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Abstract 
Within road-cycling, the optimization of performance using mathematical models 
has primarily been performed in the individual time trial. Nevertheless, most 
races are 'mass-start' events in which many riders compete at the same time. In 
some special situations, e.g. breakaways from the peloton, the riders are forced to 
team up. To simulate those cooperative rides of two athletes, an extension of 
models and optimization approaches for individual time trials is presented. A 
slipstream model based on experimental data is provided to simulate the physical 
interaction between the two riders. In order to simulate real world behavior, a 
penalty for the difference in the exertion levels of the two riders is introduced. 
This means, that even though both riders aim to be as fast as possible as a group, 
neither of them should have an advantage over the other because of significantly 
different levels of fatigue during the ride. In our simulations, the advantage of 
cooperation of two equally trained athletes adds up to a time gain of about 10% 
compared to an individual ride. 
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Introduction 

During recent years, evaluating and optimizing pacing strategies in endurance sports like 
cycling, running, or cross-country skiing has become popular. Besides preparation, the 
strategy plays a major role in winning a race. In road cycling, one common tactical approach 
is that several riders break away from the peloton, to enhance their chances to win a race. For 
the success of such an attack, it is important when and how to break away as well as how to 
interact and distribute the individual resources of each rider in order to stay ahead of the 
pack. In this second phase, the riders are forced to work together in order to maintain a 
distance to the peloton until reaching the end of the race. In this study, we investigate the best 
strategies for two riders to finish a course using mathematical methods. Several studies have 
applied mathematical models to solve the corresponding problem for individual time trials, 
by calculating optimal pacing strategies in terms of achieving the shortest race time. 
However, only little work has been done so far incorporating more than one rider. 

First results for individual time trial strategies in cycling were gathered by Gordon (2005). 
The 3-parameter critical power model of Morton (1996) and a simple mechanical model, 
which includes air resistance, friction, and gravitation, were used to analytically calculate 
strategies on simple, piecewise constant courses. An extension of this work has been 
provided by Dahmen et al. (2012). The more realistic mechanical model of Martin et al. 
(1998) which also includes inertia and bearing friction, as well as slope profiles of real world 
courses, have been used. Due to the higher complexity, numerical methods were applied. 
Since then, several studies have been published that use more sophisticated physiological 
models. For example, Sundström et al. (2014) compared strategies with the traditional critical 
power model to a more versatile 3-component model, which was introduced by Morton 
(1986).  

Until now, only few studies consider more than one competitor. One of the first looking into 
strategies for two runners was Pitcher (2009). Slipstream effects in running were considered, 
and it was pointed out that the runner behind can take advantage of this effect and win a race 
by taking over shortly before the finish line. Dahmen and Saupe (2014) adapted this approach 
to cycling and showed that a similar strategy leads to victory in cycling on a Tour de France 
stage. A major limitation in both studies is that the loosing athlete does not react to the 
strategy of his opponent. Aftalion and Fiorini (2015) generalized Pitcher’s approach and 
modified the optimal control problem to allow both runners a free strategy. The optimization 
goal was to minimize the time of the winning runner, while considering that the loser had 
tried to win as well. 

Wind resistance is the major force resulting in the difference in the cycling dynamics between 
individual rides and rides in a group. Cycling in a group can reduce the wind resistance 
significantly for riders in the slipstream. In a study of Barry et al. (2014), the change in wind 
resistance has been investigated in a wind tunnel for different position configurations of two 
riders. Riding close behind another rider gives the largest advantage, with a reduction of the 
force to overcome wind resistance of about 50%. In addition, the leading rider gains a 
reduction of about 5% in this configuration due to less turbulences and an artificial tailwind 
produced by the trailing rider. On the other hand, there is an increase in wind resistance if 
both cyclists are riding side by side of about 7%. If the distance between the two riders 
increases, Olds (1998) reported a quadratic increase of wind resistance for the rider in the 
slipstream up to a tire-to-tire distance of 3m. See the parabola on the right hand side of Figure 
1. For larger distances, the impact of slipstream can be neglected. 

In this study, we provide a model for the dynamics between two cyclists and present the 
optimal control problem for two cooperating riders. We will present the underlying 
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mathematical models, the optimal control problem, and provide results of numerical 
simulations. 

Methods 

In this work, the physical model of Martin et al. (1998), to describe the equilibrium of the 
rider’s pedal force and the forces induced by aerodynamic drag, friction, gravitation, and 
inertia, is used. Slipstream is modelled based on the findings of Barry et al. (2014) and Olds 
(1998) by smooth exponential functions. The physiological capabilities of the athlete are 
modelled by a dynamic version of the critical power concept introduced by Monod and 
Scherrer (1965) incorporating aerobic and anaerobic energy resources. 

Table 1. Parameters of the mechanical model and the values that were used in the optimization. 

Description Variable Value 
riders’ power output  derived by algorithm   

speed  derived by algorithm 

travelled distance  derived by algorithm 

gap between riders  derived by algorithm 

total mass  80 kg 

gravity factor  9.81 m/s2 

slope of the course  0 % 

friction factor  0.004 

wheel inertia  0.2 kgm2 

wheel radius  0.335 m 

mass of inertia M +  

drag coefficient  0.7 

air density  1.2 kg/m3 

cross-sectional area  0.4 m2 

chain efficiency  0.975 

bearing factor  0.091 Nm 

bearing factor  0.0087 Nms 

bike length  1.8 m 

minimum tire distance min 0.1 m 

length of the race  5000 m 

 

Mechanical Model 

To model the relation between the power output of the rider and the resulting speed on the 
course, the well-known model of Martin et al. (1998) is used. It has been validated in Dahmen 
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et al. (2011) on real world courses as well as in a laboratory simulator setup. The model is 
based on the equilibrium between the riders pedal power and the power induced by 
aerodynamic drag, rolling resistance, bearing friction, gravity, and inertia as shown in the 
following equation: 

 = 12	 + + + + +  (1)

with model parameters presented in Table 1. 

This model describes the cycling mechanics for an individual rider. In order to account for 
interactions between two riders, slipstream effects need to be considered. Slipstream changes  

 
Figure 1. Slipstream factor for wind resistance as a fraction of the distance between the two cyclists, . The 

blue dots are the measurements of Kyle (1979), and the red curve is the quadratic relation between 
gap and reduction in wind resistance determined by Olds (1998), based on Kyle’s data. The yellow 
dots are the wind tunnel measurements of Barry et al. (2014). The purple curve is the wind reduction 
curve defined by our slipstream function . 

the air resistance by a multiplicative factor  that depends on the gap , which is defined 
as the longitudinal distance between the centers of mass of the two riders. Distances in lateral 
directions are neglected or implicitly covered by our slipstream formula shown below. Figure 1 
shows the modelled slipstream effect together with the experimental measurements of Kyle 
(1979) and Barry et al. (2014) upon which our formula is based on. The slipstream formula 

 is described as the sum of four exponential functions in order to approximate the 
experimental data by a smooth function. 

 =	 + + +  (2)

with the exponential functions = −0.053	exp − += 0.076	exp −5 + 0.07= −0.053	exp − −= −0.437	exp − − − min
 

the sigmoid function = −1.85	tanh 10	 − + 2.15 

and model parameters as shown in Table 1. Therefore, the model formula for the cycling 
dynamics for two riders is given by = 1 − 12 + + + + ≝ mech , , ,  (3)
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Physiological Model 

The athletes’ energy expenditure throughout the race is modelled using the critical power 
concept introduced by Monod and Scherrer (1965). It incorporates parameters for the 
maximum available anaerobic energy ( an) and the rate at which the rider can access the 
aerobic power supplies (critical power ). The model was originally designed to estimate time 
to exhaustion for rides with constant power output. Looking at the hydraulic representation 
shown in Figure 2, a dynamic version can easily be derived. The change of the remaining 
amount of energy an in the anaerobic energy vessel can be described as the difference of the 
amount of fluid entering the vessel ( ) and the amount of the fluid leaving the vessel ( ), and 
therefore is given by   

 an = − . (4)

It is assumed, that an corresponds inversely to the level of exertion of the athlete and therefore 
is zero when the athlete is completely exhausted and an in a fully recovered state. 

 
Figure 2. Hydraulic representation of the critical power model.  represents the aerobic energy resources,  the 

rate at which these energy resources can be used (critical power) and an the anaerobic energy 
resources. The rider’s power output corresponds to the amount of fluid leaving the anaerobic energy 
vessel an by opening the tap in the bottom. 

Optimal Control Problem 

Since strategies are calculated for two cooperating riders, the objective of the optimization is to 
minimize the race time of the overall slower rider for a given segment on a course. 
Additionally, a control parameter is introduced to restrict the difference in exertion states 
between the two riders during the ride. To avoid singularities, regularization variables are used 
which penalize large variations in the power outputs of the two riders. This leads to the 
following optimal control problem: 

Minimize the cost functional 

 
= + +regularization + , , − , , 	limitation	of	differencesin	exertion	states

 
(4)

subject to the dynamic constraints 
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== −= mech , , , 	= mech + ,− , , 	, = , −, = , −==
 

the path constraints 0 ≤ , ≤ ,0 ≤ , ≤ ,  

and the boundary conditions 0 = 0=0 = 0≥ 00 = 0.10 = 0.1, 0 = ,, 0 = ,
 

The boundary conditions define that both riders start at the same starting point at the beginning 
of the track. The race finishes when Rider 1 crosses the finish line and Rider 2 is side by side 
or ahead. Both riders should start from a standing position. However, since the mechanical 
model includes a division by the speed, speeds exactly zero are not a feasible option. 
Therefore, the starting speed is set to 0.1 m/s. The last two conditions specify that both riders 
are fully recovered at the beginning of the race. Furthermore, there are no restrictions on the 
number of position changes and the time one rider stays in the lead. This is an outcome of the 
optimization algorithm.  

The optimal control problem is solved numerically by the state-of-the-art optimal control 
solver GPOPS-II (Patterson and Rao, 2014). Since the algorithm reacts sensitive to the choice 
of the initial guess, different starting configurations are generated and an optimal solution is 
calculated for each of them. The best of these solutions is used. 

Results 

In the following, simulation results on a 5km-long, flat track are shown. At first, the optimal 
strategy for two equally strong riders as well as details of the overtake process are provided. In 
the following, the influence of the penalty on large differences of the exertions of the two 
riders on the optimal strategy is investigated. This parameter is crucial to get solutions with a 
realistic behavior. In the end, the consequences of the fitness of the riders on the strategy are 
studied. 

Strategies for Two Riders 

Figure 3 shows the optimal strategy for our basic case: Both athletes are equally trained with a 
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critical power of 300W and an anaerobic work capacity of 25000J. The weight for the penalty 
for differences in the remaining anaerobic capacity of the two riders  is set to 1, while the 
regularization weight  is set to 10 . The overall strategy can be described similar to optimal 
strategies for individual time trials: A short starting phase with maximum power output to 
reach the target speed as fast as possible, followed by the main phase in which the target speed 
is maintained constant. In a short finishing phase, due to complete exertion of the athlete, the 
speed slightly drops. 

Looking at the gap between the two riders it is observed, that Rider 1 (blue) takes over the lead 
right after the start while Rider 2 (red) gets into the ‘sweet-spot’ position of around 1.9m 
behind. After 31 seconds, the riders change position for the first time. More details on this 
process are provided in the next section. Overall, they need to change position seven times in a 
periodic pattern to achieve the minimum total race time. Thereby the remaining anaerobic 
work capacity diminishes roughly linear over the whole race with alternating periods of 
depletion (leading position) and reconstruction (trailing position). 

 
Figure 3: Optimal strategy for two equally strong riders with P_C=300W, E_an=25000J and ε_2=1. The left 

figure represents the strategy over the whole flat course of 5km length while the right figure gives a 
detailed view of the overtake process at 83 seconds, where Rider 1 (blue) overtakes Rider 2 (red). The 
top graph shows the gap between the two riders, blue indicates that the first rider is in lead while red 
indicates that the second rider is in lead. The following three graphs show the speed, power and 
remaining anaerobic work capacity for each rider during the race. According to the gap graph, Rider 1 
is represented by the blue curve and Rider 2 by the red. 

The total race time sums up to 6 minutes and 16 seconds. The time one riders spends in the 
leading position is nearly balanced with Rider 2 (red) leading 51 percent and Rider 1 (blue) 
leading 49 percent of the time. The optimal race-time for one individual rider on the same 
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course, under the same conditions is 6 minutes and 54 seconds. That means that compared to 
an individual time trial, the race time improves by around 10% if two equally strong riders 
work together. 

Change of Leading Position 

A detailed view of the overtake process is shown in Figure 3. Rider 2 (red) is leading and 
Rider 1 (blue) is taking over. Preparing the overtake process, first both riders increase their 
speed equally, then Rider 1 (blue) reduces the speed slightly to enlarge the gap right before 
taking over the lead. This enables Rider 1 to accelerate into the draft and gain speed while 
Rider 2 (red) reduces the speed. Therefore, a very fast change of position is performed, which 
uses the slipstream in an efficient way. Rider 1 (blue) reduces the speed after passing, while 
Rider 2 (red) accelerates to get back to a common speed. On the way back to a stable riding 
configuration, we observe a similar behavior as in the initial phase: The trailing rider is falling 
behind further than the sweet spot and then accelerates into the emerged gap. After that 
maneuver, both riders have the same speed and keep the gap with the perfect slipstream 
distance. 

 
Figure 4: This figure shows the impact of the penalty of differences in exertion state. From a low influence on 

the top to a high influence on the bottom, the weight  is equal to 0.01, 0.1, 1 and 10. The graphs on 
the left show the optimal gap between the two riders and the graphs on the right show the 
corresponding anaerobic work capacity of Rider 1 (blue) and Rider 2 (red). 

Influence of Penalizing Differences in the Fatigue State 

In the previous subsections, the weight for the penalty for differences in the remaining 
anaerobic work capacity of the two riders was set to one. Figure 4 shows how the strategy 
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changes, if we change this parameter. In the top graph, it is set to 0.01, which is also the 
smallest reasonable value since the strategy does not change if it is further decreased. Which 
means this corresponds to the optimal strategy if the penalty term is neglected.  

Rider 1 (blue) starts the race in the lead. After around one fourth of the ride, Rider 2 (red) takes 
over and remains in the lead until full exhaustion. Then, Rider 1 (blue) takes over again and 
likewise stays in the lead until full exhaustion. At that point, Rider 2 (red) is slightly recovered 
again and able to lead until the end. In contrast to the previous results, it is beneficial to 
distribute the leading periods irregularly in this scenario. Rider 1 (blue) has two leading 
periods of medium length while Rider 2 (red) has one long and one very short leading period. 
Nevertheless, in total both rides share the lead nearly evenly by 48.4% (blue) and 51.6% (red) 
of the race time. 

 
Figure 5: Optimal gap for equally trained athletes with different properties. In the left column the athletes have 

the same anaerobic work capacity of 25000J but a different critical power of 200W, 250W, 300W and 
350W from top to bottom. In the right column, the athletes have the same critical power of 300W but 
a different anaerobic capacity of 15000J, 20000J, 25000J and 30000J from top to bottom.   

In this scenario, we have a high discrepancy in the remaining anaerobic capacity throughout 
the race. While one rider is highly exhausted, the other one is nearly recovered. By increasing 

, the exertion states of the two riders are forced to stay closer together, which induces more 
position changes: From top to bottom the number of position changes increases, while the 
remaining anaerobic work capacity curves stay closer together. In the extreme case in the 
bottom, the position changes constantly and both riders are on a comparable exertion level 
throughout the race. 

Since with increasing  the problem is more restricted, the optimal race-time increases 
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slightly with . From 6 minutes 15 seconds in the unrestricted case, over 6 minutes 15 
seconds in the second, and 6 minutes 16 seconds in the third, up to 6 minutes 19 seconds in the 
last case. 

Differences in Critical Power and Anaerobic Capacity 

In this section, the influence of an identically increased critical power or anaerobic capacity in 
both athletes is shown. Obviously, the total race-time decreases if we have stronger athletes, in 
the case of a higher critical power as well as a larger anaerobic capacity. Figure 5 shows the 
optimal patterns of position changes for different critical power values in the left and different 
anaerobic work capacities in the right. 

For critical power values of 200W and 250W, the pattern of position changes is the same, 
while the time of each leading phase is reduced due to the reduced overall race-time. 
Interestingly, if the critical power is increased to 300W or 350W, an additional position change 
is advantageous and the leading phases get even shorter. In case of riders with a critical power 
of 350W, we do not have the small gap enlargements before and after the overtake process, 
and we have a relatively long finishing turn of Rider 2 (red) compared to the earlier, regular 
phases. This also leads to a difference in the leading time of each rider. While for 200W, 250W 
and 300W the leading times are nearly equally distributed 50±1%, for 350W, Rider 2 (red) is 
in the lead for 55% of the total race time. 

In the case of variations in the anaerobic capacity, the results are opposite to the findings of 
critical power variations. While we get more position changes and shorter leading phases for 
stronger riders in terms of a higher critical power, we get less position changes and longer 
leading periods for stronger riders in terms of a larger anaerobic capacity. The leading times 
are nearly equally distributed with 48.7±0.3% for Rider 1 (blue). 

Discussion 

The simulations show that significant improvements in the total race time are achieved if two 
riders cooperate in an optimal way. The improvement of the total race time of about 10% for 
two equally strong riders is explained by exploiting slipstream effects. Since over 90% of the 
riders’ power output is needed to overcome air resistance at high speeds (Martin et al. 1998), 
slipstream plays a major role in the outcome of a mass-start race. In the perfect position, riding 
right behind each other, both riders experience a positive effect due to reduced air resistance. 
Additionally, while the leading rider has to work harder, the trailing rider can recover and save 
energy for his next turn in front. Besides the position changes and the end of the race where 
both riders are exhausted, they consistently stay right behind each other to get the most out of 
the reduction of air resistance due to the slipstream. 

In case of the naive extension of the individual time trial optimal control problem without the 
penalty for differences in the exertion state, the results show very few changes of position and 
therefore long turns for each rider. Nevertheless, in real races it can be observed that positions 
are changed permanently, in breakaways as well as team time trials. One explanation for this 
different behavior can be found in the exertion states of the two riders during the race. At the 
end of each leading phase, the difference is quite large, up to the situation where one is 
completely exhausted while the other has decent resources left. This can lead to a major 
disadvantage in a race situation. In case of a breakaway from the peloton, after working 
together, at some point the two riders have to compete against each other again. If at this point, 
one of the riders is significantly more fatigued, he/she has reduced chances to win the race. 
Therefore, none of the riders want to stay in the lead too long, which induces more position 
changes. For this reason, the additional penalty in the cost function was introduced. The results 
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then behave as proposed, whereby increasing the influence of the penalty results in a decrease 
in the difference in the remaining anaerobic capacity of the two riders and more position 
changes occur. This way, depending on how much risk the riders are willing to take, the 
optimal number of position changes and therefore the optimal strategy can be determined. 

Before the overtake process, an enlargement of the gap is observed. This may seem 
detrimental, because the trailing rider leaves the perfect slipstream position earlier than 
necessary. However, this gives the trailing rider the advantage to accelerate into the draft and 
take this additionally gained speed into the following part, where he/she is out of the slipstream 
and faces the full wind resistance. Martin et al. (2007) observed a similar behavior for sprinting 
applications. Starting 1 meter behind gave the second rider the advantage to win the finishing 
sprint with the same power output as the first rider. Since the acceleration and final speed in a 
finishing sprint is much higher as in the overtake process, we have a much smaller effect in our 
proposed strategy. A similar explanation holds for the gap enlargement shortly after the 
overtake process. Before changing the position, the leading rider reduces his speed in order to 
let the trailing rider pass as quickly as possible. Therefore, when the riders switch position, the 
rider whom is overtaken has a lower speed and has to accelerate to catch up to the speed of the 
other rider. This is again supported by accelerating into the draft.  

Looking at the behavior of athletes initiating position changes, their approach seems to be 
much simpler than the results of our optimization indicate. Mainly, the trailing rider keeps 
his/her speed while the leading rider slows down to let the other rider pass. One reason for the 
disagreement between mathematical and practical approach could be, that the solution of the 
mathematical optimizer is too complex to be applied in practice, since it requires fast, highly 
synchronized changes of power output. Additionally, in practical situations often more than 
two riders are working together in a group, especially in team time trials where position 
changes can be trained and optimized very well. In this case, the dynamics within the group 
differ from those of two riders and position changes closer to what can be observed in reality 
seem beneficial. Indeed, preliminary pilot data from similar optimizations for a group of three 
riders support this hypothesis (data not yet published). 

One point that cannot be understood to the extent possible in this study are the contradictory 
results when physiological parameters are changed. Changing the training status of the athletes 
either by changing the critical power or by changing the anaerobic work capacity affected the 
very nature of the strategy. One supposed few, long turns for weaker riders and more, short 
turns for stronger riders, while the other supposed exactly the opposite. This leads to the 
conclusion, that not only the absolute values of critical power and anaerobic work capacity are 
important for the strategy, but also the relationship between those two parameters. Further 
investigation of this relationship would also be beneficial for training purposes, to get the right 
balance between endurance and interval training, in order to increase critical power and 
anaerobic capacity, respectively. 

Conclusions 

In this article, existing models and optimization approaches for individual time trials were 
extended to simulate and improve cooperative rides of two athletes. A slipstream model based 
on experimental data has been provided to simulate the interaction between the two riders. The 
introduction of a control over the difference in the exertion states of the two riders allowed 
implicitly adjusting the number of position changes as well as the risk coming with one of the 
riders being significantly more fatigued. The simulations showed that the cooperation holds a 
considerable advantage for the two riders, which then for example is needed to stay in front of 
the peloton in a mass start race. On the other hand, the simulations also showed that the results 
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behave not necessarily in an obvious manner if we introduce variations in the physiological 
parameters of the riders. 

Future work will include empirical data for a closer investigation of practical approaches for 
strategies of two cooperating riders. Comparing successful breakaways in real races will give 
more insight in the quality of the simulations. The focus will be on the pattern of position 
changes and the practical realization of the overtake process. On the other hand, the theoretical 
considerations may help to analyze and improve racing in practice and increase the chance for 
a successful breakaway. Another important application are team time trials. Since nowadays 
teams of six riders compete in time trials against each other, the problem has to be extended 
from two riders to six riders in order to find an optimal strategy for one group. Besides 
handling the higher complexity of the mathematical problem, also a suitable slipstream model 
for several riders is needed to simulate and optimize such rides in general. 
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