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Abstract 

Robot-assisted training can be enhanced by using augmented feedback to support 
trainees during learning. Efficacy of augmented feedback is assumed to be 
dependent on the trainee's skill level and task characteristics. Thus, selecting the 
most efficient augmented feedback for individual subjects over the course of 
training is challenging. 

We present a general concept to automate feedback selection based on predicted 
performance improvement. As proof of concept, we applied our concept to trunk-
arm rowing. Using existing data, the assumption that improvement is skill level 
dependent was verified and a predictive linear mixed model was obtained. We 
used this model to automatically select feedback for new trainees. The observed 
improvements were used to adapt the prediction model to the individual subject. 
The prediction model did not over-fit and generalized to new subjects with this 
adaptation. 

Mainly, feedback was selected that showed the highest baseline to retention 
learning in previous studies. By this replication of our former best results we 
demonstrate that a simple decision rule based on improvement prediction has the 
potential to reasonably select feedback, or to provide a comprehensible 
suggestion to a human supervisor. To our knowledge, this is the first time an 
automated feedback selection has been realized in motor learning.  

KEYWORDS: VIRTUAL TRAINER, ROWING SIMULATOR, MOTOR LEARNING, 
LINEAR MIXED MODELS, STATISTICAL LEARNING 
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Introduction  

Training robots complemented by virtual reality offer numerous possibilities to configure 
robot-assisted training, characterized by various exercise tasks, related task renderings, and by 
different types of augmented feedback. Feedback that is naturally present to a trainee 
performing a task physically must be recreated artificially when simulating the same task in 
virtual reality. This artificially recreated feedback is described as task renderings. In a rowing 
simulation for example, task renderings consist of a visually displayed landscape, oar-water 
interaction forces, and oar-water interaction sounds. Augmented feedback provides extrinsic 
information added along with the task renderings by providing additional cues, support or 
challenges to the trainee in order to enhance training. 

Concurrent visual, auditory, or haptic feedback strategies have shown great potential in 
facilitating motor learning (Sigrist, Rauter, Riener, & Wolf, 2013). However, augmented 
feedback strategies should be designed with regards to the Guidance Hypothesis (Sigrist et al., 
2013) and to avoid problems with Slacking (Reinkensmeyer, Akoner, Ferris, & Gordon, 2009). 
Their efficacy is dependent on the skill level of the subject and task characteristics (Marchal-
Crespo et al., 2015; Sigrist et al., 2013). According to the Challenge Point Theory (Guadagnoli 
& Lee, 2004), optimal conditions for improvement are expected when the subject is challenged 
during training according to their skill level. Therefore, selecting augmented feedback to 
provide optimal conditions for improvement is challenging, especially if the skill level of the 
subject changes over the course of training. 

Along with task characteristics, an individual subject’s needs should be considered when 
selecting augmented feedback designs. Humans vary in their physical and cognitive abilities, 
preferences, and giftedness. For example, augmented visual feedback with little robotic 
support may be appropriate for a healthy subject, but performing the same task, an impaired or 
elderly subject with physical or cognitive deficits may require fewer visual details and more 
robotic support. Detailed visual feedback may be suitable for a subject that is used to virtual 
environments or computer games, but less detailed visual feedback and movement sonification 
might be beneficial for subjects used to playing musical instruments. 

To overcome the challenges of selecting between different augmented feedback designs, the 
idea of automated feedback selection arose. Training or therapy robots may record large 
amounts of kinetic or kinematic data, which may serve as a basis for reasonably selecting 
feedback strategies. Instead of relying on the intuition and experience of a human operator, an 
automated feedback selection could rely purely on previous observations in the form of 
quantitative data. Such an automated selection process eventually increases training efficacy, 
reproducibility of successful training paradigms, and knowledge of the applied augmented 
feedback. 

In terms of machine learning, selecting the most appropriate augmented feedback is a classical 
decision problem: Based on given observations, such as performance or participation features 
measured by the robot or entered by the operating trainer, one of a finite set of available 
augmented feedback designs is selected. Such decision making problems are commonly solved 
with classification approaches from supervised machine learning (Bishop, 2006), e.g. support 
vector machines or adaptive boosting. However, for the presented work we wanted to 
investigate another concept, which predicts the expected change in the subject's performance 
for each augmented feedback. 

Classification approaches from supervised machine learning do often result in quantifications 
that are not understandable for typical users or training supervisors. In contrast, when selecting 
types of feedback based on predictions of expected improvement, these predicted 
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improvements for the different feedback options are a quantitative reasoning that can be 
interpreted. For many training scenarios the measurable states might not be sufficient to allow 
reasonable feedback selection and, therefore, a human supervisor may still be required. A 
human supervisor who understands the meaning of the performance metrics being used will 
also understand the meaning of the predicted improvements. Such a supervisor could weigh the 
predicted improvements against unmeasured relevant contextual information, e.g. motivational 
aspects, abnormal joint constraints, or impairments. Therefore, we considered a prediction-
based concept to be more generally applicable and therefore more likely to result in greater 
user acceptance. 

To select the most appropriate augmented feedback at a given point of time, there is no widely 
accepted ground truth and therefore no available labeled data for supervised classification. 
Labeling data with the help of expert human trainers is time consuming and suffers intra- and 
inter-rater variability. For a predictive approach, labeled data can be collected trivially 
whereby the labels are simply the observed changes in the performance metrics, dependent on 
the conducted feedback training. Also, based on their prediction accuracy, the resulting 
prediction models can be evaluated in the absence of a known ground truth for an optimal 
selection of feedback designs. 

Modeling a training goal or selection rules for an optimal feedback selection is challenging. 
Intermediate training goals might change over the course of training, or different training goals 
might be applicable for different subjects. Supervised classifiers would have to be completely 
retrained based on a differently labeled data set. Predictive models of subjects' improvements 
do allow more flexibility. Training goals or selection rules must be defined based on the 
predicted performance metrics, but the applied selection rule can be changed whenever 
desirable. Using the same predictive models, it is also possible to compare different selection 
rules to each other. For example, one could test strategies with different complexities ranging 
from greedy strategies maximizing short term benefit to modeling the entire training plan by 
using informed search techniques (Russell, Norvig, & Davis, 2010) or dynamic programming 
(Bertsekas, 2012). 

Predictive performance metrics are of great interest in motor learning. Findings of prediction 
models that generalize to new subjects could help to improve feedback designs. Researchers 
often conclude in their data analyses that certain measures can be used to predict the degree of 
motor learning (Joiner & Smith, 2008; Wu, Miyamoto, Castro, Ölveczky, & Smith, 2014). 
However, we have not found any literature that creates predictive models of such a finding, 
and quantifies generalization to new subjects in new experiments.  

Thus, we aimed to show, as proof of concept, that an automated feedback selection using 
improvement predictions could be realized. We wanted to formulate the concept generally and 
derive the predictive models in a structured way, such that this process could be applied 
similarly to different fields of robot-assisted training. Feasibility of our predictive concept was 
tested with healthy subjects for a rowing task in a custom made large tendon-based rowing 
simulator (Rauter, Zitzewitz, Duschau-Wicke, Vallery, & Riener, 2010). The goal for our 
proof of concept was to realize an automated feedback selection that performs meaningfully by 
using a suitable predictive model, which is observation-based, and generalizes to new subjects. 

Methods 

Apparatus 

For this work, our custom-made rowing simulator (see Figure 1) was used as a robotic training 
device (Rauter et al., 2011). This simulator was based on a real but trimmed rowing boat, 
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which was placed in the middle of a Cave Automated Virtual Environment (CAVE). The 
CAVE consisted of three 4.4 m x 3.3 m screens, which were placed in front and to the sides of 
the boat. Three projectors (Projection Design F3+, Norway) were used to display a visual 
ocean scenario and augmented visual feedback on the screens, the feedback and scenario were 
developed in Unity (Unity Technologies, CA, USA) and controlled for a minimum rate of 30 
frames per second. Oar-water interaction sounds and auditory augmented feedback were 
implemented using C++ with an update rate of approx. 30 Hz and were delivered through over-
ear stereo headphones (with a standard frequency range: 14 Hz to 26 kHz). Water resistance 
and haptic augmented feedback were realized with a tendon-based parallel robot (Rauter et al., 
2010), which was controlled by a Matlab/Simulink® (r2013b, MathWorks, MA, USA) model 
running on an xPC target at a fixed update rate of 1 kHz. For this study, the rowing simulator 
was set up for sweep rowing on portside, meaning the subject manipulated a single oar with 
both hands on the left side in direction of travel. For water rendering, a virtual rowing model 
was implemented (Rauter et al., 2010), which allowed the subject to accelerate and decelerate 
the boat in the virtual environment when interacting with the virtual water. Water rendering 
and simulator realism were confirmed by a study showing that training in the simulator 
fostered skill gains in real rowing on water to a comparable extent as real rowing training on 
water (Rauter et al., 2013).  

 
Figure 1. Apparatus with rowing scenario and visual augmented feedback. 

Task 

Subjects were asked to learn trunk-arm rowing, which is a common warm-up or training 
exercise in rowing, used to synchronize the rowers’ movements with each other. A trunk-arm 
rowing stroke is a complex oar movement requiring coordination of trunk and arm movements 
to achieve a desired spatial and velocity profile. The trunk-arm rowing stroke consists of a 
drive and a recovery phase with the transitions between the two, i.e. the release from drive to 
recovery and the catch from recovery to drive. During drive, the completely immersed oar 
blade should be pulled through the water with a high velocity, in order to introduce the 
necessary energy to propel the boat. During recovery, the oar is moved back above the water 
with a slower, smooth and horizontal motion in order to prepare for the next catch. 
Reproducing a desired spatial and velocity profile is especially challenging due to oar-water 
interaction forces: the required forces vary depending on the relative velocity between the boat, 
oar, and water. 

To train trunk-arm rowing, subjects were instructed to learn and repeat a given reference stroke 
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as accurately as possible with respect to both the spatial and velocity profile of this reference 
stroke. The reference stroke was prerecorded by a rowing expert at a typical training stroke 
rate of 24 strokes per minute. The recorded reference was post-processed, to give a smooth, 
cyclic trajectory with -continuity and an exact duration of 2.5 s reflecting an exact stroke 
rate of 24 strokes/min. It was further rescaled to a movement range at the oar handle center of 
0.67 m (44º) horizontally and 0.19 m (12.5º) vertically to ensure a reference movement that 
could be performed by subjects taller than the minimally requested 1.65 m (inclusion criteria). 
Oar blade rotation and leg movements were not included in the task, the oar blade was 
instructed to be kept in vertical orientation only and the rowing seat was fixed at a position, 
where the subject's legs were extended. This same recorded reference stroke (see Figure 2) was 
used in previous studies by the same authors (Rauter, Sigrist, Riener, & Wolf, 2015; Sigrist, 
Rauter, Marchal-Crespo, Riener, & Wolf, 2014). 

Kinematic Evaluation 

Kinematic data, i.e., the vertical and horizontal oar angles estimated from the measured rope 
lengths, were recorded at 100 Hz and analyzed in custom-written programs in Matlab® 
(MathWorks, MA, USA). Only test conditions were analyzed, errors during training were not 
evaluated. The measured data for these tests were segmented into rowing strokes at the point in 
time that corresponds to the minimal horizontal angle of the subject's movement. The first five 
strokes and the last stroke of each test condition were excluded from further analysis to avoid 
transition effects (subjects needed time to accelerate the boat to a steady state). Additionally, 
rowing strokes with a rate below 22 and above 26 strokes/min were excluded from analysis. 
The remaining rowing strokes were resampled to 250 data points and compared to the 
reference trajectory, which was also resampled to 250 data points. Rowing strokes were rated 
with two different dissimilarity metrics: spatial error and velocity magnitude error, i.e. speed 
error. We chose to evaluate these two metrics independently, since we did not know on how 
spatial accuracy should be weighed against temporal accuracy for this task. 

Spatial error was defined as the overall spatial error in one rowing stroke obtained by using 
dynamic time warping (Giese & Poggio, 2000) with a zero weighting of the temporal shifts. 
Dynamic time warping assigns each sample of the subject's stroke to one sample of the 
reference by minimizing spatial and weighted temporal differences, under the constraint of 
time continuity (causal temporal order of samples). Spatial error was then calculated as the 
mean spatial difference between these assigned samples. The benefit of this metric compared 
to using a fixed temporal assignment (e.g. by the same index) is that small temporal shifts that 
have a large impact on spatial errors are not overrated (Vlachos, Hadjieleftheriou, Gunopulos, 
& Keogh, 2003). In other words, a reduction of a spatial error based on fixed temporal 
assignments could be the result of improvements in temporal accuracy only. In contrast, a 
reduction of a spatial error based on dynamic time warping may not only be the result of 
improvements in temporal accuracy. 

The velocity magnitude error was assumed to be a sufficient metric for temporal accuracy, 
since for repetitive trunk-arm rowing, absolute temporal constraints are considered to be of low 
relevance. The velocity magnitude error was defined analogously to the spatial error with 
dynamic time warping, aligning the absolute value of the velocity between reference and user 
trajectories. Illustrative examples on how these alignments work for one good and one bad 
rowing strokes are displayed in Figure 2. 

The subject's performance in a single test condition was evaluated with the average spatial 
error ( ) and the average velocity magnitude error ( ) of all valid strokes (22 ≤	 ≤ 26) in this test condition. 
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Figure 2. Illustrative rowing stroke examples of the applied kinematic evaluation with resulting single stroke 

errors. Bad examples of both spatial error (top) and velocity magnitude error (bottom) are shown on 
the left hand side, and good examples on the right side. For this illustration, only every second sample 
assignment was plotted. 

Augmented Feedback Training 

Subjects were provided with different augmented feedback designs during training. 
Augmented feedback was displayed in addition to the rowing simulation, i.e. the display of the 
virtual lake, oar immersion sounds and, where applicable, haptic water rendering. Seven 
different augmented feedback designs were used within this work. More technical details on 
these feedback designs are provided in our previous studies (Rauter et al., 2015; Sigrist et al., 
2014). 

The first augmented feedback, (i) Visual, consisted of a visual concurrent feedback (visible in 
Figure 1), where a virtual blue oar displayed the reference movement in addition to the 
subject's own oar. The blue reference oar was rendered with increasing transparency the closer 
the subject's oar was to the reference, fading out completely if the angular distance between 
subject's oar and the reference was less than 4º. Additionally, the subject's oar drew traces 
when the spatial deviation from the reference was greater than 3.6º vertically or 1.9º 
horizontally. These traces were drawn in green for low deviations and their color became 
increasingly reddish the more the subject deviated spatially from the reference path. The traces 
were faded out after 8 s to prevent the subject relying too strongly on these traces. Thus, all 
components of this visual feedback were designed such that the feedback faded out if the 
subject's performance was near the reference to avoid the subject relying on the feedback and 
becoming dependent on it. 

The second augmented feedback, (ii) AudioVisual, consisted of feedback (i) plus sonification 
of the oar movement. The horizontal oar angle was mapped to pitch (from 54.5 Hz to 91.58 
Hz) if the oar was outside the water. Normal purling sounds from the rowing simulation were 
played when the oar blade was immersed. The left headphone speaker was used to sonify the 
reference motion and the right headphone speaker was used to sonify the subject’s own oar 
blade. That way, subjects could synchronize their movement to the reference by minimizing 
sound differences between left and right ear.  

The third augmented feedback, (iii) PositionController, consisted of a haptic guidance, where 
the robot fully guided the oar movement along the reference with a PD-Controller. The subject 
could just passively follow the movement by the robot, which is sometimes referred as full 
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haptic guidance. The position controller proportional gain (p 	= 	6000 Nm/rad) and the 
derivative gain ( = 170 Nms/rad) ensured that the robot followed the reference 
independent of the subjects applied forces. PositionController was the only condition whereby 
water interaction forces were not haptically rendered.  

The fourth augmented feedback, (iv) PathController, consisted of a different form of haptic 
guidance to that used in (iii), where the subject is only constrained spatially to stay inside a 
perceived tunnel around the reference path, but without any imposed velocity constraints. 
From a subject's perspective, the path controller created elastic forces pulling the oar back to 
the reference path, once the deviation was greater than a certain threshold, but if staying close 
to the reference only the rendered water interaction forces were perceived. Technically, the 
path controller forces were realized by the negative gradient of a conservative potential field, 
which is a passive control strategy that is safe for both user interaction and superposition with 
the haptic water rendering. In this augmented feedback, the conservative potential field, and 
therefore the perceived tunnel, was constant in all training sessions.  

The fifth augmented feedback, (v) AdaptivePathController, consisted of a haptic feedback 
following the same principle as (iv), but here an additional assist-as-needed concept was 
implemented to decrease the haptic guidance in regions where the subject performed well, and 
increased the haptic guidance where the subject performed bad. Technically this was realized 
by scaling the potential field locally based on previous rowing strokes, i.e. increasing it in 
areas where the subject deviated a lot and decreasing the potential field where the subject was 
close to the reference path.  

The sixth augmented feedback, (vi) ReactivePathController, consisted of another haptic 
feedback concept, which was also based on the PathController principle. If the subject 
deviated too much from the reference path but was approaching the reference path, they would 
receive the same supportive force that the PathController would provide. However, if the 
subject deviated too much from the reference path and was still moving further away, a 
reactive force would be applied instead. This reactive force was directed and scaled based on 
the current user velocity, e.g. it interrupted and stopped the user movement abruptly.  

The seventh augmented feedback, (vii) VisuoHaptic, consisted of both the visual augmented 
feedback from Visual (i) and the reactive path controller from ReactivePathController (vi).  

Experimental Protocol 

The experimental protocol (Figure 3) was kept identical to our previous studies (Rauter et al., 
2015; Sigrist et al., 2014) to facilitate comparisons between previous and new results. 

 
Figure 3. Experimental protocol, where NF denotes the no-feedback test conditions, Inst denotes the instruction 

phase, BL denotes the baseline test, T denotes the training conditions with augmented feedback, and 
RE2 and RE3 the retention tests on day 2 and 3 respectively. 

The subjects were recorded on three consecutive days. On Day 1, they received general 
instructions and one investigator explained the handling and safety features of the simulator. 
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This general instruction was followed by a demonstration, where the investigator sat in the 
rowing simulator and demonstrated the movement to the subject. Thereby, the robot guided the 
movement with the PositionController for ~30 s. This primary instruction was performed to 
prepare subjects for interaction with the haptic guidance and to demonstrate the movement 
range and velocity the oar will be moved by the robot. Every subject was given a 180 s (= 72 
reference strokes) practice session with the PositionController to obtain a basic idea of the 
reference movement before the baseline test. Subjects were asked to memorize spatial and 
temporal characteristics of the reference movement, since they would be requested to 
reproduce the reference movement in a subsequent baseline test. Subjects were not given any 
advice on how to profit from the robot-guided reference movement. 

After instruction, a 180 s baseline test (BL) followed, where the subjects rowed without robotic 
guidance. Thus, the subjects had to perform the movement on their own, based on their 
memory of the instruction. In baseline and all subsequent no-feedback test conditions, the 
visual scenario, the purling sound of their oar in the right headphone, and the water interaction 
forces were rendered. The baseline test was followed by five training sessions which each 
consisted of a 180 s (= 	72 reference strokes) training session with augmented feedback and a 
60 s (= 24	reference strokes) no-feedback test condition. Which of the augmented feedback 
designs was provided during the trainings is dependent on the group and will be explained in 
detail later (see section Feasibility Study). Whenever a subject received a certain augmented 
feedback for the first time, the augmented feedback was described to the subject and a short 
familiarization period of maximum 60 s was additionally provided. A break of ~25 s was 
included between training with augmented feedback and no-feedback test conditions. On Day 
2, a retention (RE2) test of 180 s was performed, followed by five training sessions according 
to the same procedure of Day 1. On Day 3, another retention test (RE3) of 180 s was 
performed.  

During all no-feedback test conditions, the subjects were verbally instructed to increase or 
decrease the stroke rate if they left the range of 22 to 26 strokes/min in order to avoid effects 
on performance caused by a speed-accuracy trade-off. There were no verbal instructions on the 
stroke rate during the training conditions. 

Automated Feedback Selection 

We wanted to realize an automated selection of the available augmented feedback designs to 
train towards a desired trunk-arm movement. This automated selection should be based on 
improvement predictions to enable comprehensible reasoned selections, data labeling arising 
from quantitative analysis, and flexibility of applied selection rules. Additionally, we wanted 
to incorporate three general assumptions into our predictive models: 

• The challenge point theory states that training exercises need to be matched to a 
subject's skill level (Guadagnoli & Lee, 2004) such that the subject can improve 
optimally. Therefore, we assume that when predicting improvement for a given 
augmented feedback, the current skill level of the subject plays an important role. 

• The different augmented feedback designs cause different improvements. Selecting 
feedback based on predictions is only meaningful if there are different improvements 
observable for the available feedback designs. 

• Individualization of the improvement prediction is important since there is a large inter-
subject variability in humans when learning a motor task. 

Skill level is an abstract term, and measuring the current skill level is challenging. In our trunk-
arm rowing task, we interpreted skill as the grade to reproduce the reference rowing stroke by 
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oneself, in absence of any augmented feedback. Therefore, the best estimate of the current skill 
level was measured by our kinematic performance metrics average spatial error ( ) and 
average velocity magnitude error ( ) during no-feedback test conditions. Our experimental 
protocol (Figure 3) provided an alternating sequence of feedback trainings and no-feedback 
test conditions. This alternating sequence enabled us to use the performance achieved during 
last no-feedback test condition as an estimate of the current skill level. 

We have come up with a prediction-based concept (illustrated in Figure 4), where the skill 
level measured during the last no-feedback test condition before the training 
( , Δ ) is used to predict the subject's improvements (Δ ̂ , Δ ̂ ). over one 3 min 
training for each available augmented feedback. The augmented feedback for the next training 
could then be selected based on the predicted improvements (Δ ̂ , Δ ̂ ).  
 

 
Figure 4. Automated Feedback Selection Concept. 

Additionally, the subject's true improvements were measured by the change in our 
performance metrics from the no-feedback test condition before training to those recorded 
directly after the feedback training (Δ = − ). A new data point consisting of the 
error before ( ), the performed feedback type ( ), and the true observed 
improvements (Δϵ , Δϵ ) could be added to a subject’s database. This new data point could 
then be used to improve or individualize the prediction models that originated from data from 
previous studies. 

Prediction 

To realize the prediction based on the current skill level, we have chosen to use linear mixed 
models. For linear mixed models both theories and software implementations are available for 
model fitting, for objective model comparisons (e.g. likelihood ratio tests), and for conditional 
evaluation of the model predictions (West, Welch, & Galecki, 2006). Additionally, model 
comparison tests of linear mixed models can be interpreted as an explorative data analysis, 
which provide insights into the fitted data. Linear mixed models allowed us to include and test 
preliminary assumptions, i.e. the dependency of improvements on the current error level of the 
subject, the augmented feedback type, and a random factor for subject-specific 
individualization. The model finding procedure is described in the subsection Model Selection 
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following the description of our Database Previous Studies. 

Selection 

A greedy selection strategy was used to select between the augmented feedback designs for 
simplicity. The greedy strategy selected the augmented feedback with the highest sum of 
normalized, predicted improvements over the next three minute feedback training: ∗ 	= 	 argmax 	 ( ) + 	 ( ) 	, 
where ̃ = 2.1 º, ̃ = 3.4	 º/s were used to normalize the improvements by the average 
group errors from the retention test on day 3 (RE3) of the best group from our previous 
experiments: the AudioVisual group from (Sigrist et al., 2014).  

Database Previous Studies  

To develop our prediction models, we used data from our previous studies (Rauter et al., 2015; 
Sigrist et al., 2014). All seven different augmented feedback designs were tested in the 
previous studies. For each augmented feedback, a group of eight subjects was trained while 
receiving the same augmented feedback during all ten training conditions. In total, 560 training 
conditions of 3 minutes in duration were recorded. For each training condition one data point 
was obtained for both improvement in spatial error (Δ ) and velocity magnitude error (Δ ). 
Data points were obtained in the form of the error value  from the test condition 
immediately before the training condition and the error reduction Δ . For both spatial error and 
velocity magnitude error 1120 data points were expected. However, due to some missing test 
condition data, there were 549 data points for the spatial error  and 535 data points for the 
velocity error  (1084 data points in total). 

Model Selection  

We started our linear mixed model selection with a base hypothesis model. We simplified our 
base hypothesis model until we achieved convergence in fitting our simplified hypothesis 
model to the data of our previous studies. The resulting hypothesis model was then compared 
to even more simplified, and to more complex models, by using likelihood ratio tests. With this 
procedure, we wanted to ensure that we were using an evidence based prediction model, which 
did not over-fit the data. 

Our linear mixed model designs are reported using a form of the Wilkinson-Rogers notation, 
where the dependent variable is on the left side of the ~-symbol, the fixed and random factors 
on the right side of the ~-symbol, where random factors are denoted by being inside brackets 
(West et al., 2006). This notation does not only compactly represent the models, but can also 
directly be used for model specification in statistical software such as Matlab® (MathWorks, 
MA, USA) and R (R Development Core Team, 2008), which were both used for this work. For 
model selection, the R packages lme4 (Bates, Maechler, Bolker, & Walker, 2014) and RLRsim 
(Scheipl, Greven, & Kuechenhoff, 2008) were used for model fitting and comparisons with 
likelihood ratio tests (R commands lmer, anova, exactRLRT). Matlab® was used, since it 
provides a linear mixed model implementation with conditional prediction capabilities 
(Matlab® commands fitlme, predict). Additionally, model comparisons with likelihood ratio 
tests were performed in Matlab® to confirm results from R (Matlab® command compare). 
Significance results from R and Matlab® were consistent, but the exact p-values differed 
slightly. Reported p-values are from the results in R, since there was no equivalent for the 
RLRsim package in Matlab®. 

We used chi-square based likelihood ratio tests to compare the hypothesis model with the 
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simplified or extended models. These likelihood ratio tests correct for the different statistical 
degrees of freedom and provide the probability , which indicates the probability that the 
increased likelihood of the more complex model is by chance. If  is larger than our chosen 
significance limit 	 = 	0.05, then the more complex model is not significantly better than the 
simplified model and should be rejected. For the special case, where a linear mixed model is 
compared to a model without random effect, RLRsim (Scheipl et al., 2008) was used instead of 
a chi-square based likelihood ratio test (with default settings using 10000 simulated values). 
The assumption of normally distributed residuals of the resulting hypothesis model was 
checked visually using a normal Q-Q plot (R commands qqnorm, resid).  

The base hypothesis model Δ ∼ ∗ ∗ + ( ∗ − 1| ) represented 
the assumptions that for each error metric  and augmented feedback , a different 
linear function based on the error value ( = ) before the training explains the error 
improvement Δ  over the 3 minute training. A positive Δ  was defined to be an improvement, 
i.e. a reduction of the error value. Additionally, an individualization term was modeled as a 
random factor for a given subject: the complete interaction between each error metric and 
augmented feedback ( ∗ − 1| ). The −1 denotes removal of a global 
intercept of this random factor. This individualization term can be interpreted as the subject's 
individual giftedness or non-giftedness to reduce a certain error with a certain augmented 
feedback. 

For our prediction models, we restricted ourselves to training related information in this work. 
Therefore, we decided against increasing our model complexity by using subject 
demographics, e.g. age or gender. With this approach, we expected the resulting hypothesis 
model not to over-fit and to be reasonably specific regarding to our assumptions of skill, 
feedback, and individual subject dependences. 

Creation of New Data Points and Model Fit Update 

Each subject started with the same prediction model, i.e. the same model fit based on the same 
preliminary data. After recording the test condition that followed the training with the selected 
augmented feedback, the true error improvements (Δ 	( ∗ ),	Δ 	( ∗ )) were calculated 
and used to update the model fit for this subject. To ensure that each subject had the same 
amount of data and comparable circumstances independent of the order of testing, the model fit 
was only updated with the subject's own data points. All data points were equally weighted for 
the fit. The maximum of 10 data points for each subject had relatively low weight against the 
minimum 535 preliminary data points and were assumed to have little impact on the nominal 
models. The subject's own data points were assumed to have most impact on the 
individualization random effect during conditional prediction. Therefore, individualization was 
assumed to arise from the subject random effect and not from a shift in the nominal models. 

After completion of a no-feedback test, the next training configuration should be selected with 
minimum delay, however, there is a considerable amount of calculation necessary. First, the 
no-feedback test had to be evaluated, including rowing stroke segmentation and evaluation of 
the single strokes. Then, the model fit had to be updated and the conditional prediction had to 
be calculated for each available training configuration to select the next training type. To 
minimize the delay between the no-feedback test and the next training, the evaluation of 
rowing strokes in the no-feedback tests was implemented in real-time. For this real-time 
evaluation, the individual rowing strokes and reference were down-sampled to 101 data points 
instead of 250. Down-sampling to 101 instead of previously 250 data points did not critically 
affect the performance metrics. 
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Feasibility Study  

To check if our concept fulfilled our goal, we performed a feasibility study with new subjects. 
The feasibility study should show that our predictive models generalize to new subjects and 
that feedback selection was reasonable.  

Generalization of our predictive models was investigated by comparing the magnitude of 
prediction residuals for new independent data points to those fitted by the model. Additionally, 
to investigate if online updating of the prediction models is necessary, the magnitude of 
prediction residuals was compared between the used updated models and the constant models. 

To ensure that our automated feedback selection performed in a reasonable fashion, we 
checked which feedback designs were selected, and compared the learning results from a 
group of subjects trained with automated feedback selection against our previously best 
preforming group, and a no-feedback control group. 

Groups 

The feasibility study was held in a parallel design with 8 healthy volunteer subjects per group 
according to the same experimental protocol as in our previous studies (Rauter et al., 2015; 
Sigrist et al., 2014). The best performing group in our previous experiments was the 
AudioVisual group (Sigrist et al., 2014), which received 10 trainings with the AudioVisual 
training configuration. This AudioVisual group will be reported for comparison.  

The test group in this study was called Predicted group. The subjects of the Predicted group 
received augmented feedback according to our automated feedback selection.  

In addition, to the new Predicted group, a control NoFeedback group was recorded. The 
NoFeedback group only received information on the desired movement during the instruction 
phase. Subjects in the NoFeedback group performed free trainings instead of trainings with 
augmented feedback, e.g. 3 min training time with the rowing scenario and water rendering. 
This group was tested to prove that our desired movement pattern was not simple enough for 
the subjects to remember completely from the instructions and to simply improve by getting 
used to the robot and the rendered environment. 

Subjects 

A total of 16 subjects (6 females, mean age 26.3 years, SD 3.5 years) were recruited, mainly 
from the university (students). The subjects were healthy, had normal hearing and normal or 
corrected-to-normal vision. All subjects had no prior experience with the task and confirmed to 
be non-rowers and perform at least half an hour of sport per week. 

The subjects were pair-wise randomly assigned to one of two groups consisting of eight 
subjects while matching gender. A coin toss assigned the first subject of each pair, and the next 
subject of the same gender was assigned to the other group. The subjects were either assigned 
to the Predicted group (3 females, 5 males, 24-34 years, mean age 28 years, SD 3.1 years) or to 
the NoFeedback group (3 females, 5 males, 20-30 years, mean age 24.6 years, SD 3.2 years). 
Written informed consent was obtained from all subjects. The methods were approved by the 
ethics commission of the Federal Institute of Technology, Zurich, Switzerland (ETH Zurich, 
Ethics Commission, EK 2014-N-21). The study was carried out in accordance with the 
approved guidelines. 

Statistical Evaluation 

Statistical evaluation was performed in Matlab®. Within each test condition the two metrics 
spatial error and velocity error were averaged over all valid strokes. These mean values (  and 
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) per test condition for each subject were used for the statistical analysis. 

Baseline and retention tests were investigated using repeated-measures ANOVA for interaction 
between group (AudioVisual, Predicted, NoFeedback) and test (BL, RE2, RE3) and between 
group effects. Changes within each group were assessed using follow-up repeated measures 
ANOVA. Violations of sphericity were tested for with Mauchly's test for sphericity, but were 
not found to have occurred. Multiple comparisons were corrected using post-hoc Bonferroni 
tests. 

Significant differences for a specific test condition (e.g. baseline test on Day 1) between the 
groups were assessed with One-way ANOVA. Multiple comparisons were corrected for with a 
Tukey-Kramer post-hoc test. 

One-way ANOVA was also used to test whether the groups differed in the learning rate, i.e. 
the error reduction from one test condition to the next normalized by the error at the first of 
those two test conditions. Three different learning rates were calculated and tested for group 
differences: from baseline test on Day 1 to retention test on Day 2 (BL to RE2 normalized with 
BL), from baseline test on Day 1 to retention test on Day 3 (BL to RE3 normalized with BL), 
and from retention test on Day 2 to retention test on Day 3 (RE2 to RE3 normalized with 
RE2). 

Results 

Model Selection 

The model selection results are summarized in Figure 5, starting from middle left with the base 
hypothesis model. Due to the limitation in our preliminary data that each subject received one 
type of augmented feedback only, fitting our base hypothesis model was not possible. In R, we 
did not achieve model convergence, probably due to aliasing between the fixed and the random 
effect of the  interaction. In Matlab® the model could not be fit because their 
implementation requires a complete rank dataset. Therefore, we simplified our base hypothesis 
model to the hypothesis model (Figure 5, middle), which could be supported by our data. This 
hypothesis model excluded the type of augmented feedback in the random effect. In other 
words, the modeled subject-specific giftedness only captured how a subject is gifted at 
decreasing a certain error. But the modeled subject-specific giftedness could not capture how 
gifted a subject is in using a certain augmented feedback to decrease a certain error. 

According to the likelihood ratio tests, the hypothesis model explained the data significantly 
better than the simplified models (Figure 5, top row). A model without the discrimination of 
the error metric in the random effect showed a lower likelihood for the same complexity 
(Figure 5, middle row, right). Finally, models that included the global training number or the 
training day number were significantly better at explaining the data than the hypothesis model 
(Figure 5, bottom row). However, we have chosen to disregard these models. The available 
data was only from a two day protocol and we decided to prefer slightly worse predictions 
instead of adding a linear dependence based on two time points. Therefore, the hypothesis 
model (Figure 5, middle) was used as the prediction model for the feasibility study. 
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Figure 5. Model Selection: Arrows indicate direction of increasing model complexity, two-headed arrows 

indicate same amount of statistical degrees of freedom. The imprinted -Value indicates the 
probability that the more complex model explains the data better than the less complex model only by 
chance (e.g. from likelihood ratio test). The arrow colors indicate if this probability is significant 
( < 0.05) in green, non-significant in orange or not available due to missing model convergence in 
red. A green box indicates that the respective model is explaining the data significantly better than its 
ancestor. An orange box indicates that it is either not significantly better than its ancestor or worse in 
explaining the data compared to a model of equal complexity. A red box means that the model fitting 
failed to converge, either due to aliasing or limitations in the available data. 

Feasibility Study 

Selected Augmented Feedback Designs 

In total, the Predicted group received AudioVisual feedback in 65 out of 80 trainings and 
Visual feedback for the 15 remaining trainings. Other possible augmented feedback designs 
were not selected. 

Baseline to the Retention Tests 

For spatial error, repeated-measures ANOVA tests revealed the significant main effect of tests, 
( ( , ) = 3.67, = .0340) and the interaction between test and group ( ( , ) = 4.68, = .0033). Also for velocity error, main effect of tests ( ( , ) = 38.92, = 2.7 ⋅ 10 ) and 
interaction between group and test ( ( , ) = 7.59, = .0001)  were significant. 

The within group follow-up repeated-measures ANOVA (Table 1) showed that only the 
AudioVisual comparison group differed significantly from baseline to retention test on day 2 
and from baseline to retention test on day 3 for the spatial error (Figure 6, top). For the velocity 
error, the AudioVisual group differed again significantly from baseline to retention test on day 
2 and from baseline to retention test on day 3. But additionally, the Predicted group showed a 
trend in difference from their baseline to the retention test on day 2 and a significant difference 

1

Base Hypothesis ModelΔ ∼ ∗ ∗ +
( ∗ − 1| )

Hypothesis ModelΔ ∼ ∗ ∗ + ( − 1| )

< 10

No Error DependenceΔ ∼ ∗ +
( − 1| )

No Error Type Difference in Random EffectΔ ∼ ∗ ∗ + (1| )

No Fixed Error Type Δ ∼ ∗ +
( − 1| )

< 10

No Feedback Type DifferencesΔ ∼ ∗ +
( − 1| )

= 0.015

No Random Effect PersonalizationΔ ∼ ∗ ∗
< 10

Dependence on Daily Training NumberΔ ∼ ∗ ∗ + +
( ∗ − 1| )

= 0.38

Dependence on Day and Training NumberΔ ∼ ∗ ∗ + + +
( ∗ − 1| )

Dependence on Training NumberΔ ∼ ∗ ∗ + +
( ∗ − 1| )

< 10
Dependence on DayΔ ∼ ∗ ∗ + +

( ∗ − 1| )

< 10

= 0.57
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from their baseline to the retention test on day 3 (Figure 6, bottom). 

Table 1. Results from baseline to retention, within group follow-up differences from the Bonferroni post-hoc 
that are significant or close to significance. 

Spatial Error Test1 Test2 Difference StdErr p-Value 

AudioVisual BL RE2 1.32 0.22 .0016 

AudioVisual BL RE3 1.62 0.31 .0038 

Velocity Error Test1 Test2 Difference StdErr p-Value 

AudioVisual BL RE2 5.50 0.72 3.7·10-4 

AudioVisual BL RE3 5.80 0.78 4.3·10-4 

Predicted BL RE2 2.97 1.04 .0721 

Predicted BL RE3 3.64 0.70 .0036 

 

One-way ANOVA between the groups at fixed tests did not show any significant differences at 
baseline (Table 2). For the spatial error (Figure 6, top), the only differences were found in the 
retention test on day 3, the NoFeedback group was significantly different to both the 
AudioVisual group and the NoFeedback group. For the velocity error (Figure 6, bottom), the 
AudioVisual group differed significantly from the Predicted and the NoFeedback group at the 
retention tests on both day 2 and day 3. 

Table 2. Between group differences at fixed tests from one-way ANOVA, corrected for multiple comparisons. 

Spatial Error Group1 Group2 Lower Mean Higher p-Value 

RE3 AudioVisual NoFeedback -3.27 -2.00 -0.73 .0019 

RE3 Predicted NoFeedback -2.99 -1.72 -0.45 .0069 

Velocity Error Group1 Group2 Lower Mean Higher p-Value 

RE2 AudioVisual Predicted -7.70 -4.46 -1.22 .0062 

RE2 AudioVisual NoFeedback -7.67 -4.43 -1.19 .0065 

RE3 AudioVisual Predicted -7.03 -4.08 -1.14 .0058 

RE3 AudioVisual NoFeedback -8.36 -5.41 -2.47 .0004 

 

The between group differences in learning rate (Table 3) from baseline to the retention test on 
day 3 showed significant differences between the NoFeedback group and both the AudioVisual 
group and the Predicted group. Additionally, for the velocity error the learning rate from 
baseline to the retention test on day 3 of the AudioVisual group differed significantly to the 
learning rate of the Predicted group. 
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Figure 6. Results of the AudioVisual group, the Predicted group, and the NoFeedback group for the 3-minute 

test conditions. The group means are additionally plotted as black dashed lines into the box plot. 
Vertical bars in group colors denote differences between the test conditions in the within groups 
follow-up repeated measures ANOVA: the condition marked with the group-colored asterisk * is 
significantly different to the conditions with a small bar. The black vertical bars denote group 
differences at a fixed test condition from one-way ANOVA. A group mean marked with a black 
asterisk is significantly different to the group means at the same test condition marked with a small 
horizontal black bar. 
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Table 3. Between group differences in learning rate from one-way ANOVA, corrected for multiple comparisons. 

Spatial Error
Learning Rate 

Group1 Group2 Lower Mean Higher p-Value 

from BL to RE2 AudioVisual NoFeedback -0.80 -0.38 0.04 .0808 

from BL to RE3 AudioVisual NoFeedback -1.02 -0.62 -0.22 .0025 

from BL to RE3 Predicted NoFeedback -0.84 -0.44 -0.03 .0332 

from RE2 to RE3 Predicted NoFeedback -0.70 -0.33 0.04 .0850 

Velocity Error
Learning Rate 

Group1 Group2 Lower Mean Higher p-Value 

from BL to RE2 AudioVisual Predicted -0.54 -0.30 -0.06 .0146 

from BL to RE2 AudioVisual NoFeedback -0.71 -0.47 -0.23 .0002 

from BL to RE3 AudioVisual Predicted -0.50 -0.28 -0.05 .0133 

from BL to RE3 AudioVisual NoFeedback -0.77 -0.54 -0.32 1.4·10-5 

from BL to RE3 Predicted NoFeedback -0.49 -0.26 -0.04 .0193 

 

Prediction Residuals 

For the spatial error, the prediction residuals (Figure 7, top) only show minor differences 
between the updating and the constant model. For the velocity error, the prediction residuals 
(Figure 7, bottom) of the constant model are larger than the prediction residuals for the 
updating model, except for the first training. For both metrics, the prediction residuals reach 
similar levels to the apriori data fit from the 8th training on. 

Discussion 

In this work, a general concept of an automated feedback selection was elaborated that selects 
augmented feedback based on improvement predictions. The elaborated concept provides 
flexibility for a variety of different robot-assisted trainings, training goals, and performance 
metrics. To our knowledge, this is the first generally applicable virtual trainer concept, that 
closes the loop between the evaluation of subject performance and reasoned selection of 
different available augmented feedback designs. 

The findings of our model selection will be discussed first in subsection Model Selection and 
Implications to provide insights into the existing data. Then, to elaborate whether the feedback 
selection was meaningful, we start to discuss the occurrences of the selected feedback designs 
to facilitate the interpretation of the results in learning from baseline to retention of the 
feasibility study in the section Selected Augmented Feedback Designs. Then, subsection 
Baseline to the Retention Tests will compare the progress of our Predicted group to the 
previously best performing group and to our NoFeedback group, to answer the question of 
whether our feedback selection was meaningful. Finally, the generalization of our prediction 
models to new subjects will be discussed in subsection Prediction Residuals. 

 



IJCSS – Volume 16/2017/Issue 3              www.iacss.org 

166 

 
Figure 7. Prediction accuracy comparison between the used updating model and a constant model. The 

prediction accuracy is illustrated with the development of the prediction residuals over the 10 training 
conditions for the 8 subjects in the Predicted group. For reference, the blue box plot in the column 
labeled with fit shows the residuals from fitting the linear mixed models to the apriori data points, 549 
data points for the spatial error and 535 data points for the velocity error were available. The green 
boxes show the prediction residuals of the used updating model. The red boxes show the prediction 
residuals from constant models that were only based on the apriori data. The left axis indicates the 
absolute value of the prediction residual in the original unit. The right axis indicates the residuals as 
percentage normed by the span between maximum and minimum error improvement observed during 
the validation study. For the spatial error metric, the maximum and minimum improvement observed 
were 2.14º and -1.19º. For the velocity error metric, the maximum and minimum improvement 
observed were 6.13º/s and -2.03º/s. 

Model Selection and Implications 

Using linear mixed models as a base for our prediction models comes with advantages but also 
limitations. Advantages compared to nonlinear modeling approaches are the robust and 
efficiently fitting algorithms, comprehensible form and the possibility to check if model 
assumptions are supported by preliminary data. However, the linearity of the models may be 
problematic: Firstly, when put to practical use, the model will extrapolate to areas where no 

pr
ed

ic
tio

n 
re

si
du

al
s 

of
 s

pa
tia

l e
rr

or
 [

º]

no
rm

ed
 p

re
di

ct
io

n 
re

si
du

al
 [

10
0%

 :=
 3

.3
3º

]

pr
ed

ic
tio

n 
re

si
du

al
s 

of
 v

el
oc

ity
 e

rr
or

 [
º/

s]

no
rm

ed
 p

re
di

ct
io

n 
re

si
du

al
 [

10
0%

 :=
 8

.1
6º

/s
]



IJCSS – Volume 16/2017/Issue 3              www.iacss.org 

167 

previous data has been collected, which can lead to a very poor performance. Secondly, the 
linear models will cross the zero line at some point and eventually predict negative 
improvement. While negative improvements or deterioration of performance with further 
training might occur, predicted deterioration should be interpreted very carefully. If training 
efficacy is flooring, predicted deteriorations might just be artifacts of the linear form. 
However, for our application, the predictions were used to select between augmented feedback 
designs. If the predicted improvements are negative, the predicted value is inconsequential 
since this feedback mode should not be chosen. If predicted improvements are negative for all 
available feedback designs, the exact values would also be of little importance, since a 
selection between ineffective results would have no relevance. Therefore, we were confident 
that the benefits of linear mixed models would outweigh the drawbacks. 

Another limitation of our modeling and fitting process is that we did not include known 
boundaries or limitations in our noise modeling, e.g. our errors can only be positive and 
improvement is bound by the current error magnitude. That means assuming normality of 
residuals on the improvement will result in tails that violate those limitations. However, using 
another noise model would result in a less efficient model fitting and additional complexity to 
our method. To check if this simplification would be critical, the assumption of normally 
distributed residuals was checked by visual inspection. Single data points at the end of the tails 
deviated from the normal line, but were not considered critical. Those data points were not 
further investigated, because a violation of normality is assumed to be unimportant for the 
parameters of multilevel regression models (Gelman & Hill, 2007). Additionally, our sample 
size was sufficiently large (1084 data points) that we could assume the central value theorem 
would ensure that our fitting residuals approximate normality in the areas of interest. 

Our model selection procedure using linear mixed models could also be understood through an 
explorative data analysis. However, we limited our discussion of the test results between the 
hypothesis model and the simplified or extended models (Figure 5) to the implications for the 
model predictions.  

No Error Dependence: The test between the hypothesis model and the model that is 
independent of the error value showed that the expected improvement is dependent on the 
current skill level. This result was not surprising since we considered an error metric and error 
improvement: the error is bounded to be larger than zero, the improvement is linearly bounded 
as well, i.e. the improvement cannot be higher than the current error value. Therefore, it is 
expected to find a correlation between error improvement and error value before the training 
for each non-detrimental augmented feedback. However, this result highlights the importance 
of taking the current skill level into account when predicting improvements.  

Our simplification of using errors as a direct measure for skill level could limit the predictions 
of our model. Errors reflect an observable performance rather than an objective skill level. The 
relation between observable performance and related skill levels have been modeled in a more 
sophisticated manner in the field of cognitive skill learning, e.g. for a programming problem 
(Huang, Guerra-Hollstein, & Brusilovsky, 2016). However, a transfer from their concept to 
motor learning faces additional challenges: We have no binary performance outcomes and for 
the problem of learning a movement and related skills in motor learning provide a less clear 
structure than those of solving a programming problem. If a similar model was developed for 
motor learning, improvement modeling for individual feedback trainings based on a more 
sophisticated skill level model could provide better predictions. 

No Fixed Error Type: This test checked if our two error metrics, spatial error  and velocity 
magnitude error  were different enough, such that it mattered if we predicted spatial 
improvement or velocity improvement. In our case, including knowledge of the error type 
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explained the data significantly better than the model without error type. In other words, the 
spatial error  and the velocity magnitude error  were only weakly correlated in our data. If 
such a test would fail, the informativeness of the chosen error metrics to measure different 
aspects of movement performance should be questioned.  

No Feedback Type Difference: This test checked if the different augmented feedback designs 
caused significantly different improvements. In our data, the observed improvements differed 
significantly based on the different augmented feedback designs. If no significant differences 
were observed dependent on which augmented feedback had been used, the different 
augmented feedback designs might be too similar in their effect on the chosen error metrics. In 
such a case, a selection of individual augmented feedback designs could not be justified based 
on these error metrics.  

No Random Effect: This test basically showed that we had intra-subject correlation, meaning 
that subject-specific information was observable in the data. Therefore, a part in the model that 
adapts to the individual subject was expected to improve the predictive capabilities of the 
model. We would assume that having a term that adapts its prediction to each specific subject 
would be of great importance. Many different factors of the human subject and behavior are 
unknown and eventually not measurable by a robot. An individualization of the prediction 
models to observations from this subject seems to be the only solution to compensate at least 
partially for such effects. However, the limitation in our previous data that each subject was 
only trained with one type of augmented feedback, resulted in a model with a random effect 
that explained only a global giftedness or non-giftedness to reduce either spatial or velocity 
magnitude error. We expected that not considering subject giftedness for each available 
augmented feedback would be a critical limitation for studies where longer protocols or less 
strict inclusion criteria were applied. E.g. our hypothesis model would fail to learn that a blind 
subject cannot learn with visual augmented feedback, but would assume the subject to be 
generally too ungifted to improve. 

Dependence on Daily Training Number: The effect of including the increasing training 
numbers on one day was not significant. A small negative effect was observed, which could be 
interpreted as increasing subject exhaustion or loss of focus. However, since this effect was not 
significant, we assume that our healthy subjects were not critically exhausted or had lost focus 
within 5 consecutive trainings in one day. 

Dependence on Training Number: The observed significant dependence on the training number 
showed that there was small positive effect of increasing training numbers. One explanation 
could be that the subjects could profit more from later trainings, because they were more 
experienced with the augmented feedback designs. If such an experience with a specific 
augmented feedback would be crucial for its efficiency, our concept of automatically switching 
between different feedback might be detrimental. However, this effect was not visible when 
looking at the training number within one day, therefore we raised the question if this 
observation was just based on an effect of the day. 

Dependence on Day: The observed significant dependence on the training day showed that 
subjects improved more on the second day of training – once the improvement was corrected 
for the other dependencies. We have decided to ignore this effect and use the hypothesis model 
without dependence on day for our feasibility study, mainly because we were not confident 
regarding how this effect would generalize to a longer training protocol. The other model 
dependencies on current error value, augmented feedback type, and the individual subject seem 
intuitively more general and independent of the training protocol used to obtain the 
preliminary data. Therefore, we decided to test the hypothesis model without this effect. We 
preferred showing a working principle based on slightly worse performing prediction models, 
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than one that might be too specific by relying on our two day protocol. Nevertheless, we 
realized that the model including the dependence on the day reached a very similar likelihood 
to the model with the dependence on the training number. We assumed that the previously 
observed dependence on training number was therefore based on this dependence on day only. 
To make sure that no valuable significant information was hidden in the training number 
except for the day effect, we tested with a model including day and training number. 

Dependence on Day and Training Number: The model including both day and training number 
did not explain the data significantly better than the model only including the day. If there was 
a significant positive effect of training number left, that could have been a hint that subjects did 
get increased benefit when receiving the same augmented feedback multiple times, e.g. due to 
increased understanding of the feedback. However, this was not observed in our data. 
Therefore, we were confident that with the given short instructions our subjects could profit 
from the augmented feedback from the first time they experienced it. Thus, we did not expect 
severe negative consequences if an automated selection often switches between feedback 
designs. 

All tested ancestor models provided significantly less model evidence, probabilities were 
below our chosen significance level of 	 < 	0.05. Therefore, we considered our model 
complexity justified (not expected to over-fit). The model of the same statistical complexity 
without error type discrimination in the random effect was fit and discarded because it had a 
slightly lower likelihood. In summary, the results of our model selection procedure confirmed 
our three assumptions: dependency on current skill level, dependency on the feedback type, 
and the necessity of individualization due to the intra-subject correlation. 

Selected Augmented Feedback Designs  

Only the AudioVisual and the Visual feedback, which share the same visual augmented 
feedback, were selected. When trained exclusively with either AudioVisual or Visual 
augmented feedback no group differences in learning from baseline to retention were observed 
in a prior study (Sigrist et al., 2014). Therefore, these two augmented feedback designs were 
very similar and differences in their selection may be based purely on chance. One of our basic 
assumptions was that different feedback designs were better suited at different error levels, 
measured by spatial and velocity magnitude error. However, this basic assumption was not 
fulfilled between those two feedback designs. With the strong similarity of the two chosen 
feedback designs in mind, the occurrences seem to indicate that in our two day protocol the 
same augmented feedback may have been optimal with respect to our selection strategy. 

A possible explanation for these two augmented feedback designs to be selected only is that 
our greedy selection strategy on the error weighting based on the previous best group 
performances. This greedy selection did not enable planning or evaluation of different 
reasonable training strategies, e.g. selecting an augmented feedback that specifically helps to 
reduce spatial error (e.g. PathController) and focusing on reducing velocity error in later 
trainings could only happen if a subject had a very high spatial error compared to the velocity 
error. However, our subjects tended to have higher velocity errors, but more comparable 
spatial errors to the previous AudioVisual group (Figure 6, bottom). Therefore, feedback 
designs that did not provide a velocity reference (PathController, AdaptivePathController, 
ReactivePathController) were unlikely to be selected through our selection strategy. 

Planning over all remaining trainings instead of a greedy strategy selecting the next training 
could reduce this limitation of not switching between feedback designs that focus on spatial or 
velocity error. Such planning can be realized using informed search techniques, e.g. Breadth-
First Search (Russell et al., 2010). However, planning over multiple trainings would also cause 
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prediction errors to add up. Therefore, if such a strategy would still be beneficial needs to be 
investigated in a future iteration of this study. 

Another possible explanation as to why only these two augmented feedback designs have been 
selected is that they were the only two that did not change the task dynamics. All the other 
augmented feedback designs contained a haptic concurrent feedback, which altered the forces 
that the subject had to exert in order to reproduce the reference stroke. This may be an 
indication that for learning to reproduce our rowing movement, an augmented feedback that 
does not alter task dynamics may be superior. A major challenge in learning to reproduce our 
rowing movement is the slightly changing task dynamics, which are caused by slight variations 
in the relative velocity between boat and water. Haptic concurrent feedback might interfere 
with learning of how to compensate for these slight variations in required task dynamics. 

In summary, the selected augmented feedback designs indicated that with our task protocol and 
feedback designs we observed the trivial case, where all subjects progressed in a way that one 
feedback training was superior to the others for their observed error levels. For different error 
levels, different feedbacks could have been selected. From our previous data we were not 
expecting the subjects to progress in this manner. Despite this unexpected behavior, our 
general concept resulted in a meaningful selection: Selecting the feedback based on predictions 
for single 3 minute trainings with a greedy strategy resulted in the same gold standard that 
showed the highest baseline to retention learning in previous studies. We do not claim that this 
finding generalizes to situations with other augmented feedback designs or other trained tasks. 
However, we demonstrated that a very simple decision rule may be sufficient for reasonable 
feedback selection, if the selection rule is based on improvement predictions. 

Baseline to the Retention Tests  

Since the Predicted group only received the AudioVisual and Visual feedback, a similar 
learning to the formerly tested AudioVisual group (Sigrist et al., 2014) could have been 
expected. However, some differences in behavior were found, which will be discussed in detail 
for the two different errors.  

Spatial error was not significantly decreased over test conditions in the Predicted group 
(Figure 6, top). In contrast, spatial error was significantly decreased over test conditions in the 
AudioVisual group. However, no group differences between Predicted and AudioVisual were 
found either for the error values at any test condition or in learning rates. The missing 
significant decrease over test conditions in the Predicted group may be based on the lower 
baseline mean error or the higher observed variance in our Predicted group. Therefore, the 
observed tendency of a decrease in spatial error was in line with our expectations. 

Velocity error was significantly decreased from BL to RE3 in the Predicted group. However, 
the absolute errors of the Predicted group were significantly higher than those of the 
AudioVisual group and the learning rates were found to be significantly lower. This basically 
means that both groups did improve, but the new Predicted group improved significantly less 
than the formerly measured AudioVisual group. The only difference in the group protocols was 
that the Predicted group received some Visual feedback trainings without sonification. Since 
the formerly measured AudioVisual and Visual groups (Sigrist et al., 2014) did not show such 
differences, we assume that the differences are caused by a systematic change between the two 
different studies, in which these groups were recorded. Even if the same protocol, the same 
task and the same prototype robot were used, small systematic changes can never be prevented 
completely. In our case there were minor updates in the robot hardware, namely exchanging 
the oarlocks to allow for a higher pretension in robot control and required sensor recalibration. 
These slight changes in our robot seem to have affected the task characteristics enough to be 
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measurable in the outcome, i.e. we assume that reproducing the velocity profile of the 
reference movement accurately had become more difficult. 

The NoFeedback control group matched our expectation of not showing any learning from 
baseline to the retention tests. 

Prediction Residuals 

Spatial Error Reduction 

The prediction residuals of spatial error improvements reached similar levels to the model 
fitting residuals (Figure 7, top). Therefore, for the spatial error improvements, the model 
generalized well and did not overfit our a priori data. 

The spatial predictions are similar to the a priori fit residuals for most of the trainings. The 
median prediction residual for the 8th and subsequent training conditions remained lower than 
10% and the upper bound of the 95% confidence interval remained below 17% (Figure 7, top). 
However, only small differences in prediction accuracy were observed between the updating 
and the constant model and therefore an updating model may be an unnecessary effort for 
predicting the spatial error improvements. In other words, the knowledge from having 
observed the AudioVisual group in the previous study was reliable enough to predict the 
improvements in spatial error of the Predicted group.  

The low prediction errors might have resulted from a very low spatial error decrease in 
general. The Predicted group did not significantly decrease their spatial error from baseline to 
retention. On average, the Predicted group decreased their spatial error by 0.68º, the 
informativeness of a median prediction residual of around 0.33º is therefore questionable. 

The prediction residuals seem noticeably higher for the training conditions 1, 4, 5, or 6 than for 
the other training conditions (Figure 7, top). Intuitively it seems clear that in the beginning, 
there should be higher prediction residuals, since the models could not individualize the 
predictions to the subject. However, the missing individualization in the beginning does not 
explain the observed rise in residuals in training 4, 5, or 6. Training 4 and 5 correspond to the 
last two trainings on the first day. We can only speculate the reasons for the worse predictions 
at these trainings. Some subjects might lose attention after receiving the almost same 
augmented feedback training for the fourth time in a row. Another possible reason could be 
that some subjects were less motivated or focused during their 4th and 5th test condition. The 6th 
training corresponds to the first training on the second day. A possible reason for the increase 
in prediction residuals may be that subjects came from a variety of different previous 
occupations and showed differences in readapting to the task and the simulator. 

Velocity Error Reduction 

For the velocity error improvements (Figure 7, bottom), the prediction residuals of the 
updating model reached similar levels to the model fitting residuals as well. The prediction 
residual median and percentiles of the a priori data fit seem smaller than those of the updating 
model. This difference between priori data fit and updating model seem larger for the 
prediction residuals of velocity error than for those of spatial error. However, only 8 data 
points were used to compute medians and percentiles of the updating model per training, 
whereas for the a priori data fit 535 data points were used. The 95% confidence of the updating 
model residuals was observed inside the span of the a priori residuals. Therefore, also for the 
velocity error improvements we conclude that our model generalized well and did not over fit 
our apriori data. 

For the updating model, the median prediction residuals for the 8th and subsequent trainings 
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remained lower than 8% and the upper bound of the 95% confidence interval stayed below 
13% (Figure 7, bottom). But, the constant model performed worse than the updating model for 
the velocity error. One reason that the constant model performed worse could be that the 
subject-specific differences in giftedness or learning ability had a large impact on how subjects 
learned to reproduce the velocity profile. The a priori fit residuals could reach comparably low 
levels, since the data for the fit included 10 data points per subject. The 10 data points per 
subject were directly used to fit the individualization random effect. However, for new subjects 
this optimal offset was unknown, and the average of the existing subjects was taken as a best 
guess. If the subject-specific differences were large, then taking the average could be a bad 
guess for a new subject and would result in poor performance. In contrast to the constant 
model, the updating model could improve the estimate of this individualization random effect 
with each new subject data point. 

The probably dominant reason for the larger prediction residuals of the constant model is that 
subjects in the Predicted group did improve significantly less than the AudioVisual group from 
our previous studies (see discussion in section Baseline to the Retention Tests). However, this 
AudioVisual group data was the only basis within the constant model for predicting 
improvements with the AudioVisual training configuration. 

On average, the Predicted group decreased their velocity error for 3.64º/s from baseline to 
retention on day 3, the prediction residual of around 0.65º/s at the last three training conditions 
seems reasonable. Therefore, the prediction of velocity error improvement seems reasonable 
while significant learning effect between baseline and retention on day 3 (Figure 7, bottom) are 
present. The model predictions seem comparable for all but the first training. 

Our feasibility study is an example that even when using the same protocol, the same training 
configurations, and robot, even minor changes lead to observable effects in the outcome 
metrics. This seems to be a strong indication that an updating model, i.e. statistical learning, is 
necessary for predicting outcomes or selecting of robotic assisted trainings. The updating 
model used could correct this offset beginning at the 2nd training with only one data point from 
the subject. This very fast correction arises from the individualization random effect, i.e. the 
model just takes the new subject for being less gifted in reducing its velocity error. With a 
longer protocol, where more data would be added to the model than the 10 data points from the 
individual subject, the observed offset in velocity error improvements would more and more be 
corrected by the fixed effect of the velocity error. Simplified, the model would adapt to new 
observations in this context similar to a multi-rate model (e.g. the one used by (Joiner & Smith, 
2008) to model human learning) with a fast learning part, i.e. individualization random effect, 
and a slow learning part, i.e. error type effect. 

Conclusion 

We introduced a general concept of an automated selection of augmented feedback based on 
predictions of the human subjects' performance improvements. The introduced concept is very 
general in the sense that it is does not require application specific knowledge. The concept is 
independent from knowledge specific to the task, the performance metrics required to quantify 
improvement, the available augmented feedback, or the robotic hardware. The automated 
feedback selection concept only requires data in the form of previous observations and can 
learn from new observations to cope with changing conditions or to individualize to new 
subjects. 

We successfully implemented the automated feedback selection on a robot-assisted trunk-arm 
rowing training study. The improvement of kinematic performance metrics in robot-assisted 
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trunk-arm rowing was dependent on the individual subject and current level of performance. 
Linear mixed models that were updated with new observations generalized well, reaching 
prediction errors similar to the model fit residuals. Model fit updates were necessary to correct 
small changes in the robotic rowing simulator that affected subjects' improvements. 

To our knowledge, this is the first time an automated feedback selection has been realized in 
motor learning. With our feasibility study, we could successfully demonstrate that a reasonable 
feedback selection can be realized based only on evaluated kinematic data. Furthermore, to 
simplify transfer to other applications, our prediction-based concept can be applied as a 
comprehensible feedback suggestion for human supervisors instead of only automated 
selection.  
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