different trajectories of time (Koller & Friedman, 2009, 199-246). 
Temporal trajectories are thus assigned to random variables ( ) at respective time points t. The 
ability for DBNs to infer probabilities in the correct chronological sequence is dependent upon 
what is called the first-order Markov process, which ensures the current state of a random 
variable is only dependent on the previous state and not on any earlier states (Russell & Norvig 
2003, 537-583). In other words, this prevents inference from propagating backwards in time. 
Using the chain rule notation from Equation 1, the corresponding distribution is in direction 
consistent with time by the Markovian system (Koller & Friedman, 2009, 199-246) 

 ( ) , … , ( ) =  ( ( )  | ( )). (3) 

This temporal element is valuable for sport practitioners when trying to simulate how athletes 
are coping to demands over time. For instance, if an athlete endures a very high external training 
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load, this will in turn affect how the athlete internally responds to external stimuli the subsequent 
day. This biological process, inherently driven by time, can be accounted for with DBNs.  

There are two disparate tactics when learning Bayesian network structures, constraint-based 
versus score-based (Koller & Friedman, 2009, 783-804). Constraint-based learning traditiona l ly 
approach network construction according to the conditional independencies found amongst the 
data, whereas score-based learning evaluate the goodness of fit of a candidate network with 
respect to the data (Koller & Friedman, 2009, 783-804). Score-based learning thus relies on 
heuristic search techniques to solve the optimization problem of formalizing a network to best 
fit the training dataset. Let D be a dataset and B be a Bayesian network, the score of a network 
is the sum of scores for the individual nodes:  

 (  | ) =  (  | ( ), ). (4) 

The scoring function explored in the present manuscript is called Minimum Description Length 
(MDL), which is coded to minimize the global entropy (uncertainty) of the resulting topology 
given the data (Lam, & Bacchus, 1994).  

Methodology 

Data and Variables 
De-identified injury data were retrieved from the University of Iowa Sports Injury Management 
Systems (FlanTech, Inc., Iowa City, IA, USA) HIPAA-compliant database. In order to 
homogenize classification scheme, each of the following criteria were to be adhered to before 
an injury instance was entered into dataset:, 1) soft-tissue, non-contact, 2) of lower extremity, 3) 
occurred within practice or competition, and 4) resulted in time loss. For an injury to properly 
fit the network criteria, the student-athlete must have been previously monitored from each of 
the mediums described below as a part of their routine health and well-being surveillance. A 
total of 28 injury occurrences from 23 female student-athletes (from 3 undisclosed teams during 
their 2016 seasons) fit the aforementioned criteria. Supplementary Document provides a brief 
glossary of all-encompassing parameters.  

External Training Load 
External training load has been defined as the amount of work performed by an athlete, 
independent of internal characteristics, that can be quantified externally (Halson, 2014). As a 
means to quantify gross human motion attained within a session, triaxial accelerometers were 
worn by student-athletes for every practice and competition. Monitors were secured in a 
compression garment located posteriorly at the upper thoracic region amid session, and data was 
subsequently processed post-session. Player Load™, recorded by Catapult Optimeye S5 
monitors (Catapult Sports, Melbourne, Australia), has been measured as a reliable and 
reproducible metric in the quantification of cumulative motion in both indoor and outdoor sports 
(Barrett, Midgley, & Lovell, 2014). Expressed in arbitrary units (a.u.), accumulative triaxia l 
(anteroposterior, mediolateral, and vertical) g-force alterations produced by the athlete, summate 
to create a resultant vector magnitude, thus representing the external training load endured within 
a session (Boyd, Ball, & Aughey, 2011). IMA™ (Inertial Movement Analysis) expressed at 
count data (ct), aggregates triaxial accelerometer and triaxial gyroscope data to form a non-
gravity vector to detect and quantify the frequency of sport specific micro-movements (Holme, 
2015). An IMA™ is detected by the application of polynomial smoothing curves between the 
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start and end point of identified accelerative events. The magnitudes of such events are 
subsequently calculated by summing the accelerations under the polynomial curves, measured 
in terms of delta-velocity (a unit of impulse; m/s-1) (Holme, 2015). In addition to total 
summation, IMA™ units were dissected into each respective plane to analyze the directiona l 
distribution of high-intensity movements (right-left, acceleration-deceleration, and vertical 
jumps). All aforementioned external training loads were summed per calendar day if the student-
athlete performed more than one session in a given day (e.g., morning practice prior to evening 
competition, etc). 
While monitoring absolute external training load is imperative for comprehending imposed 
stimuli, absolute measures fail to account for the rate of load application. To overcome this 
limitation, a well-accepted notion called ‘acute:chronic workload ratio’ was formulated to 
address relative external load changes over time (Soligard et al., 2016). Therefore, acute:chronic 
(A:C) workload ratios were calculated for Player Load™ to account for relative rates of external 
load application. Individual Player Load™ A:C workload ratios were computed using an 
exponentially weighted moving average (EWMA) strategy (Williams, West, Cross, & Stokes, 
2017). Let t denote current time step, L be individual’s absolute external training load, Na be 
acute decay constant (7 days) and Nc be chronic decay constant (28 days): 

  :  =    2( + 1) + 1   2( + 1) ×    2( + 1) + 1   2( + 1) ×   . (5) 

Internal Training Load 
Internal load has been described as the relative physiological and/or psychological stress 
imposed onto an athlete’s biological system, which can be obtained both objectively and 
subjectively (Halson, 2014). Objectively speaking, heart rate variability (HRV) is a common 
athlete monitoring tool to provide indication of global physiological readiness (Halson, 2014). 
Beat-to-beat variability of the heart is reflective of autonomic balance, which sport practitioners 
exploit in an effort to delineate an organism’s adaptive capabilities (Buchheit, 2014). 
Omegawave (Omegawave Oy, Espoo, Finland) technology allows comprehensive analysis of 
heart rate variability through a number of linear and nonlinear techniques. Additionally, direct 
current (DC) biopotentials, measured via vertex-thenar method, provide a global indication of 
central nervous system (CNS) readiness by estimating the level of active wakefulness (Ilyukhina, 
2011). To ensure reliable HRV measurements, student-athletes performed assessments 
antemeridian in a rested state while lying supine in a room with minimal light and distraction. 
On the other hand, subjective internal load is captured to represent both the perceived 
physiological stress and daily psychological stress experienced by the student-athle tes. 
Regarding physiological outputs, Rating of Perceived Exertion (RPE) is a common, valid 
method for assessing an athlete’s perceived internal load from a given training session (Foster, 
1998). Within 30 minutes post-session, student-athletes provide a self-reported score from 1-10 
(1 = very easy; 10 = very difficult) regarding the difficulty of the session to the sport medicine 
professional, who subsequently multiples the athlete’s RPE by the session duration in minutes. 
In addition to session RPE, individual RPE A:C workload ratios were calculated using Equation 
5.  
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Lastly, as a strategy for coaches to capture insight regarding life demands of student-athle tes, 
daily subjective wellness questionnaires are submitted by the athletes upon rising every morning. 
The employed questionnaire was a modified Hooper-Mackinnon survey due to its speed and 
practicality (Hooper, Mackinnon, Howard, Gordon, & Bachman, 1995). Student-athletes answer 
5 questions, each on a 1-5 scale (1 = very bad; 5 = very good): Sleep Quality, Sleep Duration, 
Fatigue, Stress, and Nutrition. All aforementioned internal training loads were recorded once per 
day regardless of the number of training sessions performed by the student-athlete. 

Network Construction and Evaluation 
BayesiaLab software (Bayesia S.A.S., Changé, France) version 7.0 was used for Bayesian 
network construction. Due to the hybrid of both discrete and continuous random variables 
entailed, all continuous variables were discretized into 3 bins to avoid the inherently infinite 
number of possible conditional probabilities. The number of bins was selected for two reasons: 
1) for an intuitive ‘low’, ‘medium’, ‘high’ ordinal interpretation, and 2) to minimize the overall 
quantity of conditional probabilities while still allowing the discovery of non-monotonic 
relationships. A supervised discretization procedure was executed via the R2-GenOpt algorithm, 
a proprietary BayesiaLab genetic algorithm which performs a metaheuristic search to maximize 
the R2 between the discretized variable and its corresponding continuous variable (Conrady & 
Jouffe, 2015). The target variable ‘Injury’ was structured to represent a discrete binary variable. 
The binary descriptor denotes whether a particular student-athlete suffered an injury, or not, on 
any given calendar day. The resultant discretized variables were then temporalized into 7 time 
steps (i.e., each node was unfolded into 7 preceding calendar days). The number of time steps 
was chosen to maintain practicality for practitioners to project acute adaptations within a given 
training week. 
With a fully unconnected network, ‘Injury’ was set as the target node to enable supervised 
learning. BayesiaLab’s proprietary Markov Blanket supervised learning algorithm was executed 
to discover a generative model to characterize which set of nodes directly affects the target node. 
Subsequently, the Tabu unsupervised metaheuristic search algorithm was applied to construct a 
network around the pre-established Markov Blanket while simultaneously minimizing the global 
MDL score function. Tabu search was chosen for its stability for score-based searches; once a 
locally optimum network is found, Tabu search performs additional iterations to ensure no other 
local optimum is found (Glover, 1986; Jouffe & Munteanu, 2001). 
Upon completion of search algorithm, conclusive network’s accuracy was assessed via 3 rounds 
of 5-fold cross validation. To verify validity, DBN model accuracy was compared with the 
performance of its static counterpart, which was also assessed with same cross validat ion 
procedures. Model classification accuracy was calculated from conventional confusion matrix 
tabulation of the sum of correct classifications divided by total classifications: (TP+TN) / 
(TP+TN+FP+FN). Additionally, mean lift index was calculated for each model to provide 
context of true positive prediction rates (Tufféry, 2011). DBN and static Bayesian network’s 
accuracy results were tested against naïve baseline algorithm (prior distribution = 96.53%) to 
provide context of improvement over baseline accuracy.  
In order to be judged statistically significant, t-statistic was calculated from respective accuracy 
measurements against naïve baseline accuracy threshold. With 14 degrees of freedom, alpha set 
to 0.05, tcrit = 1.76, which t-statistic would need to surpass in order to be judged significant.  
To express the functional relationship of the target’s Markov Blanket, prior and posterior 
probabilities were independently calculated from each random variable’s discretized state. 
Normalized continuous probability distributions were also calculated to supplement the Markov 
Blanket influence analysis. Mutual information, along with geodesic distance, was computed 
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between the target node and each random variable to analyze variable importance among the 
conclusive network’s independent nodes. Mutual information was normalized between 1 (most 
important) and 0 (least important) for ease of interpretation. To compare reasoning patterns, 
genetic optimization algorithms were performed to produce node instantiation scenarios for the 
illustration of temporal belief propagation in a positive and negative manner. To elicit the most 
ideal condition, optimization objective was set to discover node states to minimize the posterior 
belief of ‘Injury’, whereas worst-case scenario was set to discover node states to maximize the 
posterior belief of ‘Injury’.  

Results and Discussion 

The resultant network in Figure 1 illustrates the inductively discovered variables and their 
relative relation towards injury in a temporal orientation. Although each variable was 
temporalized into 7 time steps, the tabu search only resulted with time steps t-3 to t in termina l 
topology. The vast accuracy improvement compared to the static counterpart emphasizes the 
necessity of adding a temporal component when modeling adaptive behavior. DBN surely was 
able to learn, in part, an underlying mechanism towards injury manifestation considering 
statistically significant accuracy achievement, denoted in Table 2. Conversely, static Bayesian 
network was unable to reach naïve baseline accuracy. Although the present DBM may be seen 
as a pilot study, the predictive accuracy is promising for future work in formulating decision 
support systems for sport injury etiology. Fortunately, the respective relationships discovered 
possess physiologically relevance and will be addressed below. 

 
Figure 1. Conclusive network topology illustrating relative relation towards injury in temporal orientation. RPE 

= Rate of Perceived Exertion, PNS = Parasympathetic Activity, SNS = Sympathetic Activity, RMSSD 
= Root Mean Sum of Differences of Successive Intervals. 

To begin, Figure 2 depicts the functional relationship of the target’s Markov Blanket. Starting 
in the top left, the functional relationship of Omega Base t suggests a positive parabolic 
relationship towards injury. That is, when an athlete records lower v

heightened posterior distribution in Figure 2). However, when an athlete records between 12 – 
30mV the belief of injury is attenuated, suggesting this optimal range provides a protective 
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mechanism towards injury. To the author’s knowledge there is no study directed at the 
independent association between DC potential and injury, however, it may be theorized that the 
association between sleep duration and DC potential activity in the present model may partially 
explain central fatigue, which negatively impacts an individual’s motor control and 
biomechanics, such as speed or reaction time (Mah, 2011), and movement accuracy (Reyner, 
2013), and ACL risk (Zebis, 2010). Since direct current potential has been suggested for the 
study of cortico-subcortical organization of the cerebral systems (Ilyukhina, 2011; Ilyukhina, 
2013) underlying functional states may also substantiate why Sleep Duration t is a parent of 
Omega Base t in the present model. 

 
Figure 2. Markov Blanket functional relationships: horizontal dashed line represent prior belief of an injury  

occurrence without providing node evidence (3.47 %). Vertical bars represent posterior probability of 
injury when nodes are instantiated to the respective discretized state. Solid lines represent estimated 
effect from the normalized continuous distributions. The absence of a solid line, as for Sleep Duration 
t, indicates an innately discrete variable. 

SNS t and ‘Injury’ (top right Figure 2) also has limited evidence for its relationship. However, 
there has been previous speculation that increased sympathetic activity increases pro-
inflammatory cytokines, which may negatively impact tissue tolerance (Gisselman, 2016).  
Additionally, increased sympathetic activity has been associated with muscle fatigue or 
contractures (Vilamitjana, 2014), which may also justify the topological proximity of SNS t to 
‘Injury’.  
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Transitioning to bottom left of Figure 2, RPE A:C t-1 and ‘Injury’, also appears to follow prior 
literature, suggesting the rate of external load application is more pertinent to soft-tissue injury 
than absolute loads attained (Blanch & Gabbett, 2015; Drew & Finch, 2016). Emergent 
acute:chronic workload ratio and injury research has repeatedly revealed that high chronic 
external workloads may not necessarily be the culprit, rather how loads are accumulated over 
time is a more powerful predictor (Gabbett, 2016; Hulin, Gabbett, Lawson, Captui, & Sampson, 
2015). Regarding Dye (2001, 2005) tissue homeostasis model, large acute stimuli may stress the 
tissue beyond its adaptive ability, perhaps substantiating the sigmoidal relationship in the present 
model. 

Table 1. Normalized mutual information and geodesic distance between individual variable and target node. 

Monitoring Variable Normalized Mutual 
Information Geodesic Distance 

Stress t-2 * 1.00 1 
Omega Base t * 0.72 1 
SNS t * 0.59 1 
RPE AC Ratio t-1 * 0.50 1 

Stress t-3 0.23 2 

RMSSD t 0.23 2 

RPE AC Ratio t-2 0.20 2 

Sleep Duration t 0.18 2 

RPE AC Ratio t-3 0.15 3 

Overall Readiness t-1 0.14 2 

Recovery Pattern t-1 0.07 3 

Cardiac Readiness t-1 0.06 4 

RPE t-1 0.06 2 

RPE t-2 0.05 3 

RPE t-3 0.05 4 

Player Load t-1 0.04 3 

Player Load t-2 0.02 4 

Player Load t-3 0.00 5 

* Denotes Markov Blanket. 

Table 1 reports, in numerical order, the normalized mutual information between each variable 
and ‘Injury’. Mutual information represents the extent to which knowledge of the random 
variable reduces the uncertainty about the target, generating a quantitative measure of the 
strength of dependency between X and Y (Koller & Friedman, 2009, 783-848). Taking into 
account the inverse relationship between mutual information and corresponding geodesic 
distance can give an indication of the mechanism of topological construction; nodes with 
stronger dependence tend to be proximate to ‘Injury’. With this, it is imperative to note how 
influential Stress t-2 is compared to all other network variables, which is also apparent in Figure 
2. A theorized mechanism for why subjectively-reported psychological stress has such a potent 
effect towards injury belief in our network may be through the somatic adjustments that can 
occur when high levels of stress are perceived, such as increased distractibility or perhaps 
peripheral narrowing (Williams, Tonymon, & Anderson, 1991; Rodgers & Landers, 2005), 
along with increased muscular tension, fatigue, and reduced coordination (Laux, Krumm, Diers, 
& Flor, 2015). Previous literature suggests evidence of daily hassles experienced by athletes 
rapidly changes injury risk (Ivarsson & Johnson, 2010) and that chronic hassles may generate a 
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so-called ‘snowball effect’ by heightening their vulnerability to consider minor stressors as 
stressful events (Ivarsson, Johnson, & Poglog 2013). The three- and two-day latency period 
between reported stress and ‘Injury’ discovered by our network perhaps suggests practitioners 
may have time to intervene by modifying external training load prescription for athletes who 
appear unfocused or uneasy as a consequence of perceived stress. Timpka et al (2015) has also 
demonstrated the importance of integrating psychological with physiological parameters, and 
that indicators of maladaptive coping behaviors may allude to an athlete’s ability to accept and 
respond to prescribed loads, and thus, negatively affect risk of injury. 

Table 2. Resultant network performance indices (mean ± SD). t-statistic calculated from one-sample t-test against 
naïve baseline accuracy (tcrit = 1.76). 

Model Lift Index Accuracy t-statistic 

Dynamic Bayesian Network 4.37 ± 0.14 97.56 ± 2.01 1.98*

Static Bayesian Network 3.89 ± 0.26 83.87 ± 7.87 -6.23

* Denotes statistical significance.  

The arc between PlayerLoad t-3 and Recovery Status t-1 is imperative to mention as this 
relationship has been previously documented (Hautala, 2000) (Buchheit, 2009). Hautala et al. 
(2001) found that athletes undergoing prolonged maximal exercise bouts appear to suppress 
parasympathetic outflow for many hours, and suggested that amid recovery, there may be an 
occurrence of accentuated parasympathetic rebound on the second day. This phenomena may be 
explained by exercise induced plasma volume expansion (Buchheit, 2009). This may help 
elucidate why absolute external load is a parent to parasympathetic activity two days later in the 
present model.  
To introduce the simulatory environment of such methodology, Figure 3 provides prior 
discretized distributions of all parameters, indicating belief for each node state before evidence 
supplied. Prior beliefs were naively considered as the initial distributions found in dataset.  

 
Figure 3.Prior discretized distributions of all network variables. In chronological order from top left (t-3) to bottom 

right (t) toward injury manifestation. 
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Target optimization scenarios were then employed to demonstrate the evolution of ‘Injury’ belief 
in a negative (undesired) and positive (ideal) manner, respectively (Table 3). When optimiza t ion 
algorithm was set to maximize belief of ‘Injury’, resultant instantiation scenario increased prior 
‘Injury’ belief from 3.47% to a posterior belief of 50.00%, whereas minimization algorithm 
discovered a scenario that decreased to 0.04% posterior belief. 
The vast difference between the two instantiation scenarios is the aftermath of manipulating the 
conditional probabilities to maximize (or minimize) the joint probability distribution, which can 
also be theoretically interpreted from a physiological perspective.  

Table 3. Node instantiation scenarios from optimization algorithm. Posterior distribution of Injury is given for 
each simulation scenario. Table sorted in descending chronological order. 

Monitoring Variable Maximization Minimization 

Player Load t-3 857.20 619.68 

RPE t-3 907.84 663.51 

RPE AC t-3 1.14 1.09 

Stress t-3 3.00 5.00 

Player Load t-2 603.44 559.23 

RPE t-2 638.58 600.15 

RPE AC t-2 1.19 1.03 

Stress t-2 2.00 5.00 

Player Load t-1 631.94 307.80 

Recovery Pattern t-1 0.35 0.15 

RPE t-1 667.06 285.18 

RPE AC t-1 1.20 0.98 

PNS t-1 0.60 0.29 

Cardiac Readiness t-1 4.00 7.00 

Overall Readiness t-1 4.00 7.00 

RMSSD t 78.41 112.68 

SNS t 0.13 0.46 

Sleep Duration t 3.00 5.00 

Omega Base t 5.46 18.81 

Injury (%) 50.00 0.04 

Beginning with t-3 variables in the maximization state, if an athlete were to experience an 
increased external workload (Player Load), and subjectively experience a demanding session 
(RPE) in contrast to the minimization scenario, all while undergoing increased subjective stress 
prior to participation of activity, may lead to an unfavorable psycho-physiological cost. If such 
psycho-physiological state were to continue on subsequent days would cumulatively heighten 
the belief of injury occurrence. Whereas if workloads, both objectively and subjectively, were 
to be significantly different (t-3, t-1), with physiological indicators in more favorable states, may 
be suggestive that an athlete under these conditions may be coping favorably, which is reflected 
in such negligible injury belief in minimization scenario. While present scenarios were found 
mathematically, in practice, practitioners would be able to manually instantiate nodes to 
stochastically explore how different training interventions influence Injury belief before 
implementation. 
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Limitations 
It is recognized that increasing dimensionality may improve the accuracy of future models, as 
the current network is, albeit practical, still oversimplified. Incorporating more interna l 
parameters such has hydration, endocrine function, biomechanical characteristics, and genetic 
factors, or extrinsic parameters such as weather, playing surface or competition calendar 
schedule may augment accuracy in forthcoming models. 
Current sample size is also a limitation to consider. Lengthening the longitudinal analysis, or 
collaborating to create a multi-center approach, would be wise strategies to grow sample size in 
order to fully validate such approach. 

Conclusions 

The present study examined the utility of Dynamic Bayesian Networks to aid sport practitioners 
in athlete injury mitigation efforts. Resultant network presented predictive accuracy above naïve 
baseline threshold while also illustrating physiological relevance amongst network topology. 
Subjectively-reported stress two days prior, subjective acute:chronic internal perceived exertions 
one day prior, direct current potential and sympathetic tone the day of injurious event, were 
suggested as the most impactful monitoring metrics towards injury manifestation. It is therefore 
recommended for practitioners in the field to consider employing an inductive approach to better 
comprehend time-course adaptations of their athletes and perhaps improve the decision-mak ing 
process by reducing confirmation bias from human generated beliefs.  
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