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Abstract 

Human pose detection systems based on state-of-the-art DNNs are about to be 
extended, adapted and re-trained to fit the application domain of specific sports. 
Therefore, plenty of noisy pose data will soon be available from videos recorded 
at a regular and frequent basis. This work is among the first to develop mining 
algorithms that can mine the expected abundance of noisy and annotation-free 
pose data from video recordings in individual sports. Using swimming as an 
example of a sport with dominant cyclic motion, we show how to determine 
unsupervised time-continuous cycle speeds and temporally striking poses as well 
as measure unsupervised cycle stability over time. The average error in cycle 
length estimation across all strokes is 0.43 frames at 50 fps compared to manual 
annotations. Additionally, we use long jump as an example of a sport with a rigid 
phase-based motion to present a technique to automatically partition the 
temporally estimated pose sequences into their respective phases with a mAP of 
0.89. This enables the extraction of performance relevant, pose-based metrics 
currently used by national professional sports associations. Experimental results 
prove the effectiveness of our mining algorithms, which can also be applied to 
other cycle-based or phase-based types of sport. 

KEYWORDS: HUMAN POSE ANALYSIS, HUMAN POSE MINING, POSE MINING IN 
SPORTS 
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Introduction 

Since the arrival of deep neural networks (DNNs), state-of-the-art DNN-based human pose 
estimation systems have made huge progress in detection performance and precision on 
benchmark datasets (Wei, Ramakrishna, Kanade, & Sheikh, 2016; Andriluka, Pishchulin, 
Gehler, & Schiele, 2014; Chu et al., 2017; Yang, Li, Ouyang, Li, & Wang, 2017; Newell, 
Yang, & Deng, 2016). Recently, these research systems have been extended, adapted and re-
trained to fit the application domain of specific sports (Zecha, Eggert, & Lienhart, 2017; 
Einfalt, Zecha, & Lienhart, 2018). Soon they will disrupt current performance analyses in all 
kinds of sport as the amount of available pose data will explode due to automation. Until 
today, pose determination and analysis of top-class athletes is very time-consuming manual 
work. Hence, it is scarcely performed by the national professional sports associations even for 
top-class athletes and almost never for athletes below that level. The forthcoming availability 
of automatic pose detection systems will make plenty of noisy1 pose data available from videos 
recorded at a much more regular and frequent basis. Despite this imminent change in data 
quantity of noisy pose data in several orders of magnitude, very little research has been 
devoted to explore the opportunities of extracting informative and performance relevant 
information from these pose detection results through data mining.  

This work is focusing on this task and presents a set of unsupervised pose mining algorithms 
that extract or enable extraction of important information about athletes and how they compare 
to their peers. We will use world-class swimmers in swimming channels as an example of a 
sport with dominant cyclical motion and long jumping as an example of a sport with clear 
chronologically sequential phases. Our pose data is created by the image-based pose detection 
systems presented in Einfalt et al. (2018) and Wei et al. (2016). Detected sample poses are 
depicted in Figure 1. Note, however, that our algorithms are supposed to work with the output 
of any state-of-the-art image or video-based pose detection system.  
 

 

Figure 1:  Detected poses of a swimmer and a long jumper. 

Related Work 
Both works in Ren, Lei, and Zhang (2011) and Vögele, Krüger, and Klein (2014) cluster 3D 
motion capture data and determine algorithmically similar motion sequences for database 
retrieval, while Sedmidubsky, Valcik, and Zezula (2013) develop a similarity algorithm for 
comparing key-poses, which is used to index motion features in human motion databases. For 
the task of action recognition, Lv and Nevatia (2007) and Baysal, Kurt, and Duygulu (2010) 

                                                 
1 The term noise refers here to the residual error between the automatically determined poses and the correct but 
unobservable poses. As we have no means to determine the correct poses, we use temporally sparse manual 
annotations as our ground truth (GT) poses. 
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perform clustering on shape-based representations of 2d human poses and learn weights to 
favor distinctive key-poses. Both show that temporal context is superfluous if human poses 
with high discriminative power are used for action recognition. Data mining for action 
recognition based solely on joint location estimates is still scarce. Wang, Wang, and Yuille 
(2013) propose spatial-part-sets obtained from clustering parts of the human pose to obtain 
distinctive, co-occurring spatial configurations of body parts. They show that these sets 
improve the task of action recognition and additionally the initial pose estimates. 

In the field of sport footage analysis, the task of action recognition often translates to the 
identification of specific motion sequences within a sport activity. De Souza Vicente et al. 
(2016) use latent-dynamic conditional random fields on RGB-d skeleton estimates of 
Taekwondo fighters to identify specific kicks and punches in a fight sequence. Long jump 
video indexing has been researched by Wu, Ma, Zhan, and Zhong (2002), who perform motion 
estimation and segmentation of camera and athlete motion velocity to extract and classify 
semantic sequences of long jump athletes. Li, Tang, Wu, Zhang, and Lin  (2010) build a 
similar system for high diving athletes. They also derive human pose from shape and train a 
Hidden Markov Model to classify a partial motion of jumps. 

The extraction of kinematic parameters of athletes from video footage, specifically stroke rates 
of swimmers, was recently researched by Victor, He, Morgan, and Miniutti (2017), who 
perform stroke frequency detection on athletes in a generic swimming pool. Zecha et al. (2017) 
derive additional kinematic parameters from swimmers in a swimming channel by determining 
inner-cyclic interval lengths and frequencies through key-pose retrieval. Compared to other 
approaches that rely on the concept of identifying key-poses, their approach lets a human 
expert define what a discriminative key-pose should be. 

Contributions 
While our work is influenced by the related work above, it is new and unparalleled to existing 
works due to the (a) large-scale, (b) data-mining as well as (c) time-continuous aspect of the 
proposed mining algorithms. Previous work heavily relies either on very few, correctly 
annotated ground truth data to train models or recordings from motion capture systems. In 
detail, our contibutions are  

1. Some sports are dominated by cyclical motion, some by clear chronologically 
sequential phases. For cyclical sports, we present novel mining algorithms to 
determine unsupervised performance parameters such as time-continuous cycle speeds, 
temporally striking poses and cycle stability in swimming as a representative sports. 
Additionally, we use long jump as an example of a sport with a rigid phase-based 
motion to present a technique to automatically partition the temporally estimated pose 
sequences into their respective phases. This enables the extraction of performance 
relevant, pose-based metrics currently used by national professional sports 
associations.  

2. Manual pose annotations are typically confined to a few key poses during the relevant 
actions (i.e., annotations are temporally sparse), and so are the derived performance 
parameters. We, however, exploit that pose detection systems can process every frame. 
Our mining algorithm for extracting performance parameters produce a temporally 
dense output. They robustly estimate the performance parameters time-continuously 
for ∈ ℝ  which in turn can be sampled, e. g., at frame-rate. This has not been done 
before. 
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3. Our mining algorithms are the first to focus on the massive processing of noisy outputs 
of DNN-based pose detection systems for large-scale analysis. Robustness to errors in 
pose estimates is key and implicitly handled.  

Methods 

Measuring Pose Similarity 
In computer vision, the human pose at a given time is defined by a set of locations of important 
key points on a human, such as joint locations. The number of key points varies based on the 
application domain. In the analysis of top-level athletes, the pose is the basis of many 
performance indicators and may include points on the device(s) the athlete is using. Since the 
pose is so central to most sports-related performance indicators, we need to be able to reliably 
evaluate the similarity or distance between poses. This section develops our pose distance 
measure that is invariant to translation, scale and rotation in the image plane. It will be used by 
all our algorithms. 

Throughout the paper, we assume that all video recordings have been processed by some pose 
detection system. In our case, we use the system from Einfalt et al. (2018) for swimming and 
Wei et al. (2016) for long jump. We do not expect to have a pose for all frames. Through some 
parts of a video, the athlete might not be completely in the picture, if present at all. Or the 
detection conditions are so difficult that the detection system does not detect any pose. Our 
mining algorithms have to deal with that. However, we assume that the athletes perform the 
desired action for more than half of the duration of each video clip. Also, we discard all poses 
that are only partially detected to make mining simpler. 

Pose Definition 

Mathematically, a 2D pose p is a sequence of N two-dimensional points, where each 2D point 
by convention specifies the coordinates of the center of a joint location or of some other 
reference location on the human or object(s) under investigation:  

 = {( , )} ≡ ⋯⋯  (1)

Our human pose model consists of = 14 joints. Throughout the paper, a pose clip and pose 
sequence denote a temporal sequence :  of poses [ , , … , , ]. The term pose 
clip hints at a short temporal pose sequences (e.g. 0.5 to 2 seconds), while pose sequence often 
refers to much longer durations – up to the complete video duration (e.g., 30 seconds and 
longer). Video time and time intervals are usually expressed using sequential frame numbers as 
we assume recordings at a constant frame rate. 

Aligning Two Poses 

Before we can define our pose distance measure, we need to specify how we align a pose  to 
a given reference pose  by finding the scaling factor , rotation angle  and translation = ( , ), which applied to each joint of  results in  and minimizes the mean square error 
(MSE) between the transformed pose  and the reference pose  (Rowley, Baluja, & Kanade, 
1998):  

 MSE	( , ): = MSE	( , ) = 12 ‖ , − ‖  (2)

with  
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 = ( , , , )  (3)

and  

 : = = − 1 00 1− 1 00 1 =: ⋅  (4)

Note that the × 2 matrix  is reshaped to a 2 × 1 vector . The pseudo-inverse = ( ) ,  gives us in closed form the transformation of pose  that 
minimizes the mean squared error between the joints of reference pose  and transformed 
pose . Each joint ( , ) of  is mapped to  

 = cos	 − sinsin	 cos + = − 1  (5)

using the optimal transformation . The associated MSE value indicates how well a pose 
fits a reference pose. Thus, given a set of poses, their associated MSE values can be used to 
rank these poses according to their fitness to the reference pose. However, two peculiarities 
about MSE	( , ) need to be emphasized:  

1. It is not symmetric, i.e., generally MSE	( , ) ≠ MSE	( , ). The reason for this is that 
the pose is always scaled to the size of the reference pose. Thus, if their two scales are 
very different, so will be MSE	( , ) and MSE	( , ).  

2. Its magnitude depends on the scale of the reference pose. Doubling the reference pose’s 
scale will quadruple the MSE value. Thus, if a pose is compared against various reference 
poses, the scale of the references poses matters.  

Both peculiarities of the MSE	( , ) value suggest that we need to normalize the poses we are 
comparing to get universally comparable MSE values and thus a universally applicable 
distance measure between two poses.  

Pose Distance Measure 

In pose detection evaluation it is common to scale a reference pose by assigning a fixed size 
either to the length of the distance between two characteristic points of the pose or to the head. 
While using two reference points or a single rectangle may be fine in case of ground truth 
annotations, it is statistically not advisable for noisy detection results. We need a normalization 
that is based on more joints to reduce noise. Hence the scale  of pose  is defined as the 
average distance of all joints of a pose to its center of mass = ( , , , ) :  

 = 1 − ,,  (6)

with  

 ,, = 1
 (7)

Given an arbitrary reference scale , we define our symmetric translation, rotation and scale 
invariant distance measure between two poses as  
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 ( , ) = 2 MSE ( , ) + 2 MSE ( , ) (8)

It enables us to judge pose similarity between poses derived from videos recorded by different 
cameras, at different locations and distances to the athletes.  

Mining Pose Data of Swimmers 
Cyclical motions play a decisive and dominant role in numerous sports disciplines, e.g., in 
cycling, rowing, running, and swimming. In this section, we use swimming as an example to 
explore what kind of automated mining we can perform on the detected noisy poses. We use 
the pose data derived from world class swimmers recorded in a swimming channel. A single 
athlete jumps into the flowing water against the flow (from the right in Figure 1 left), swims to 
the middle in any manner (e.g., by an extended set of underwater kicks or by freestyle on the 
water surface) and then starts the cyclic stroke under test. The video recording can start any 
time between the dive and the action of interest (.i.e, swimming a specific stroke) and stops 
shortly after it has ended. During most of the recording time the athlete executes the cyclic 
motion under test. 

Time-Continuous Cycle Speeds 

For all types of sports with dominant cyclical motions, the change in cycle speed over time is a 
very indicative performance parameter. It can be derived through data mining without 
providing any knowledge to the system, but the automatically detected joint locations for each 
pose throughout a video sequence. Given a pose at time , the cycle speed at time  is defined 
as 1 over the time needed to arrive at this pose from the same pose one cycle before. In the 
case of a swimmer, the desired cycle speed information is strokes per minutes, which can be 
derived from the stroke length in frames given the video sampling rate in frames per seconds 
by  

 #  = #  ⋅ # ⋅ 60  (9)

The stroke length is measured by the number of frames passed from the same pose one cycle 
before to the current pose.  

In the following, we describe the individual steps of our statistically robust algorithm to extract 
time-continuous cycle speeds by first stating the characteristic property of cyclic motion we 
exploit, followed by an explanation how we exploit it. The adjective time-continuous denotes 
that we will estimate the cycle speed for 	t ∈ R  which in turn can be sampled at every frame 
of a video in which the cyclic motion is performed:  

1. Input: A sequence  of poses  for a video: = {( , )} .  

The ordered set consists of pairs describing a detected pose  and a frame number  in 
which it was detected. The subscript  of set {( , … )} indicates that the elements in the 
set are ordered and indexed by frame number . Note that we might not have a pose for 
every video frame.  

2. Property: Different phases of a cycle and their associated poses are run through 
regularly. As a consequence a pose  from a cycle should match periodically at cycle 
speed with poses in . These matching poses  to a given pose  identify themselves 
visually as minima in the graph plotting the frame number of poses  against its 
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normalized distance to given pose . Therefore, we compare every pose  in a video 
against every other pose  and keep for each pose  a list  of matches:  

 = , ,MSE ( , ) ∀ ∈  (10)

Poses match if their normalized MSE value is below a given threshold. For a target scale 
of = 100 we use a threshold of 49 (on avg. 7 pixels in each direction for each joint).  

3. Property: Not every pose is temporally striking.  

An athlete might stay for some time – even during a cycle – in a very similar pose, for 
instance, in streamline position after bringing the arms forward in breaststroke. However, 
at one point this specific pose will end in order to enter the next phase of the cycle. Thus, 
from step 2, we sometimes not only get correct matches, but also nearby close matches. 
We consolidate our raw matches in  by first temporally clustering poses . A new 
cluster is started if a gap of more than a few frames lies between two chronologically 
consecutive poses in . Each temporal cluster is then consolidated to the pose  with 
minimal normalized MSE to the pose . The cluster is also attributed with its temporal 
spread, i.e., the maximal temporal distance of a pose in the cluster from the frame with 
the consolidated pose , leading us to the reoccurrence sequences  with  

 = , , ∀ ∈  (11)

and for the complete video to = , , .  

4. Property: Temporally non-striking poses are unsuitable to identify cyclic motion. 
Therefore, all clusters with a temporal spread larger than a given threshold are deleted. 

In our experiments we set this value to 10 frames at 50 frames per seconds, resulting in  

 = , , | < 10 ∀ ∈ . (12)

5. Property: Most of the time the video shows the athlete executing the cyclical motion 
under test. Consequently, poses from the cyclic motion should most often be found.   

Hence, we create a histogram over the lengths of the reoccurrences sequences (| |) for 
the various poses . We decided to keep only those reoccurrence sequences  which 
belong to the 50% longest ones: 

 = , , | ≥ median∈ ′  (13)

6. Property: The observed difference of the frame numbers in each reoccurrence sequence 
in  between two chronologically consecutive matches should most frequently 
reflect the actual stroke length.  

Figure 2 shows two sample plots. On the x-axis, we have the minuend of the difference 
and the difference value on the y-axis. The blue and yellow dots display all observed 
difference values from . From them we derive our final robust estimate by local 
median filtering in two steps: (1) We take each frame number  with at least one 
difference value and determine the median of the observed stroke lengths (= difference 
values) in a window of ±2 seconds (approx. 2 to 4 stroke cycles). We remove all 
difference values at frame number , which deviate more than 10% from the median. 
E.g., @50 fps a median stroke length of 60 frames results in keeping only difference 
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values in [54,66]. The deleted difference values are shown in yellow in Figure 2, while 
the remaining ones are shown in blue. (2) We piecewise approximate the remaining data 
points with a polynomial of degree 5 over roughly 3 cycles while simultaneously 
enforcing a smoothness condition at the piecewise boundaries.   

  

  

Figure 2:  Two examples showing the frame differences between chronologically consecutive matches of all 
reoccurrence sequences in  on the -axis against the frame numbers of the minuends of the 
differences on the -axis. The redline visualizes the time-continuous estimate of stroke cycle lengths, 
while black lines indicate the associate ±10% corridor. 

This approximation gives us our time-continuous estimates of the stroke cycle length over the 
interval in the video throughout which the stroke was performed. As a side effect it also 
automatically identifies the temporal range in the video during which the stroke was performed 
by the frame number ranges for which we have cycle speeds. The same technique is applicable 
to determine the kicks per minutes for freestyle and backstroke by restricting the pose to joints 
from the hip downwards.  

Temporally Striking Poses 

During a cyclical motion some poses are more striking than others with respect to a given 
criterion. One such highly relevant criterion is how well a repeating pose can be localized 
temporally, i.e., how unique and salient it is with respect to its temporally nearby poses. The 
temporally most striking poses can be used, e.g., to align multiple cycles of the same swimmer 
for visual comparison.  

Commonly, local salience is measured by comparing the local reference to its surrounding. In 
our case the local reference is a pose  at frame  or a short sequence of poses △ , … , , … , △  centered around that pose, and we compare the sequence to the 
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temporally nearby poses. Thus, we can compute saliency by:  

 ( ) = △ , △ △(2 + 1)(2 + 1)△△  (14)

Experimentally, the saliency measure was insensitive with respect to the choices of  and . 
Both were arbitrarily set to 4.  

The salience values for each pose during the cyclic motion of a video can be exploited to 
extract the  most salient poses of a cycle. Hereto, we take the top  most salient poses 
( ≫ ) and cluster them with affinity propagation (AP) (Frey & Dueck, 2007). Salient poses 
due to pose errors will be in small clusters, while our most representative poses are the 
representative poses of the  largest clusters.  

For determining the most salient pose of an athlete’s stroke, it is sufficient to pick the top 20 
most salient poses, cluster them with AP and retrieve the cluster representative with the most 
poses assigned. Figure 3 shows one example for each stroke. Note that the most salient pose is 
another mean to determine the cycle speed reliably cycle by cycle as this pose is most reliably 
localized in time. However, we only get one cycle speed value per cycle.  
 

  

Figure 3:  Examples of temporally striking poses; top left to bottom right: fly, breast, back and free. 

Cycle Stability 

A common and decisive feature among winning top athletes is their trait to show off a very 
stable stroke pattern over time, under increasing fatigue and at different pace. One way to 
measure stroke cycle stability is to select a reference pose clip of one complete cycle and 
match this reference pose clip repeatedly over the complete pose sequence of the same video. 
Alternatively, the reference pose clip is matched repeatedly over a set of pose sequences 
derived from a set of videos recordings of some performance test such as the 5×200m step test 
after Pansold (Pyne, Lee, & Swanwick, 2001; Pansold, Zinner, & Gabriel, 1985). Given all 
these clip matches and their associated matching scores, an average score of matching can be 
computed and taken as an indicator of stroke cycle stability: The better the average matching 
score, the more stable the stroke of the athlete. Alternatively, the matching score may be 
plotted versus time in order to analyze, how much the stroke changes from the desired one over 
(race) time. A reference pose cycle may automatically be chosen by selecting a clip between 
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two contiguous occurrences of a temporally striking pose or by specifying a desired/ideal 
stroke cycle. 

Levenshtein distance: With regards to that goal, we first turn our attention to the task of how 
to match a pose clip to a longer pose sequence and compute matching scores. We phrase the 
task to solve in terms of the well-studied problem of approximate substring matching: The task 
of finding all matches of a substring  in a longer document , while allowing up to some 
specified level of discrepancies. In our application, a pose represents a character and a 
clip/sequence of poses our substring/document. The difference between ‘characters’ is 
measured by a [0,1]-bounded distance function derived from the normalized MSE between 
two poses:  

_ ( , ) = 0 if ( , ) ≤ ℎ( , ) − ℎℎ − ℎ if ( , ) ≥ ℎ1 else  (15)

 

The cost of transforming one pose into another is 0 for poses which are considered the same 
( ( , ) ≤ ℎ ) and 1 for poses which are considered different ( ( , ) ≥ℎ ). Between these two extremes, the transformation cost is linearly scaled based on the 

 value.  

Any algorithm to compute the Levenshtein distance (Levenshtein, 1966; Meyers, 1994) and its 
generalization called edit distance is suitable to perform matching and compute a matching 
score between a search pattern  and a longer document  at every possible end point 
location of a match within . It results in a matrix  of matching costs of size ( ) ×( ), where [ , ] is the cost of matching the first  characters of  up to end point  in 

.  

We use our custom distance function not only for transformations, but also for insertions and 
deletions. We deliberately made this chose as it better fits the characteristic of swimming: The 
absolute duration of a stroke cycle, i.e. the number of poses in a sequence, depends on the pace 
of the swimmer. However, the better the athlete, the more consistent he/she executes the 
succession of poses across different paces. We therefore do not want to see an additional cost 
if, e.g., a swimmer stays longer/shorter in a perfect streamline position or if he/she goes 
slower/ faster through the recovery phase of a stroke cycle than the reference clip. Pace is 
already captured by the cycle speed. Here we only want to focus on the stability of the stroke 
pattern, no matter how fast the stroke is executed. Note that swimmers with less than perfect 
swimming technique typically modify their poses when changing pace.  

Match extraction: The matching distances [ ( ), ] of the complete search pattern  
computed by the edit distance at end point  in  are normalized by the virtual matching 
length, i.e., by the number of transformations, deletions and insertions needed for that match. 
We call this ( )-dimensional vector of normalized matching scores over all possible end 
points in  ( , ). All clear minima in it identify the end points of all 
matches of the pose clip to the sequence together with the associated matching distances. Since 
our pose clips are highly specific in matching, our minima search does not require any non-
maximum suppression. The matching sequence is derived by backtracking from this end point 
to the beginning of the match by using [ , ]. Figure 4 shows one example of matched poses 
of two different stroke cycles.  
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Figure 4:  Alignment example of the same swimmer at different stroke cycles. Joints of the reference/matching 

pose are in shown in red/ green. 

Athlete Recognition: While we were matching a given pose clip to all videos in our video 
database, we accidentally discovered that  is also a perfect tool to automatically 
recognize a specific athlete. Usually, when matching a pose clip to the pose sequence of a 
different male or female swimmer,  is 4 to 8 times higher in comparison to the 
score computed against the video the pose clip was taken from. However, in this case the 
matching score was as low as a match against the same video despite being recorded at a 
different time in a different swimming channel. Thus,  can be used to identify a 
swimmer. 

Figure 5 summarizes the overall processing chain of our mining algorithms for cyclic motions. 

 
Figure 5:  Block diagram that summarizes the proposed processing chain. It shows the different processing 

components along with their corresponding input and output data. 

Mining Long Jump Pose Data 
As a second example for pose data mining, we look at data of long jump athletes recorded at 
athletics championships and training events. Long jumping is different from swimming in 
many respects: Firstly, long jump features only semi-cyclic movement patterns. While the run-
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up is composed of repetitive running motion, the final jump itself is strikingly different and 
only performed once per trial. Secondly, the action is performed over a complete running track 
and recorded by a movable camera from varying angles. Thirdly, spectators and other objects 
in the background along the track are likely to cause regular false detections of body joints. 
Our data consists of 65 videos recorded at 200Hz, where each video shows one athlete during a 
long jump trial from the side. The camera is mounted on a tripod and panned from left to right 
to track the athlete. The videos cover various athletes and six different long jump tracks. 
Figure 6 shows exemplary video frames from one trial. The long jump pose database consists 
of 45,436 frames with full-body pose estimates. 

Automatic Temporal Classification of Long Jump Pose Sequences 

Video based performance analysis for long jump athletes involves various time dependent 
measures like the number of steps until the final jump, the relative joint angles during the run-
up, the vertical velocity during the final jump, and the flight phase duration. To obtain such 
measures automatically, pose information alone does not suffice. Instead it requires to pick the 
poses from the right phase of a long jump. Therefore, we present here how to mine the pose 
data to temporally identify the different phases of a long jump such that the phase specific 
performance measures can be computed from the detected poses. We partition a long jump 
action during one trial into a periodic and an aperiodic part. The periodic run-up consists of 
repeated jumps (the rear leg pushes the body upwards), airtimes (no contact with the ground) 
and landings (from first contact with the ground till the jump phase). The aperiodic part 
consists of the flight phase and the final landing in the sandpit. We annotated the long jump 
videos with respect to these five phases. Given a long jump video of length  and the extracted 
pose sequence : , our mining task is to predict the phase class ∈ = {jump, airtime,… , inal landing} the athlete is in at each time step ∈ [1, ]. 
Figure 6 depicts exemplary frames for each phase. 
 

 
Figure 6:  Qualitative comparison of predicted and ground truth long jump phases in one test video. Exemplary 

video frames and their estimated poses are depicted for each phase. 

Pose Clustering: Similar to the cyclic strokes in swimming, we expect poses in identical long 
jump phases to be similar to each other. We expect this to be true even across videos of 
different athletes and slightly varying camera viewpoints. This leads to assumption 1: Similar 
poses often belong to the same phase (Asm. 1). Instead of learning a direct mapping from 
poses to the possible long jump phases , we first partition the space of poses into a fixed 
number of subspaces. Henceforth, each pose is described by the discrete index of its subspace. 
As long as the subspace partition preserves similarity, we expect that the distribution of phases 
in one pose subspace is informative, i.e. non-uniform with respect to phase class . Let  be 
the set of poses in our database. We perform unsupervised -Medoids clustering on  with our 
normalized pose similarity measure from Equation (8) to create our subspace partition. The 
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clustering defines a function ℎ( ) → [1, ] that maps a pose  to the index of its nearest cluster 
centroid. With Asm. 1 we define the probability ( |ℎ( )) as the fraction of poses in cluster ℎ( ) labeled with phase :  

 ( |ℎ( )) = |{ ∈ |ℎ( ) = ℎ( ) ∧ = }||{ ∈ |ℎ( ) = ℎ( )}|  (16)

 

Markov Representation of Long Jump Sequence: With Equation (16) we could already 
predict the phase for each pose in a video individually. However, noisy predictions and phase-
unspecific poses may render Asm. 1 in a fraction of the poses as incorrect. We have to 
incorporate the complete pose sequence to obtain correct phase predictions even for frames 
with wrongly estimated or ambiguous poses. With the rigid long jump movement pattern and 
the chosen phase definitions, we can make two more assumptions: An athlete stays in a phase 
for some time before entering a different phase. Subsequent poses are likely to belong to the 
same phase (Asm. 2). Also, the possible transitions between long jump phases are limited by a 
fixed sequential pattern (Asm. 3).  

We can model these assumptions by stating the temporal succession of long jump phases as the 
state transition graph in Figure 6. Each state corresponds to one possible phase. Asm. 2 and 3 
are reflected by self-loops and a small number of outgoing edges at each state, respectively. At 
each time step  the athlete is in a phase which we cannot directly observe. However, the 
estimated and thus noisy pose at time  is observable . Combining the graph with emission 
probabilities (ℎ( )| ) and transition probabilities ( | ) we obtain a classical Hidden 
Markov Model. The emission probabilities (ℎ( )| ) can be computed as  

 (ℎ( )| ) = ⋅ ( |ℎ( )) ⋅ (ℎ( )), (17)

where  is a normalization constant. The transition probabilities are obtained similarly by 
counting the number of observed transitions in the dataset.  

 

  
Figure 7:  State transition graph modeling the possible transitions between the five long-jump phases. Edges 

with a black circle are possible entries into the graph. 

Given a new long jump video and the corresponding pose sequence :  we first transform the 
sequence to the clustering-based discrete pose description ℎ( : ). We then use the Viterbi 
algorithm (Rabiner, 1989) for the most likely phase sequence :∗  with  

 :∗ = arg max: ( : |ℎ( ) : ). (18)
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Results 

Mining Pose Data of Swimmers 
We tested our mining algorithms on a video database of 233 videos (see Table 1, 770237 video 
frames in total), showing over 130 different athletes swimming in two structurally different 
swimming channels. Videos were recorded either at 720×576@50i or at 1280×720@50p. The 
videos cover different swimmers in age, gender, physique, body size and posture, swimming in 
a swimming channel at different velocities between 1  and 1.75  and very different 
stroke rates. All mining was performed before any ground truth annotations were created. 

Time-Continuous Cycle Speeds 

The precision of the time-continuous cycle speed estimates expressed by the number of frames 
per cycle was evaluted by randomly picking one frame2 from each video and annotating it 
manually with the actual stroke length. In 2 of our 233 video sequences, the mining system did 
not determine a cycle speed at the frame of the ground truth. For another 6 sequences the error 
in frames was larger than 2, while for the remaining 225 video sequences the average deviation 
in frames from the ground truth was 0.43 frames at 50 fps and 0.53, 0.32, 0.39 and 0.39 frames 
for breast, fly, back, and freestyle (see Table 1). This exceptional quantitative performance can 
intuitively be grasped by a human observer from the stroke length graphs in Figure 2. In these 
graphs it is also visually striking if something has gone wrong, which was the case for 6 
videos. Figure 8 depicts one of the few videos where the stroke length was incorrectly 
estimated twice as high as it actually was due to difficulties in detecting the joints reliably. 

Identify Cyclic Motion 

We annotated all 233 videos roughly with the start and end time of the stroke. This sounds like 
an unambiguous task, but it was not: When the swimmer was starting the stroke out of the 
break-out from the dive, the starting point is temporally fluent over some range. We decided to 
be more inclusive and marked the point early. However, it was extremely difficult to specify 
when the athlete stopped the stroke. Many athletes were drifting partially out of the image 
when getting tired due to fast water velocities while still swimming. This violates the 
assumption of our pose detection system that the simmer has to be completely visible. We 
decided to mark the end of the stroke range when a swimmer was knees downwards out of the 
picture. This choice, however, did not fit breast stroke well: During a cycle the swimmer pulls 
the heels towards the buttock, bringing the feet back into the image, providing the system 
suddenly with a complete pose. We can see this effect in Table 1, there our algorithm over-
detects up to 6% of the breast stroke range according to our early cut-off ground truth. This 
over-detection is primarily an artifact of how we determined the ground truth range of the 
stroke, but no real error. Our mining algorithm detected overall 89.5% of all ground truth 
stroke ranges, while only detecting 3.1% additionally outside. This performance is more than 
sufficient in practice.  

Moreover, the length of the detected cyclic motion range(s) per video was an excellent 
indicator to identify unstable and/or erroneous pose detection results. A cyclic motion range of 
less than 10 seconds indicated that our automatic pose detection system had difficulties to 
detect the human joints due to strong reflections, water splashes, spray and/or air bubbles in 
the water. For these sequences determining the stroke cycle stability based on the identified 
temporally striking poses of the athlete does not make sense. Hence, in the subsequent 

                                                 
2 For interlaced videos, the term frame always refers to half-frames 



IJCSS – Volume 17/2018/Issue 2              www.iacss.org 

108 

experiments, only cyclic motion sequences of 10 seconds or longer were used. This reduced 
the number of videos from 233 down to 213.  

Table 1:  Swimming test video database with mining results. Video length reports the minimum, median and 
maximum duration of the video clips in seconds. Stroke length reports the distribution of the 233 
manually annotated stroke lengths, one annotation per video. The annotated frames were randomly 
picked within a video in order to introduce no bias. CMRs stands for Cyclic Motion Ranges and 
denotes those time periods of the video clips that shows the cyclic motion. 

Stroke  Fly Back Breast Free 

# videos  80 28 79 46 

 min 18.3 15.8 19.3 17.2 

video length [s] median 35.0 31.2 35.5 33.9 

 max 72.7 49.7 85.7 83.8 

  min 51 58 48 52 

stroke length [# frames] median 67 69 69 67 

 max 101 85 119 108 

  avg 0.53 0.32 0.39 0.39 

stroke length error [# frames] # >2 frames 6 0 1 0 

 # not det. 0 1 0 1 

 % of detected cyclic motion ranges (CMRs) 96.0%84.5% 91.1% 82.8% 

 % of erroneously detected CMRs in non-CMRs 1.8% 3.2% 6.0% 0.3% 

 

 
Figure 8:  One of the 6 videos where the stroke length was incorrectly estimated twice as high as it actually was. 

The correct stroke length is below 100 frames. 

Temporally Striking Poses 

Poses which are temporally salient and unambiguously easy to determine by humans typically 
focus on one or two characteristic angles. An example is when the upper arm is vertical in 
freestyle (in the water) or backstroke (outside the water). Everything else of the pose is 
ignored. This is not how our temporally striking pose is defined: a pose which is easy to 
localize temporally by our system. Due to this mismatch between what the human is good at 
and our system, we only evaluate the temporally striking poses indirectly via their use to 
capture cycle stability.  
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Cycle stability 

For each of the 213 videos we computed the stroke stability indicator value based on a single 
reference stroke clip. The reference stroke clip was selected by using the ground truth frame 
from the time-continuous cycle speed evaluation as the end point and by subtracting our 
estimated stroke length from that to compute the start frame. For each stroke we sorted the 
videos based on its stroke cycle stability indicator value and picked randomly one video from 
the top 20%, one from the middle 20% and one from the bottom 20%. We then asked a swim 
coach to sort these three videos based on his assessed stroke cycle stability. We compared the 
result to the automatically computed ordering:  

Breast: There was an agreement in the ordering of the videos ranked 1st and 2nd. The athlete 
of the first video showed off an exceptionally stable stroke pattern. However, the video ranked 
3rd was judged by the coach as being equivalent to the one ranked 2nd. The 3rd video is one of 
the instances there the swimmer is getting tired, drifting regularly with his lower legs out of the 
picture during the stretching phase in breast stroke. This explains the discrepancy between the 
judgement of the coach and our system.  

Fly: The coach and the system agreed on the ordering. We also notice that our system was 
picking up those athlete, who were breathing every other stroke and exhibit a strong difference 
between the cycle with and without the breath. With respect to a two-cycle pattern their stroke 
was stable. Typically, coaches emphasize that there should be as little difference as possible 
between a breathing cycle and a non-breathing cycle.  

Back: The coach and the system agreed on the ordering.  

Free: The coach was ranking the second video as having a slightly better stroke stability than 
the first video. They agreed on the video ranked 3rd as the athlete was showing an unsteady 
and irregular flutter flick. The discrepancy between the first two videos can be explained by 
peculiarities of the video ranked 2nd: the water flow speed was higher than normal, leading to 
a slightly higher error frequency in the automatically detected poses.  

Very similar results were obtained with the temporally striking poses as end points of the 
reference stroke clip.  

Mining Long Jump Pose Data 
Although we formulated our problem as a per-frame classification task, the predictions should 
reflect the sequential phase transitions as well as the length of each annotated phase. Therefore, 
we evaluate our phase detection mining by the standard protocol of average precision (AP) and 
mean average precision (mAP) for temporal event detection in videos (Gorban et al., 2015; 
Heilbron, Escorcia, Ghanem, & Niebles, 2015). For each video we combine sequential 
timestamps belonging to the same long jump phase  into one event = ( , , , , ) with ,  

and ,  being the start and stop time of the event. Let = { }  be the set of sequential 

events in one video. In the same manner we split the predicted phase sequence :∗  into 
disjoint predicted events ∗. Two events match temporally if their intersection over union 
(IoU) surpasses a fixed threshold . A predicted event ∗ is correct if there exists a matching 
ground truth event ∈  in the same video with  

 ( == ∗) ∧ ( , , , ∩ ,∗ , ,∗, , , ∪ ,∗ , ,∗ > ). (19)

For the evaluation protocol we now use AP to measure the precision in detecting events of one 
specific phase (i.e. discriminating one specific phase from all the other phases) and mAP as the 
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average AP over all defined phases. We optimize clustering parameters on a held-out 
validation set of six videos and use the remaining 60 videos to evaluate our approach using 
six-fold cross evaluation. We found the results to be rather insensitive w.r.t. the choice of 
clustering parameters, however. Table 2 depicts the results at a fixed = 0.5 IoU threshold. 
We achieve a mAP of 0.89 for long jump phase detection. Due to their length and the unique 
poses observed during the flight and landing in the sandpit, these two phases are recognized 
very reliably with 0.94 and 0.97 AP, respectively. The phases of the periodic part show more 
uncertainty since each phase is considerably shorter and poses of the jump-airtime-landing 
cycle are more similar to each other. Figure 1 depicts qualitative results on one test video. Our 
method is able to reliably divide the cyclic run-up and the final flight phase and landing. Few 
predictions for the periodic phases are slightly misaligned, but the overall cyclic pattern is 
preserved. The phase predictions can directly be used to derive further kinematic parameters 
like the duration of the run-up and the number of steps. The results in Table 2 show that the 
run-up duration can be derived very accurately with an average deviation of 60ms. The correct 
number of steps is recovered in the majority of videos.  

Table 2:  Results of long jump phase detection (AP) with IoU threshold = 0.5 (upper part) and the derived 
length and step count during the long jump run-up (lower part). The detection quality of the individual 
phases is measured by average precision(AP) and averaged for the computation of the mean average 
prevision (mAP). 

Jump  0.84   Flight Phase   0.94 

Airtime  0.91   Final Landing   0.97 

Landing  0.80    

mAP     0.89 

# videos with given abs. error in step count  | | = 0   53  | | = 1   7   | | > 1   0   

Average abs. error in derived run-up length [s]   0.06 

Discussions and Conclusion 

Noisy pose data of individual sport recordings will soon be available in abundance due to 
DNN-based pose detections systems. This work has presented unsupervised mining algorithms 
that can extract time-continuous cycle speeds, cycle stability scores and temporal cyclic motion 
durations from pose sequences of sports dominated by cyclic motion patterns such as 
swimming. We also showed how to match pose clips across videos and identify temporally 
striking poses. As it has become apparent from the experimental analysis, results from our 
mining algorithms can be further improved if automatic pose detection systems focus on 
dealing with athletes that are not fully visible in the video.  

We additionally apply our concept of pose similarity to pose estimates in long jump 
recordings. We model the rigid sequential progression of movement phases as a Markov 
sequence and combine it with an unsupervised clustering-based pose discretization to 
automatically divide each video into its characteristic parts. We are even able to identify short 
intra-cyclic phases reliably. The derived kinematic parameters show a direct application of this 
approach.  
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