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Abstract 

Generalized knockout tournament seedings for an arbitrary number of participants 
in one match are designed. Several properties of knockout tournament seedings 
are investigated. Enumeration results for knockout tournament seedings with 
different properties are obtained. Several new generalized knockout tournaments 
seedings are proposed and justified by a set of properties. 
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Introduction 

There are two main types of sports tournaments: knockout tournaments and round robin 
tournaments. In knockout tournaments, all losers in each round are eliminated, and all winners 
are promoted to the next round. In round robin tournaments, all participants play against each 
other. The main advantage of knockout tournaments is a significantly lower number of 
matches and rounds. As a result, spectator interest increases from round to round. For example, 
if the number of participants in a tournament equals ܰ = 2௡, then the number of games (with 
two players in one match) in a knockout tournament equals 2௡ − 1, whereas that in a round 
robin tournament equals 2௡ିଵ(2௡ − 1). Similarly, the number of rounds in a knockout 
tournament equals ݊, and that in a round robin tournament equals 2௡ − 1. The lower 
requirements for time and facilities and the increasing spectator interest are the main reasons 
for the popularity of knockout tournaments. 

There are many single-winner games with a higher number of players in one match (e.g., card 
games such as blackjack and poker). Football teams are typically divided into groups, with 
four teams in each group. A round robin subtournament within one group can thus be 
considered one match with four teams. 

Running tracks, swimming pools, bowling lanes and other sports facilities have limited 
capacities. Thus, it is not possible to organize one race for all athletes. Because of these limited 
capacities, several rounds of races are usually organized, e.g., a qualification round, regular 
races, and the final. With a high number of participants, the knockout tournament structure of 
the competition is applied. In our setting, the lane position does not matter. Only the set of race 
(match) participants matters. Real sports tournaments have their own specific rules (e.g., both 
relative and absolute results matter), but in this paper, we develop a general theory of such 
tournaments that can be applied to all tournaments. 

This paper generalizes a knockout tournament seedings model that was developed for a 
standard two participants in a one-match framework (Karpov, 2016) by considering 
tournaments with more than two participants in one match. There are many ways of scheduling 
knockout tournaments. Different knockout tournament schedules are called seedings (the 
assignment of players to tournament brackets, with information about the initial order of 
participants' strengths coming mainly from historical data). In computational social choice, 
knockout tournaments correspond to a voting tree or an agenda (Vassilevska Williams, 2016). 

There are several theoretical approaches to seeding type justification, but the results are 
ambiguous. The related economic literature has considered the costs and benefits of different 
tournament designs (seedings) for heterogeneous contestants (Groh et. al 2012; Kräkel, 2012; 
Rosen, 1986; Stracke et al 2015; Wei et al. 2018). Prize structure, effort functions and some 
other assumptions matter in this context. Clear solutions are obtained mainly for four-
participant tournaments.  

A combinatorial optimization approach in knockout tournament seeding studies was applied in 
(Dagaev & Suzdaltsev 2018; Karpov 2016). Three different seedings are justified under 
different assumptions in these studies, and the main two are standard seeding and equal gap 
seeding. 

This paper develops an axiomatic approach in a generalized knockout tournament framework 
(tournaments with more than two participants in one match). We define several desirable 
properties of seedings and enumerate seedings that satisfy these properties. Several new 
knockout tournament seedings, which generalize the standard seeding and the equal gap 
seeding, are proposed and justified by the set of properties. Sports tournament organizers can 
easily apply the proposed seedings to real competitions. 
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The paper contains enumeration and representation results. Because of the novelty of the 
combinatorial object, all enumeration formulas are new. The representation results are the 
main contribution of the paper. They are based on the enumeration results and follow those 
results. 

The structure of the paper is as follows. Section 2 describes generalized knockout tournament 
seedings, its properties and the enumeration results. Section 3 presents representation theorems 
for different seedings. Section 4 concludes. 

Framework 

Let ݇ be the number of participants in one match, ݊ be the number of rounds and ܺ =ሼ1,2, … , ݇௡ሽ be the set of participants of the knockout tournament (henceforth, tournament). 
The indices of the participants represent the order of the participants' strengths, where 
participant 1 is the strongest and participant ݇௡ is the weakest. 

The knockout tournament seeding, or simply the seeding, is a hypergraph with ݇௡ vertices 
labelled from 1 to ݇௡ that are described by a following set system (nested set system). There 
are ݇௡ିଵ disjoint sets of ݇ vertices (each such set is one match), ݇௡ିଶ disjoint sets of ݇ଶ 
vertices such that each new set unites ݇ sets of ݇ vertices (each such set is a subtournament 
with two rounds), ݇௡ିଷ disjoint sets of ݇ଷ vertices such that each new set unites ݇ sets of ݇ଶ 
vertices (each such set is a subtournament with three rounds), etc. 

For example, a seeding of a tournament with 	݇ = 2 participants in each match and ݊ = 3 
rounds is described by the set system ሼ1,4ሽ, ሼ2,3ሽ, ሼ5,8ሽ, ሼ6,7ሽ, ሼ1,2,3,4ሽ, ሼ5,6,7,8ሽ, ሼ1,2,3,4,5,6,7,8ሽ, but it is more convenient to 

describe this seeding as a nested set system, ቄ൛ሼ1,4ሽ, ሼ2,3ሽൟ, ൛ሼ5,8ሽ, ሼ6,7ሽൟቅ. This is called the 

nested set representation of seeding. There are two subtournaments ൛ሼ1,4ሽ, ሼ2,3ሽൟ and ൛ሼ5,8ሽ, ሼ6,7ሽൟ, each of which also contains two subtournaments. In each subsequent round, the 
winners of the subtournaments meet. The order of sets inside the subtournament does not 

matter. ቄ൛ሼ1,4ሽ, ሼ2,3ሽൟ, ൛ሼ5,8ሽ, ሼ6,7ሽൟቅ and ቄ൛ሼ1,4ሽ, ሼ3,2ሽൟ, ൛ሼ6,7ሽ, ሼ8,5ሽൟቅ represent the same 

seeding. 

For ݇ = 2, the most popular tournament seeding (called standard seeding) creates pairs in the 
first round that match the strongest participant with the weakest participant, the second 
strongest participant with the second weakest participant, etc. The pairs in subsequent rounds 
are determined in a way that prevents the first two participants from being in a head-to-head 
match before the final and delays the confrontations between other strong participants until 
later rounds. Strong participants are rewarded for their success through such a seeding. For ݇ = 2, 	݊ = 3, it is ଶܶ,ଷୱ୲ୟ୬ୢୟ୰ୢ = ቄ൛ሼ1,8ሽ, ሼ4,5ሽൟ, ൛ሼ2,7ሽ, ሼ3,6ሽൟቅ. 
The terms tournament and seeding are used here interchangeably. By a tournament, we mean 
the specific seeding corresponding to a tournament. 

Each tournament with ݊ ≥ 2 rounds is a set that consists of k subtournaments. Each 
subtournament with ݊ ≥ 2 rounds is a set that also consists of k subtournaments. ௞ܶ,௡௠,௜ is a 
subtournament i with m rounds. It is a part of a tournament with n rounds and k participants in 
each match. For notational convenience, let ௞ܶ,௡௡ = ௞ܶ,௡ and ௞ܶ,௡଴,௜ = ሼ݅ሽ. Subtournaments ௞ܶ,௡௠,௜, ௞ܶ,௡௠,௝ are nonoverlapping if there is no participant that plays in both subtournaments. A 

tournament with n rounds is a set 	 ௞ܶ,௡ = ⋃ ௞ܶ,௡௡ିଵ,௜௞௜ୀଵ , where all subtournaments are 
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nonoverlapping. A subtournament with m rounds is a set ௞ܶ,௡௠,௜ = ⋃ ௞ܶ,௡௠ିଵ,௜௞௜ୀଵ ,	 where all 
subtournaments are nonoverlapping. 

Let ॻ௞,௡ be the set of all possible seedings with k participants in one match and n rounds. The 

cardinality of the set of all possible seedings is denoted as #ॻ௞,௡. Let ॻ௞,௡௣௥௢௣௘௥௧௬ be the set of 
all possible seedings with k participants in one match and n rounds that satisfy a property; the 
cardinality of this set is denoted as #ॻ௞,௡௣௥௢௣௘௥௧௬. 

Proposition 1. The number of seedings is equal to 

 #ॻ௞,௡ = (݇!)ଵି௞೙௞ିଵ (݇௡!) (1)

Proof. There are ݇௡! permutations of participants. Each permutation corresponds to the nested 

set representation of a seeding. There are ∑ ݇௜௡ିଵ௜ୀ଴ = ଵି௞೙ଵି௞  matches, subtournaments and 

tournaments. For each of them, there are ݇! permutations of participants (subtournaments), but 
they do not change a tournament.  

Considering the tournament to be the union of k subtournaments, we obtain the recursive 
representation of formula (1): 

 #ॻ௞,௡ = ݇௡!݇! (݇௡ିଵ!)௞ ൫#ॻ௞,௡ିଵ൯௞ (2)

All combinatorial formulas are new; some sequences in the case of ݇ = 2 or ݊ = 2 are 
mentioned in the On-line Encyclopedia of Integer Sequences, published electronically at 
http://oeis.org, henceforth OEIS, and are added by the author. 

For ݇ = 2, it is the A067667 sequence in the OEIS. For ݊ = 2, it is the A057599 sequence in 
the OEIS. Even for the small values of ݇ = 2 and ݊ = 2, these sequences are quickly growing 
functions. For higher values of ݇ and n, the number of seedings becomes astronomically large, 
e.g., #ॻଷ,ଷ = 833′712′928′048′000′000. 

A knockout tournament seeding is a purely combinatorial object, without any assumptions 
about participants’ behaviour. To study the properties of seedings, we assume that a stronger 
participant always wins a match with a weaker participant. To find a particular seeding for 
practical use, we introduce several properties. Some of them have a close prototype in 
(Karpov, 2016), where the case of ݇ = 2 is considered. 

The first property makes a seeding invariant under the strength/weakness ranking 
transformation. There are no special rules for weak or strong participants. A seeding designed 
for strength-ordered participants is equal to a seeding designed for weakness-ordered 
participants. 

Symmetry. A seeding is invariant under the point mapping ݅ → ݇௡ + 1 − ݅. ൛ሼ1,4ሽ, ሼ2,3ሽൟ, ൛ሼ5,8ሽ, ሼ6,7ሽൟ and ൛ሼ1,8ሽ, ሼ2,7ሽൟ, ൛ሼ3,4ሽ, ሼ5,6ሽൟ are examples of symmetric 
seedings. 

Proposition 2. The number of seedings that satisfy the symmetry property is equal to 

for an odd k 
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 #ॻ௞,௡ௌ = 2௞೙ି௡௞ା௡ିଵଶ(݇!)ଵଶ൬௞೙ିଵ௞ିଵ ି௡൰
൬݇௡ − 12 ൰ !ቂቀ݇ − 12 ቁ !ቃ௡ (3)

for an even k 

 #ॻ௞,௡ௌ = ൬݇௡2 ൰ !෍ ൫#ॻ௞,௡ିଵௌ ൯ଶ௜ቆ൬݇௡ିଵ2 ൰ !ቇଶ௜ ݅! ቀ2݇ − ݅ቁ ! ቌ 2௞೙షభିଵ(݇!)௞೙షభିଵ௞ିଵ ቍ௞ଶି௜௞/ଶ
௜ୀ଴  (4)

Proof. A pair of sets ܣ, ܤ ⊆ ሼ1,… , |ܣ| ሽ are said to be symmetric if and only ifݔ = |ܤ| = ݕ ,ݕ < ݅ and if ,ݔ ∈ ݔ then ,ܣ + 1 − ݅ ∈ ܣ A set .ܤ ⊆ ሼ1,… ,  ሽ is said to be self-symmetric if andݔ
only if |ܣ| = ݕ ,ݕ < ݅ and if ,ݔ ∈ ݔ then ,ܣ + 1 − ݅ ∈  .ܣ

Odd ݇. For each tournament, there is only one self-symmetric set of the cardinality of ݇௡ିଵ. 
There are #ॻ௞,௡ିଵௌ  ways to define a symmetric subtournament generated by the self-symmetric 

set. There are 
௞ିଵଶ  symmetric pairs of sets of the cardinality of ݇௡ିଵ. There are 2௞೙షభିଵ#ॻ௞,௡ିଵ 

ways to define two subtournaments generated by the symmetric pair. Considering a 
tournament to be the union of k subtournaments, we obtain  

 #ॻ௞,௡ௌ = ൬݇௡ − 12 ൰ !൬݇௡ିଵ − 12 ൰ ! (݇௡ିଵ!)௞ିଵଶ ቀ݇ − 12 ቁ ! #ॻ௞,௡ିଵௌ ൫2௞೙షభିଵ#ॻ௞,௡ିଵ൯௞ିଵଶ  (5)

With #ॻ௞,ଵௌ = 1, we obtain  

 #ॻ௞,௡ௌ =ෑ ൬݇௜ − 12 ൰ !൬݇௜ିଵ − 12 ൰ ! ቀ݇ − 12 ቁ ! 2
൫௞೔షభିଵ൯(௞ିଵ)ଶ(݇!)௞೔షభିଵଶ

௡
௜ୀଶ  (6)

Simplifying, we obtain the result. 

Even ݇. We have an even number of self-symmetric sets of the cardinality of ݇௡ିଵ. Thus, we 
have 

 #ॻ௞,௡ௌ =෍ ൬݇௡2 ൰ !ቆ൬݇௡ିଵ2 ൰ !ቇଶ௜ (݇௡ିଵ!)௞ଶି௜(2݅)! ቀ2݇ − ݅ቁ ! ൫2௞೙షభିଵ#ॻ௞,௡ିଵ൯
௞ଶି௜൫#ॻ௞,௡ିଵௌ ൯ଶ௜௞/ଶ

௜ୀ଴  (7)

Substituting #ॻ௞,௡ିଵ, we obtain the result. ■ 

 

For ݇ = 2, it is A261187 sequence in (OEIS). In this case, formula (4) has a simpler 
representation 

 #ॻଶ,௡ௌ = 2୬ିଵ! ௡ (8)ݕ
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where ݕ௡ = ଶ(௡ିଵݕ)0.5 + 1, with ݕଵ = 1. 

For an odd ݇, there is another representation of the recurrence (5). For each tournament, there 

is only one self-symmetric set of the cardinality ݇ (one match set). There are 
௞೙షభିଵଶ  symmetric 

pairs of sets of the cardinality of ݇. There are 2௞ିଵ ways to define a symmetric pair of sets 
from a self-symmetric set of the cardinality of 2݇. Considering the tournament to be the union 
of ݇௡ିଵmatches, we obtain 

 #ॻ௞,௡ௌ = ൬݇௡ − 12 ൰ !ቀ݇ − 12 ቁ ! (݇!)௞೙షభିଵଶ ൬݇௡ିଵ − 12 ൰ ! (2௞ିଵ)௞೙షభିଵଶ #ॻ௞,௡ିଵௌ  (9)

With #ॻ௞,ଵௌ = 1, we obtain formula (6). These two representations of the tournament 
(tournament as the union of ݇ subtournaments (formula (5)) or of ݇௡ିଵ matches (formula (9))) 
are applied to all derivations of subsequent combinatorial formulas. 

Following Wright (2014), competitive intensity is a key property for sports competition design. 
The closer in strength the participants are, the higher the competitive intensity is. The two 
strongest participants of a match are the main rivals. From round to round, the two strongest 
participants of each match become stronger, and the strengths of the participants become 
closer. The intensity of competition increases, which supports spectator interest. In the final 
match, the two strongest participants play against each other. 

Increasing competitive intensity. In each subsequent round, a winner faces a rival that is 
stronger than the strongest rival in the previous round. 

Proposition 3. The number of seedings that satisfy the increasing competitive intensity 
property is equal to 

 #ॻ௞,௡ூ஼ூ = ൫(݇ − 2)!൯ଵି௞೙షభ௞ିଵ ෑ൥ ൫݇௜ − 2൯!൫(݇௜ିଵ − 1)!൯ଶ൫(݇௜ିଵ)!൯୩ିଶ൩௞
೙ష೔௡

௜ୀଶ  (10)

Proof. The strongest and second strongest participants should be in different subtournaments. 
Thus, we have 

 #ॻ௞,௡ூ஼ூ = 1(݇ − 2)! (݇௡ − 2)!൫(݇௡ିଵ − 1)!൯ଶ൫(݇௡ିଵ)!൯୩ିଶ ൫#ॻ௞,௡ିଵூ஼ூ ൯௞ (11)

With #ॻ௞,ଵூ஼ூ = 1, we obtain the result. ∎ 

For ݇ = 2, formula (10) is also the number of binary heaps (the sequence A056972 in (OEIS)). 

Increasing competitive intensity is a very weak condition, with lim௞→ஶ #ॻೖ,మ಺಴಺#ॻೖ,మ = 1 and lim௞→ஶ #ॻೖ,య಺಴಺#ॻೖ,య = ݁ିଵ. The next property strengthens the increasing competitive intensity 

property, thus guaranteeing the strongest final match, the strongest semifinal, etc. 

Delayed confrontation (Schwenk 2000). Participants rated among the top ݇௝ participants 
shall never meet until the number of participants has been reduced to ݇௝ or fewer. 

It is a core property for tournament design. This property is aimed to support spectator interest. 
Matches with and between the strongest participants draw the interest of spectators. These 
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participants should not be dropped at the beginning of the tournament. This property allocates 
strong participants equally between subtournaments. Thus, there is no subtournament with 
only weak or only strong participants. 

Proposition 4. The number of seedings that satisfy the delayed confrontation property is equal 
to 

 #ॻ௞,௡஽஼ = ൫(݇ − 1)!൯௞ି௞೙௞ିଵ ෑ൫݇௜ − ݇௜ିଵ൯!௡
௜ୀଶ  (12)

Proof. From the delayed confrontation property, participants ሼ݇௡ିଵ + 1,… , ݇௡ሽ should lose in 
round 1, participants ሼ݇௡ିଶ + 1,… , ݇௡ିଵሽ should lose in round 2, etc. Thus, we have 

 #ॻ௞,௡஽஼ = (݇௡ − ݇௡ିଵ)!((݇ − 1)!)௞೙షభ #ॻ௞,௡ିଵ஽஼  (13)

With #ॻ௞,ଵ஽஼ = 1, we obtain the result. ∎ 

For ݇ = 2, it is A261125 sequence in (OEIS). The delayed confrontation property does not 
require an assumption about the deterministic result of each match. Strong participants are 
divided between different subtournaments and do not play against each other. We introduce 
several refinements of the delayed confrontation property: sincerity rewarded, equal 
differences, equal sums, balance and equal partition of losers. 

The sincerity rewarded property goes back to Schwenk (2000). We should encourage strong 
participants; otherwise, they will have incentives to lose in pretournament games and get a 
weaker rival (a model with such incentives is developed in (Dagaev, Sonin 2017)). 

Sincerity rewarded. In addition to the delayed confrontation property, in each round r, the 
absolute value of the difference between the strongest participants’ ranks in a match among 
the top ݇௡ି௥ participants strictly increases with the strength of the top participant. 

The standard seeding satisfies this property. The strongest participant plays against the weakest 
participant, thus guaranteeing the highest absolute value of the difference between participants’ 
ranks. 

The weakest violation of the sincerity rewarded property leads to the equal differences 
property. It implements an idea from the favouritism minimize property from Schwenk (2000). 
We generalize the competitive intensity measure of Dagaev, Suzdaltsev (2018) for a k higher 
than 2. The competitive intensity is an absolute value of the difference between the strongest 
participant’s rank and the second strongest participant’s rank in the match. By equalizing the 
competitive intensities of all matches of the round, we obtain the equal differences property. 

Equal differences. In addition to the delayed confrontation property, all matches of one round 
should have an equal absolute value of the difference between the strongest participant rank 
and the second strongest participant rank in the match. 

Proposition 5. The number of seedings that satisfy the equal differences property is equal to 

 #ॻ௞,௡ா஽ = ൫(݇ − 2)!൯௞ି௞೙௞ିଵ ෑ ൫݇௜ − 2݇௜ିଵ൯!୬୧ୀଶ  (14)

Proof. From the equal differences property, participants ሼ1, … , ݇௡ିଵሽ should be matched with 
participants ሼ݇௡ିଵ + 1,… , 2݇௡ିଵሽ. Thus, we have 
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 #ॻ௞,௡ா஽ = ሾ(݇௡ − 2݇௡ିଵ)!ሿ((݇ − 2)!)௞೙షభ #ॻ௞,௡ିଵா஽  (15)

With #ॻ௞,ଵா஽ = 1, we obtain the result.	∎ 

The subsequent property equates the qualities of matches (Dagaev, Suzdaltsev 2018) and 
supports spectator interest in all matches. By the quality of a match, we mean the sum of the 
ranks of the match’s participants. 

Equal sums. In addition to the delayed confrontation property, all matches of one round 
should have equal sum of ranks of match’s participants. 

The subsequent property simplifies the symmetry property in the presence of the delayed 
confrontation property. 

Balance. In addition to the delayed confrontation property, all matches of one round should be 
invariant under the point mapping i → k୬ି୰ାଵ + 1 − i, where r is the number of the round. 

Proposition 6. The number of seedings that satisfy the balance property is equal to 

for an odd k 

 #ॻ௞,௡஻ = 0 (16)

for an even k 

 #ॻ௞,௡஻ = ൭൬2݇ − 1൰ !൱௞ି௞೙௞ିଵ ෑቆ݇௜ − 2݇௜ିଵ2 ቇ !௡
௜ୀଶ  (17)

Proof. Odd ݇. Only one match can be invariant under the point mapping ݅ → ݇௡ି௥ାଵ + 1 − ݅. 
Even ݇. The strongest ݇௡ିଵ participants play in different matches against the weakest ݇௡ିଵ 

participants. There are ቀ௞೙ିଶ௞೙షభଶ ቁ ! ((0.5݇ − 1)!)ି௞೙షభ ways to assign all other participants to ݇௡ିଵ matches consistent with the balance property. Thus, we have 

 #ॻ௞,௡஻ = ൬݇௡ − 2݇௡ିଵ2 ൰ !((0.5݇ − 1)!)௞೙షభ #ॻ௞,௡ିଵ஻  (18)

With #ॻ୩,ଵ୆ = 1 we obtain the result.  

The balance property implies the equal sums property. For ݇ = 2, the balance property 
coincides with the delayed confrontation property.  

The sincerely rewarded, equal differences, equal sums, and balance properties are quite strong, 
with 

 #ॻଶ,௡ௌோ = #ॻଶ,௡ா஽ = #ॻଶ,௡ாௌ = #ॻଶ,௡஻ = 1 (19)

The next property equates matches by the presence of the weakest participants. We eliminate 
the advantages of having many weak competitors. 

Equal partition of losers. In addition to the delayed confrontation property, in all matches of 
one round, there should be only one participant from the set of participants ሼ݇௡ି௥ାଵ − ݇௡ି௥ +1,… , ݇௡ି௥ାଵሽ, where r is the number of the round. 
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Proposition 7. The number of seedings that satisfy the equal partition of losers property is 
equal to 

 #ॻ௞,௡ா௉௅ = ൫(݇ − 2)!൯௞ି௞೙௞ିଵ ෑ ݇௜ିଵ! ൫݇௜ − 2݇௜ିଵ൯!୬୧ୀଶ  (20)

Proof. From the equal differences property, participants ሼ1, … , ݇௡ିଵሽ should be matched with 
participants ሼ݇௡ − ݇௡ିଵ + 1,… , ݇௡ሽ. Thus, we have 

 #ॻ௞,௡ா௉௅ = ݇௡ିଵ! ሾ(݇௡ − 2݇௡ିଵ)!ሿ((݇ − 2)!)௞೙షభ #ॻ௞,௡ିଵா௉௅  (21)

With #ॻ௞,ଵா௉௅ = 1, we obtain the result. 

The balance property implies the equal partition of losers. For ݇ = 2, the equal partition of 
losers coincides with the delayed confrontation property.  

 
Figure 1. Venn diagram for seeding properties: ICI – increasing competitive intensity; DC – delayed 

confrontation; SR – sincerity rewarded; EPL – equal partition of losers; B – balance; ED – equal 
differences; ES – equal sums; S – symmetry. All labels are inside areas and close to the borders. 

Figure 1 presents a Venn diagram for all the seeding properties. If area X belongs to area Y, 
then all seedings that satisfy property X will also satisfy property Y. An empty intersection 
means that it is impossible to satisfy both properties. A nonempty intersection means that for 
some values of n and k, there exists a seeding that satisfies both properties. This diagram 
represents the general case. For particular values of parameters n and k, the diagram may be 
simpler; e.g., some areas may be equal, and some intersections may be empty. 

The number of seedings that satisfies each particular property is quite large, but the cardinality 
of intersections may be small or even empty for particular parameters. The following section 
presents representation results based on the abovementioned properties. 
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Representation theorems 

In this section, we generalize two main seedings: standard seeding and equal gap seeding. For ݇ = 2, the representation results for these seedings are presented in Karpov (2016). 

Standard seeding 
For ݇ = 2, the most popular seeding is the standard seeding. It is defined recursively. For any 
m from 1 to n, we have 

 ଶܶ,௡௠,௜ = ቄ ଶܶ,௡௠ିଵ,௜, ଶܶ,௡௠ିଵ,ଶ೙ష೘శభି௜ାଵቅ , ݅ = 1, 2௡ି௠തതതതതതതതതത 
Thus, for ݊ = 3, we have 

 ଶܶ,ଷ௦௧௔௡ௗ௔௥ௗ = ቄ൛ሼ1,8ሽ, ሼ4,5ሽൟ, ൛ሼ2,7ሽ, ሼ3,6ሽൟቅ 
There are several justifications of the standard seeding. 

Proposition 8. (Karpov 2016) For ݇ = 2, the standard seeding is a unique seeding that 
satisfies the equal rank sums property. 

Proposition 9. For ݇ = 2, the standard seeding is a unique seeding that satisfies the sincerely 
rewarded property. 

Proof. Participant 2௡ିଵ − 1 has a weaker rival than participant 2௡ିଵ, etc. Because participant 2௡ିଵ + 1 should have a rival, we should have a match ሼ2௡ିଵ, 2௡ିଵሽ. The standard seeding is 
the only way to pair all other participants. ■ 

Proposition 10. For ݇ = 2, the standard seeding is a unique seeding that satisfies the balance 
property. 

Proposition 10 follows from proposition 6. The standard seeding also satisfies the equal 
partition of losers property. There is no direct generalization of the standard seeding for an 
arbitrary ݇. For ݇ = 3 and ݊ = 2, ൛ሼ1,6,8ሽ, ሼ2,4,9ሽ, ሼ3,5,7ሽൟ and ൛ሼ1,5,9ሽ, ሼ2,6,7ሽ, ሼ3,4,8ሽൟ 
satisfy the symmetry and equal rank sums properties but not the sincerely rewarded property, ൛ሼ1,6,7ሽ, ሼ2,5,8ሽ, ሼ3,4,9ሽൟ satisfies the symmetry and sincerity rewarded properties, but not the 
equal rank sums property. We develop two seedings, for ݇ = 3 and ݇ = 4, that satisfy the core 
properties of the standard seeding and give a corresponding justification. 

For ݇ = 3, the modified standard seeding is defined recursively. For any m from 1 to n, we 
have 

 ଷܶ,௡௠,௜ = ቄ ଷܶ,௡௠ିଵ,௜, ଷܶ,௡௠ିଵ,ଶ∙ଷ೙ష೘ି௜ାଵ, ଷܶ,௡௠ିଵ,ଶ∙ଷ೙ష೘ା௜ቅ, ݅ = 1, 3௡ି௠തതതതതതതതതത 
Thus, for ݇ = 3 and ݊ = 3, we have 

ଷܶ,ଷெௌ = ቄ൛ሼ1,18,19ሽ, ሼ6,13,24ሽ, ሼ7,12,25ሽൟ, ൛ሼ2,17,20ሽ, ሼ5,14,23ሽ, ሼ8,11,26ሽൟ, ൛ሼ3,16,21ሽ, ሼ4,15,22ሽ, ሼ9,10,27ሽൟቅ. 
Proposition 11. For ݇ = 3, the modified standard seeding is a unique seeding that satisfies the 
sincerity rewarded and symmetry properties. 

Proof. It is true for ݊ = 1. Suppose it is true for n − 1. Let us prove for n. 

Because the sincerity rewarded property leads to delayed confrontation, it is sufficient to 
define only first-round matches. By the sincerity rewarded property, the strongest 3௡ିଵ 
participants play in different matches. By the symmetry property, the weakest 3௡ିଵ 
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participants play in different matches. By the sincerity rewarded property, the strongest 
participant among participants ሼ1, … , 3௡ିଵሽ plays against the weakest participant among 
participants ሼ3௡ିଵ + 1,… ,2 ∙ 3௡ିଵሽ, the second strongest plays the second weakest, etc., and 
we have the following matches ሼ݅, 2 ∙ 3௡ିଵ − ݅ + 1,  is weaker than ݔ ሽ, where participantݔ
participant  2 ∙ 3௡ିଵ − ݅ + 1. By the symmetry property, the participant 2 ∙ 3௡ିଵ − ݅ + 1 
corresponds to the participant 3௡ − 2 ∙ 3௡ିଵ + ݅ − 1 + 1 = 2 ∙ 3௡ିଵ − 3௡ିଵ + ݅. It is a second 
weakest participant of a match. Thus, there is only one way to assign the third participant of 
the match (it is an image of the participant ݅ᇱ = 3௡ିଵ − ݅ + 1 of the symmetric match, 3௡ିଵ −݅ + 1 → 2 ∙ 3௡ିଵ + ݅). We design a unique seeding for a tournament with n rounds.  

For ݇ = 4, the modified standard seeding is defined recursively. For any m from 1 to n, we 
have 

 ସܶ,௡௠,௜ = ቊ ସܶ,௡௠ିଵ,௜, ସܶ,௡௠ିଵ,ସ೙ష೘శభଶ ି௜ାଵ, ସܶ,௡௠ିଵ,ସ೙ష೘శభଶ ା௜, ସܶ,௡௠ିଵ,ସ೙ష೘శభି௜ାଵቋ , ݅ = 1, 4௡ି௠തതതതതതതതതത 
Thus, for ݇ = 4 and ݊ = 2, we have 

 ସܶ,ଶெௌ = ൛ሼ1,8,9,16ሽ, ሼ2,7,10,15ሽ, ሼ3,6,11,14ሽ, ሼ4,5,12,13ሽൟ 
Proposition 12. For ݇ = 4, the modified standard seeding is a unique seeding that satisfies the 
sincerely rewarded and balance properties. 

Proof. By the balance property, for any m from 1 to n, we have 

 ସܶ,௡௠,௜ = ቄ ସܶ,௡௠ିଵ,௜, ସܶ,௡௠ିଵ,௫, ସܶ,௡௠ିଵ,௬, ସܶ,௡௠ିଵ,ସ೙ష೘శభି௜ାଵቅ , ݅ = 1, 4௡ି௠തതതതതതതതതത, where ݅ < ݔ ≤ 4௡ି௠ାଵ − ݅ 
and ݅ < ݕ ≤ 4௡ି௠ାଵ − ݅. By the sincerely rewarded property, we have 

 ସܶ,௡௠,௜ = ቊ ସܶ,௡௠ିଵ,௜, ସܶ,௡௠ିଵ,ర೙ష೘శభమ ି௜ାଵ, ସܶ,௡௠ିଵ,ర೙ష೘శభమ ା௜, ସܶ,௡௠ିଵ,ସ೙ష೘శభି௜ାଵቋ , ݅ = 1, 4௡ି௠തതതതതതതതതത.  
For the higher k, it is still not possible to satisfy all properties of the standard seeding. 

Proposition 13. For ݇ = 5, there is no seeding that satisfies the sincerity rewarded, symmetry, 
and equal sums properties. 

Proof. It is sufficient to consider the case of ݊ = 2 to prove the impossibility result. It is the 
last two rounds of any tournament. Let us consider the set of the middle participants (there 
exist two participants that are weaker than the middle participant, and there exist two 
participants that are stronger than the middle participant) of each first-round match. By the 
symmetry property, the set of the middle participants is self-symmetric (a set ܣ ⊆ ሼ1, … ,  ሽ isݔ
said to be self-symmetric if and only if |ܣ| = ݕ ,ݕ < ݅ and if ,ݔ ∈ ݔ then ,ܣ + 1 − ݅ ∈  .(ܣ
Participant 13 belongs to the set of middle participants. There are two middle participants 
stronger than participant 13 and two participants weaker than participant 13. The two strongest 
participants in each match are stronger than participant 13. The two weakest participants in 
each match are weaker than participant 13. 

The sum of the participants’ ranks in one match equals 65. There are three cases. 

1. The sum of the ranks of the two strongest participants in each match is equal to 11. Then, 
the sum of the ranks of the two weakest participants in each match is equal to 41. The 
rank of the middle participant in each first-round match should be equal to 13, but that is 
impossible. 
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2. The sum of the ranks of the two strongest participants in each match is equal to 11 or 12. 
Then, the sum of ranks of the two weakest participants in each match is equal to 41 or 40. 
The rank of middle participants can be equal to 12,13 or 14, but that is impossible. 

3. The sum of the ranks of the two strongest participants in each match is equal to 11, 12 or 
13, and the strongest participant has participant 12 in the pair. Then, the sum of the ranks 
of the two weakest participants in each match is equal to 41, 40 or 39. The rank of the 
middle participants can be equal to 11, 12, 13, 14 or 15, but that is impossible.  

Equal gap seeding 
For ݇ = 2, the equal gap seeding is investigated in (Karpov 2016). Here, we generalize it. The 
equal gap seeding is defined recursively. For any m from 1 to n, we have 

 ௞ܶ,௡௠,௜ =ራ ௞ܶ,௡ଵ,௜ା௝௞೙ష೘௞ିଵ
௝ୀ଴ , ݅ = 1, k௡ି௠തതതതതതതതതത 

Thus, for ݇ = 2 and ݊ = 4,we have 

 ଶܶ,ଷாீ = ൜ቄ൛ሼ1,9ሽ, ሼ5,13ሽൟ, ൛ሼ3,12ሽ, ሼ7,15ሽൟቅ , ቄ൛ሼ2,10ሽ, ሼ6,14ሽൟ, ൛ሼ4,13ሽ, ሼ8,16ሽൟቅൠ 
for ݇ = 3 and ݊ = 3, we have  

 ଷܶ,ଷாீ = ቄ൛ሼ1,10,19ሽ, ሼ4,13,22ሽ, ሼ7,16,25ሽൟ, ൛ሼ2,11,20ሽ, ሼ5,14,23ሽ, ሼ8,17,26ሽൟ, ൛ሼ3,12,21ሽ, ሼ6,15,24ሽ, ሼ9,18,27ሽൟቅ 
for ݇ = 4 and ݊ = 2,we have 

 ସܶ,ଶாீ = ൛ሼ1,5,9,13ሽ, ሼ2,6,10,14ሽ, ሼ3,7,11,15ሽ, ሼ4,8,12,16ሽൟ 
There are several justifications of the equal gap seeding. 

Proposition 14 (Karpov 2016). For ݇ = 2, the equal gap seeding is a unique seeding that 
satisfies the equal differences property. 

For ݇ = 2, the equal gap seeding also satisfies the symmetry property. 

Proposition 15. For ݇ = 3, the equal gap seeding is a unique seeding that satisfies the equal 
differences and symmetry properties. 

Proof. It is true for ݊ = 1. Suppose it is true for n − 1. Let us prove for n. 

Because the equal differences property leads to the delayed confrontation, it is sufficient to 
define only first-round matches. By the equal differences property, the strongest 3௡ିଵ 
participants play in different matches against participants ሼ3௡ିଵ + 1,… ,2 ∙ 3௡ିଵሽ. The absolute 
difference between the ranks of the strongest and the second strongest participant in the match 
equals 3௡ିଵ. Because of the symmetry property, the absolute difference between the ranks of 
the strongest and the second strongest participants in the match also equals 3௡ିଵ. Thus, we 
have 

 ଷܶ,௡ଵ,௜ =ራሼ݅ + ݆3௡ିଵሽଶ
௝ୀ଴ , ݅ = 1, 3௡ିଵതതതതതതതതത 

The modified equal gap seeding is defined recursively. For any m from 1 to n, we have 
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 ସܶ,௡௠,௜ = ቄ ସܶ,௡௠ିଵ,௜, ସܶ,௡௠ିଵ,௜ାସ೙ష೘, ସܶ,௡௠ିଵ,ସ೙ି௜ାଵିସ೙ష೘, ସܶ,௡௠ିଵ,ସ೙ି௜ାଵቅ, ݅ = 1, 4௡ି௠തതതതതതതതതത 
Thus, for ݇ = 4 and ݊ = 2,we have 

 ସܶ,ଶ௠௢ௗ௜௙௜௘ௗ ௘௤௨௔௟	௚௔௣ = ൛ሼ1,5,12,16ሽ, ሼ2,6,11,15ሽ, ሼ3,7,10,14ሽ, ሼ4,8,9,13ሽൟ 
The modified equal gap seeding satisfies the equal sums and equal differences properties, 
uniting the properties of the standard seeding and the equal gap seeding. 

Proposition 16. For ݇ = 4, the modified equal gap seeding is a unique seeding that satisfies 
the equal differences and balance properties. 

Proof. By the equal differences property, in round m, the strongest 4௡ି௠ participants play in 4௡ି௠ matches against participants ሼ4௡ି௠ + 1,… ,2 ∙ 4௡ି௠ሽ. Because of the symmetry 
property, the absolute difference between the ranks of the weakest and second weakest 
participants in the match also equals 4௡ି௠. By the balance property, the sum of the ranks in 

each match equals 
ସ೙ష೘శభ൫ସ೙ష೘శభାଵ൯଼ . All of the strong and weak pairs considered above have 

different sums of ranks. There is only one way to define a tournament. For any m from 2 to n, 

we have ସܶ,௡௠,௜ = ቄ ସܶ,௡௠ିଵ,௜, ସܶ,௡௠ିଵ,௜ାସ೙ష೘, ସܶ,௡௠ିଵ,ସ೙ି௜ାଵିସ೙ష೘, ସܶ,௡௠ିଵ,ସ೙ି௜ାଵቅ, ݅ = 1, 4௡ି௠തതതതതതതതതത. ■ 

For a higher k, there is no good generalization of the equal gap seeding. 

Proposition 17. For ݇ = 5, there is no seeding that satisfies the equal differences, symmetry, 
and equal sums properties. 

Proof. It is sufficient to consider the case of ݊ = 2 to prove the impossibility result. It is the 
last two round of any tournament. By the equal differences property, the strongest 5 
participants play in 5 matches against participants ሼ6, … ,10ሽ. Because of the symmetry 
property, the absolute difference between the ranks of the weakest and second weakest 
participants in the match also equals 5. The sum of the ranks of these four participants is even. 
The sum of participants’ ranks in one match equals 65. The rank of the middle participant 
should be odd in all first-round matches, but that is impossible. ■ 

For ݇ = 7, there exists a seeding that satisfies the equal differences, symmetry, equal sums and 
equal partition of losers properties: 

 ଻ܶ,ଶ = ൜ሼ1,8,23,29,35,36,43ሽ, ሼ2,9,18,31,34,37,44ሽ, ሼ3,10,20,26,33,38,45ሽ, ሼ4,11,22,24,28,39,46ሽ,ሼ5,14,17,24,30,40,47ሽ, ሼ6,13,16,19,32,41,48ሽ, ሼ7,14,15,29,35,42,49ሽ ൠ 
The fourth match is self-symmetric. The first and seventh matches, the second and sixth 
matches, and the third and fifth matches generate symmetric pairs of matches. This example is 
not unique. 

For even ݇ ≥ 6, there are many seedings that satisfy the equal differences and balance 
properties. 

Proposition 18. For even ݇ ≥ 6, the number of tournaments that satisfy the equal differences 
and balance properties is equal to 

 #ॻ௞,௡ா஽,஻ = ൭൬2݇ − 2൰ !൱௞ି௞೙௞ିଵ ෑቆ݇௜ − 4݇௜ିଵ2 ቇ !௡
௜ୀଶ  (22)
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Proof. By the equal differences and balance properties, the strongest ݇௡ିଵ participants play in 
different matches with the weakest ݇௡ିଵ participants, the second strongest ݇௡ିଵ participants 

and the second weakest ݇௡ିଵ participants. There are ቀ௞೙ିସ௞೙షభଶ ቁ ! ((0.5݇ − 2)!)ି௞೙షభ ways to 

assign all other participants to ݇௡ିଵ matches, consistent with the balance property. Thus, we 
have 

 #ॻ௞,௡ா஽,஻ = ൬݇௡ − 4݇௡ିଵ2 ൰ !((0.5݇ − 2)!)௞೙షభ #ॻ௞,௡ିଵா஽,஻  (23)

With #ॻ௞,ଵா஽,஻ = 1, we obtain the result. 

Conclusion 

For the cases of three and four participants in one match, we investigate generalizations of 
standard seeding and equal gap seeding. These cases are the most important from a practical 
point of view. For a higher number of participants in one match, we need additional or/and 
different properties, which can be obtained from the specific requirements of a particular 
tournament. 
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