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Abstract 
The players' positions of tactical groups in soccer can be mapped to formation-
patterns by means of artificial neural networks (Kohonen, 1995). This way, the 
hundreds of positional situations of one half of a match can be reduced to about 
20 to 30 types of formations (Grunz, Perl & Memmert, 2012; Perl, 2015), the 
coincidences of which can be used for describing and simulating tactical 
processes of the teams (Memmert, Lemmink & Sampaio, 2017):  

Developing and changing formations in the interaction with the opponent 
activities can be understood as a tactical game in the success context of ball 
control, space control and finally generating dangerous situations. As such it can 
be simulated using mathematical approaches like Monte Carlo-simulation and 
game theory in order to generate optimal strategic patterns. However, in 
accordance with results from game theory it turns out that in most cases the one 
optimal strategy does not exist (e.g. see Durlauf & Blume, 2010). Instead, a 
variety of partial strategies with different frequencies were necessary – an 
approach that is mathematically interesting but has nothing to do with soccer 
reality. An alternative approach, which is developed in the following, is to 
interrupt the strictness of a single strategic concept by creative elements, which 
improves flexible response to opponent activities as well as prevents from being 
analyzed by the opponent team.  

The results of respective simulation reach from improving strategic behaviour to 
recognizing strategic patterns and in particular to analyzing role and meaning of 
creative elements. 

KEYWORDS: FORMATION, SUCCESS, STRATEGY, CREATIVITY, ARTIFICIAL 
NEURAL NETWORK 
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Introduction 

The aim of the presented approach is to model tactical activities in soccer in order to find 
optimal strategic concepts by means of simulation (also see Perl & Memmert, 2017). The used 
dynamic model is of type "state – transition", which means that the dynamic playing process is 
divided into discrete tactical states (here: one per second), where the changes between them are 
used as transitions. 

Because of the fact that the dynamics of activities in soccer is extremely complex, the term 
state has to be defined on a rather high level of abstraction. One way to do this, and which has 
been successful in other studies, is to replace the original positions of the players of a tactical 
group by a location-independent pattern – what we call a formation type (see fig. 1) (Perl & 
Memmert, 2018). 
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clusters of patterns
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formation
types
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Fig. 1: The original positions of the offence group of team B (blue) and of the defence group of team A (yellow) 

are transferred to a trained network and identified to represent formation B 5 and A 21, respectively. 

Those transitions build the basis for analyzing the dynamics of the tactical behaviour. They 
enable for simulating and optimizing processes by means of game theoretic approaches, which 
finally leads to the question of strictly vs. creatively following simulated strategic patterns.  

Doing it this way, the complex interaction of players can be reduced to a comparably simple 
interaction of formation types: 

A state can be defined as a pair of formation types of team A and team B at time t,  

(AF[t] , BF[t]). 

A transition is the change of A- and B-formation types (independently of each other) to the 
state at time t+1 (also see fig. 2), 

(AF[t] , BF[t]) → (AF[t+1] , BF[t+1]). 
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Methods of modelling and simulation 

Note: In the following the term formation type is abbreviated to formation. 

Modelling: State-transition-approach 
Modelling is based on the formations of the offensive and defensive tactical groups of teams A 
and B depending on time t, oriented in the values of success indicators like for instance ball 
control or space control (see Perl & Memmert, 2017):  

Assume that at time t the state is given by the formation pair (AF[t] , BF[t]). Each time step  t 
→ t+1 defines a transition where both teams independently of each other change their 
formations to AF[t+1] and BF[t+1]. Those changes can be arbitrarily or oriented in kinds of 
success-optimization like e.g. improvement of ball control or space control. An example is 
given in fig. 2. 
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Fig. 2: The upper half shows the state (AF7 , BF3) of attacking team B and defending team A at time t. The 

transition to the subsequent state in the lower half consists in positioning B10 to a decentred position, 
while team A with A5 is opening to a more aggressive formation. Both changes could have been done 
in order to increase space control. 

In the following, modelling, simulation, and analyses are done using specific components of 
the SOCCER software (© J. Perl, 2018) (Perl & Memmert, 2011).  

Simulation: Monte-Carlo-method 
Simulation of the time-depending state-transition-process can be done by means of the Monte-
Carlo-method, where the original data provide frequency distributions that can be taken for 
generating simulated data. An example is given in fig. 3, where the left matrix shows the 
frequencies of states = pairs of formations (restricted to the first 10 formations, respectively), 
and the right tables in the first row show the distribution of subsequent formations of team A in 
case of the highlighted state (AF1,BF1): In most of the cases the subsequent formation is again 
AF1. But there are alternative changes to the formations AF2, AF3, AF4, AF6 (and 1 more 
AFn with n>10). Taking this distribution for MC-simulation would reproduce the original 
behaviour. Focussing the distribution on successful activities like ball contact, ball possession, 
or passes (rows 2, 3, and 4) could increase the success regarding these indicators. However, 
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doing it this way the variety is reduced considerably, which would simplify the simulated 
behaviour of A a lot and therefore makes that behaviour much more predictable. Calculating 
and comparing such simulations can help to find optimal strategies and prevent strategic dead 
ends like the orientation in passes with its stereotype repetition of AF1 (see fig. 3, right 
matrices, last rows). 

 
Fig. 3: The left matrix shows the coincidences of defence formations of team A (left) and offence formations of 

team B (on top). The red mark highlights the state (AF1,BF1), which occurred 30 times. The right 
matrices in the first rows show the distributions of the transitions of the teams, where in case of team 
A 23 times the situation stayed stable in formation 1. (The reason that the numbers of continuing 
formations do not sum up to 30 is that the table is restricted to the first 10 formations.) The rows 
below show the numbers of successful activities in the contexts of those formations. 

Technically, MC-simulation can be done as follows:  

A random generator generates numbers x equally distributed over an interval I=[0,1), i.e. 
0≤x<1. To map a given distribution like the ball-contact (10, 1, 1, 0,..., 0) of team A from fig. 3 
to the interval I, the numbers have to be transformed to corresponding interval-lengths: 
I1=[0,0.84), I2=[0.84,0.92), I3=[0.92,1.0), I4=[1.0,1.0),..., I10=[1.0,1.0). Doing it this way, the 
probability of randomly generating a "1" is 84% and that of generating a "2" or a "3" is 8%, 
respectively, corresponding to the respective interval-lengths; all other probabilities are 0%.  

Before continuing with MC-simulation, a very simple but common strategic behaviour and 
method of simulation shall briefly be introduced and discussed: From the example of fig. 3 it 
seems to make sense, AF1 always to continue with AF1 – not only because AF1 is the most 
frequent formation but also because it is the most successful one. The corresponding formation 
of B in fig. 3 is BF1. Analogously, BF1 is the most frequent and/or successful continuation of 
BF1, and hence the simulation would reproduce the state (AF1,BF1) endless after once having 
reached it the first time.  

The result is not restricted to bad simulation but can be found in practice as well. For example, 
such "stable" situations sometimes can be observed in tennis (base-line-duels or backhand-
backhand-duels) or in soccer (concrete-defence, kick-and-rush). 

Theory (2-persons-0-sum-theory, e.g. see Durlauf & Blume, 2010) as well as practical 
experience show that it is much more successful to not always play the "best" variant but to 
distribute it to a strategic mixture, which is much more difficult to anticipate by the opponent 
player or team. This is what MC-simulation with its orientation to distributions is helpful for – 
if the distribution is a substantial one and not degenerated like "passes" in fig. 3.  

The problem is, however, that very often the distributions that can be taken as a basis for 
simulation are as degenerated as "passes" is in fig. 3. Note for example that "ball contacts" and 
"ball possessions" are not much better. 
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Fig. 4: Time-depending formations-diagram of team A as a result of MC-simulation oriented in optimizing the 

number of "ball contacts". As expected from fig. 3, the simulation is stabilizing with formation 1. 

Fig. 4 shows the formations diagram of a strict "ball contacts"-oriented MC-simulation: It 
starts with the original start-formation AF4 and very fast stabilizes on formation AF1. 
Obviously, this result has nothing to do with playing soccer. 

The reason is that strict MC-simulation does not take into account situation-oriented 
spontaneous actions that are not necessarily oriented in the optimization aim. Even small 
deviations from a 100%-simulation can produce results much closer to reality, as fig. 5 
demonstrates: The upper diagram shows the original distribution of formations, while the 
lower diagram shows the MC-generated formations with a strictness of 95%, completed by 5% 
distribution-independent random values. Even though there is a clear priority on AF1, the 
original and the simulated formations diagrams become much more similar.  

In the following, this difference between the strictness St and the 100%-simulation will be 
called flexibility Fl. In the case of fig. 5 this means: StA = 95, FlA = 100-95 = 5. 
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Fig. 5: Original formations diagram above (yellow dots). Below formations diagram (green dots) generated by 

"ball-contacts"-oriented MC-simulation with StA = 95. 

Some more examples of the effect of strictness/flexibility in simulating formation distributions 
are given in fig. 6.  As will be discussed later on under the aspect of creativity, in the case of 
flexibility = 0 the behaviour has a stereotype structure and seems to be easily to predict. In 
contrast, with flexibility ≥ 50 the behaviour becomes unmethodical, which is caused by the 
high rate of random generation.  

The next step is to discuss, how simulation is usable under the aspect of analyzing soccer 
games.  

Results 

In the following, mainly two aspects of game simulation are dealt with. In the first part the 
success of strictness is analysed and discussed in the context of strategic interaction. In the 
second part it is presented how simulation can help to recognize the degrees of flexibility and 
creativity in the strategic behaviour of a team. 
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For a better comparability, all simulations are calculated using the same original data 
introduced in fig. 3.  
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Fig. 6: Distributions of A-formations depending on values of strictness/flexibility. 

Simulation-based analysis of soccer games 
A first approach is to analyze how success can be improved, as is depicted in fig.7: 

The yellow profile shows the increasing sum of the original ball contacts of team A (measured 
in seconds), while the small black circles mark the single contact events. The green profile in 
the same way shows the MC-generated values, simulated with StA = 95 and StB = 95.  
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Fig. 7: Profiles of original (yellow) and simulated (green) contact events of team A. 

The presented result – simulation improves success – of course is only one example. It depends 
on the definition of success (here: ball contacts) and the values of strictness (here: StA = 95, 
StB = 95). In fig. 8 four more scenarios are presented where different pairs (StA,StB) of 
strictness generate quite different profiles of success of team A: In the first example both teams 
act with the maximum strictness, (StA,StB) = (100,100), resulting in a simulated success profile 
that is much better than the original profile of team A. This is due to the fact that a 100%-
strictness (theoretically) means an optimal behaviour – the success of which however depends 
strongly on the behaviour of the opponent team: The second example shows that reducing StA 
to 70 does not reduce the success of A that much. Instead reducing StB to 70 as in example 3, 
although reducing the success of team A significantly, the simulated success profile is still 
better than the original one. Increasing StB to 90, as in example 4, results in a simulated profile 
of team A that is worse than the original one.  
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Fig. 8: Four examples of how strictness values affect the simulated success of A. 

The examples in fig. 8 show how sensitive the success profiles and values react on the values 
of strictness. In order to better understand the connection between strictness and success it is 
helpful to read the "landscapes" of success, which are presented as matrices of success values 
of the teams A and B in fig. 9: The left matrix shows the final success differences of A and B. 
The strictness-pairs with advantage A (success difference > 0) are highlighted in orange with a 
focus on one maximum pair (StA,StB) = (72,98). In the same way the right matrix shows the 
final success differences of B and A, where the "clear" advantage of B (success difference > 
1000) is highlighted in blue with the focus on the maximum pair (StA,StB) = (100,92).  

 
 
 
 
 
 
 
 
 
 
Fig. 9:  Matrices of success value differences of A (left) and B (right) depending on pairs of StA and StB.  

Before discussing these results regarding the meaning of strictness, in the following fig. 10 the 
success profiles corresponding to the maximum pairs are presented:  
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The first graphic shows the original success profiles of team A (yellow) and team B (light 
blue) compared to the simulated profiles of A (light green) and B (dark blue). As expected, the 
simulated profile of B is much better than the original one, and in contrast the simulated profile 
of A is much worse than the original one. 

In the second graphic the situation is the other way round but, according to the smaller success 
difference, with smaller profile distances. The distance between team A and team B is 
marginal although A has improved a lot against its original profile. 
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Fig. 10: Original and simulated success profiles of teams A and B in the cases of highest success differences. 

The examples of fig. 10 emphasize the meaning of interaction in analysis and simulation of 
playing dynamics:  

(1) It is obviously not sufficient to increase the number of successful events of a team if the 
opponent team is able to increase more. 

(2) The degrees of strictness respectively flexibility in getting strategies to work seem to play 
an important role for being successful.  

In fig.11 it is shown how much a strategy with an appropriate degree of flexibility can 
(theoretically) improve success:  

In the cases of ball contacts and possessions there is a potential for improvement. Clearly, the 
numbers of ball possessions are always less than those of ball contacts, which is reproduced 
also in the simulation. In the case of passes the simulated improvement obviously is not a 
realistic one. The reason is that a pass is imbedded in a complex process context and cannot be 
simulated using only its quantitative correlation to formations. In contrast, space control is 
highly dependent on the interaction of formations, and therefore the simulation shows a 
realistic potential of improvement.   

Quite similar is the situation with team B. 

In the following, the relation between strictness and flexibility will be discussed in more detail: 

An increasing degree of flexibility on the one hand decreases the orientation on the seemingly 
optimal strategy, i.e. the strategy with a strictness of 100%. 

On the other hand, as is shown in fig. 6, an increasing degree of flexibility increases the variety 
of formations and therefore prevents from being analyzed by the opponent team.  

Obviously, the optimal mixtures of strictness and flexibility as they are highlighted in fig. 9 
depend on the strengths and weaknesses of A and B.  
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Fig. 11: Original (yellow) and simulated (light green) success profiles of team A.  

On the first glance, the high degree of optimal flexibility of team A of up to 40% looks strange, 
because the strategy used for simulation is developed on the condition of maximizing success. 
And one could think that having success means to follow that strategy as strict as possible.  

On a second glance, game theory demonstrates that a mixture of varying strategies often is 
superior to following one single strategy. The reason is that a single strategy can be recognized 
by the opponent and disproved by adapting its behaviour.  

(Also see Durlauf & Blume, 2010 and compare the comments and examples regarding fig. 3 
and the comments from above regarding fig. 6.) 

Finally, the aspect of creativity has to be discussed:  

Creativity 
Activities are called creative, if they are rare as well as successful (Memmert, 2011). If a small 
x% of flexibility, i.e. of random events, improve the success like the reduction of strictness by 
about 8% in case of team B in fig. 9 does, this can be called a creative variation of the 
successful strategy. Transferred to the game this means that team B every 3 to 4 minutes 
continues its formation situation with a formation that is not expectable in the context of its 
recognizable strategic behaviour. 

Different is the behaviour of team A: Fig. 9 shows a flexibility of about 30%, which does not 
mean rare, and transferred to the play means 1 unexpected transition every 1.5 minute. This 
could be said to be unmethodical or out of strategy rather than creative but could also represent 
a flexible mixture of strategies. 

Note that all those discussions and interpretations are done on the basis of simulated 
behaviour. The question now is whether the original playing behaviour regarding ball contacts 
was strategic strict, creative or unmethodical. The answer can be found by simulating the 
playing behaviour under the condition of best fitting values of StA and StB, the surprising 
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result of which is shown in fig. 12 in case of ball contacts:  

The best fitting strictness value of team A is StA=100, which means that A in the original play 
follows strictly a single strategy.  

The best fitting strictness value of team B is StB=30, which means that B plays more or less 
without any single strategic concept – or with a strategic concept consisting of a mixture of 
partial strategies as would be recommended by game theory. 
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Fig. 12: Original success profiles of ball contacts compared to best fitting simulated profiles. 

The result is that the strategic orientation of a team – e.g. unmethodical, flexible, creative, 
strict – could be detected by a best fitting simulation as is demonstrated exemplarily for team 
A for 3 success indicators in fig. 13. 
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Fig. 13: Analyses of strategic strictness by means of best fitting simulation. The colours are the same as in fig. 
12. 

As can be seen, the original behaviour of team A (yellow profiles) can be simulated quite well 
(light green profiles) resulting in characteristic strictness values. Table 1 compares these 
characteristic values of team A with the respective values of team B. The result is that team A 
and B seem to act with quite different orientations on strategic planes.  

Interpretation of the behaviour of team A (also compare fig. 6): 

Regarding ball contacts, team A follows a strict plan where only few formations are involved 
in ball contacts. 

In phases of ball possession, the variety of formations is greater and could be interpreted to be 
strategic with creative elements, although the degree of flexibility is rather high. 
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Finally, space control is not at all strategically planned but follows randomly the current 
situations. 

Quite different is the situation with team B: 

Ball contacts and possessions seem to follow randomly the current situations without 
orientation on strategic planes, while space control is generated much more purposeful than is 
done by team A, based on a flexible variety and a comparably great number of formations. 

Table 1: Simulation-based interpretation of tactical concepts. 
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Discussion 

As could be shown, simulation can help not only to improve strategic behaviour but also to 
better understand playing dynamics and (hidden) strategic concepts. Of course, such results 
have to be taken with care: There are broad gaps between strategic concepts, tactical activities 
and the way of technically put it to practice.  

Moreover: While in "mathematical" games like for instance poker or chess all possible 
situations and activities are well-defined and (at least in principal) computable, the situation in 
a team play is much more difficult. The players do not have complete information about 
context situations, players' positions, or formations. 

The quality of their activities is not perfect but depends on their technical abilities and 
attacking activities of opponent players. One example is that of passes: As is mentioned above, 
a pass is imbedded in a complex process context of time, space, positions and formations, the 
passing and the receiving player cannot recognize and evaluate completely every second as 
computers could. Insofar, simulation of course is not meant to optimize individual tactical 
behaviour. 

Nevertheless, such simulative approaches could be helpful to compare and evaluate basic "one-
dimensional" strategies like tiki taka, fast counter attack, concrete-defence or kick-and-rush 
regarding interaction and success. And, last but not least, they allow for better recognizing how 
teams get strategies to work: strictly, with creative elements, with flexibility, randomly, or not 
at all. 
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