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Abstract 

Maximal oxygen uptake (VO2max) is one of the most distinguished parameters in 
endurance sports and plays an important role, for instance, in predicting 
endurance performance. Different models have been used to estimate VO2max or 
performance based on VO2max. These models can use linear or nonlinear 
approaches for modeling endurance performance. The aim of this study was to 
estimate VO2max in healthy adults based on the Queens College Step Test 
(QCST) as well as the Shuttle Run Test (SRT) and to use these values for linear 
and nonlinear models in order to predict the performance in a maximal 1000 m 
run (i.e. the speed in an incremental 4x1000 m Field Test (FT)). 53 female 
subjects participated in these three tests (QCST, SRT, FT). Maximal oxygen 
uptake values from QCST and SRT were used as (a) predictor variables in a 
multiple linear regression (MLR) model and as (b) input variables in a multilayer 
perceptron (MLP) after scaling in preprocessing. Model output was speed 
[km·h−1] in a maximal 1000 m run. Maximal oxygen uptake values estimated 
from QCST (40.8 ± 3.5 ml·kg−1·min−1) and SRT (46.7 ± 4.5 ml·kg−1·min−1) were 
significantly correlated (r = 0.38, p < 0.01) and maximal mean speed in the FT 
was 12.8 ± 1.6 km·h−1. Root mean squared error (RMSE) of the cross validated 
MLR model was 0.89 km·h−1 while it was 0.95 km·h−1 for MLP. Results showed 
that the accuracy of the applied MLP was comparable to the MLR, but did not 
outperform the linear approach.  

KEYWORDS: MULTIPLE LINEAR REGRESSION, MULTILAYER PERCEPTRON, 
PERFORMANCE PREDICTION, ARTIFICIAL NEURAL NETWORK 
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Introduction 

The maximal oxygen uptake (VO2max) measures the maximum amount of oxygen that an 
individual can use per unit of time during strenuous physical exertion. It is one of the most 
distinguished parameters in endurance sports and serves as an index of cardiorespiratory 
function, general health, and aerobic fitness (Deuster & Heled, 2008). Besides its physiological 
meaning, VO2max is also relevant in exercise prescription. The intensity of cardiorespiratory 
exercise is commonly quantified as a percentage of VO2max (ACSM, 2011). Consequently, 
assessing the maximal oxygen uptake plays an important role in endurance sports. It provides a 
basis for measuring aerobic power or designing programs to improve cardiorespiratory fitness.  

A broad variety of studies focused on determining VO2max. Besides those studies which 
measure VO2max directly in a maximal incremental exercise test on a treadmill or cycle 
ergometer, there are also some approaches that try to predict VO2max based on non-exercise 
and submaximal exercise test data (e.g., Black, Vehrs, Fellingham, George & Hager, 2016) or 
even based on statistical models using solely non-exercise data (see Abut & Akay, 2015, for a 
review). In case of non-exercise models, variables such as sex, age or body mass index were 
used to predict VO2max. Especially these non-exercise models may be of interest, since this 
does not require collection of expired respiratory gases and thus it does not depend on 
expensive indirect calorimetry equipment (Marshall, Coe & Pivarnik, 2014). The Shuttle Run 
Test is one of the most frequently applied test to assess VO2max without directly measuring 
respiratory gases. Mayorga-Vega, Aguilar-Soto and Viciana (2015) found in a meta-analysis 
that the 20-m Shuttle Run Test (SRT) had a moderate-to-high criterion-related validity for 
estimating VO2max. So, it seems to be a useful alternative for estimating cardiorespiratory 
fitness, if attaining the maximum oxygen uptake during a laboratory-based test is unfeasible.  

Since VO2max is an important measure for cardiorespiratory fitness, it is also one of the 
predominant limiting factors in endurance exercises and training, and may also serve as a 
predictor for performance in endurance sports. Therefore, some attempts have been made to 
predict the performance in endurance sports based on VO2max. For instance, McLaughlin, 
Howley, Bassett Jr., Thompson and Fitzhugh (2010) used VO2max (as well as other variables 
that are linked to endurance performance) in order to predict running performance in a 16 km 
time trial. Also in shorter distances such as 5 and 10 km, VO2max seems to be a strong 
predictor of running speed (Bird, Theakston, Owen & Nevill, 2003). High VO2max values 
could be considered – among other factors – as one of the most influential determinants of 
performance in distance running (Takeshima & Tanaka, 1995). However, in homogeneous 
groups like elite runners, the prediction of running performance based on VO2max might not 
be appropriate. In marathon runners, for instance, other variables like lactate threshold are 
better predictors since the speed associated with lactate threshold closely equates to the race 
pace of these athletes (Shave & Franco, 2006).  

Different models can be used to predict performance in sports, including linear models such as 
linear or multiple linear regression or nonlinear models such as artificial neural networks and 
especially multilayer perceptrons. There are many applications of artificial neural networks in 
sports (Schöllhorn, Jäger & Janssen, 2008). As an example of performance prediction, 
Maszczyk, Rocznoik, Waskiewicz, Czuba, Mikolajec, Zajac and Stanula (2012) modeled 
competitive swimming performance in 50 m front crawl with multilayer perceptron neural 
models using anthropometric data or specific swimming skills as input parameters. When it 
comes to comparing linear and nonlinear models with regard to prediction accuracy, the 
quality of prediction of neural models seems to be similar to that of regression analysis and 
regression models, potentially even better. This seems to hold true in VO2max prediction 
(Abut, & Akay, 2015; Akay, Zayid, Aktürk, & George, 2011) as well as in performance 



IJCSS – Volume 16/2017/Issue 2 (Special Edition)              www.iacss.org 

80 

prediction studies (Edelmann-Nusser, Hohmann, & Henneberg, 2002; Maszczyk, Zajac, & 
Ryguła, 2011; Maszczyk, Rocznoik, Waskiewicz, Czuba, Mikolajec, Zajac, & Stanula, 2012). 
Hence, Jäger, Kurz and Müller (2016) assume that nonlinear neural network approaches 
possibly provide more sophisticated methods for predicting maximal mean speed in a 4x1000 
m Field Test which may enhance the accuracy of their linear model.  

This study aimed to: (a) estimate the VO2max in healthy adults by two common endurance 
tests and (b) construct and evaluate both a linear and a nonlinear prediction model for the 
maximal mean speed in a 4x1000 m Field Test (FT) based on these estimated VO2max values. 
Therefore, we expanded the approach of Jäger, Kurz and Müller (2016) in the following ways. 
Firstly, we used an increased number of subjects to build and validate the models for women. 
Secondly, an artificial neural network (multilayer perceptron) was built in order to compare the 
accuracy for predicting speed between linear and nonlinear models. Additionally, we used the 
improved regression formulas from Stickland, Petersen and Bouffard (2003) in this study for 
estimating the VO2max based on the shuttle run test. 

Methods 

53 female subjects participated in this study (age 23.0 ± 2.9 years, mass 60.2 ± 6.1 kg, height 
169.0 ± 6.4 cm). Informed written consent was obtained from each participant, and the study 
was in accordance with the ethical guidelines of the Helsinki Declaration. Each subject was 
tested in the following three exercise tests:  

Endurance tests 

The Shuttle Run Test (SRT):  

The Shuttle Run Test (e.g., Léger, Mercier, Gadoury & Lambert, 1988; Ramsbottom, Brewer 
& Williams, 1988) is a well-established endurance test. During this test, subjects ran shuttles 
between two marked lines placed 20 m apart at increasing fast speeds. Running speed was 
increased each minute from one level to another. Accordingly, each level consisted of a 
different number of shuttles within that minute (from 7 runs in level 1 up to 16 runs in level 
21). Subjects were verbally encouraged to give maximum effort in this test. VO2max of 
subjects were determined based on their successfully completed levels and runs (X equals the 
last half-stage of the SRT completed; see Stickland, Petersen and Bouffard (2003) for details). 
The following regression equation was developed for women: 

 VO2max [ml·kg−1·min−1] = 2.85·X + 25.1 (1)

The SRT was conducted one week before the following two tests and within the same 90 min 
time slot on that day. Thus, a participant who was tested antemeridian was also tested 
antemeridian seven days later.  

The Queens College Step Test (QCST):  

According to Haff and Dumke (2012) the test started with a 3 min rest when the subjects sat on 
a bench step (height: 41 cm). For women, a metronome was set at 88 beats/min leading to 22 
steps per minute. Subjects made contact with a foot on each beep of the metronome in an up-
up-down-down manner. After exactly 3 min of stepping, the subjects stopped and palpated for 
the radial pulse at exactly 3:05 to 3:20 min. Recovery heart rate (HR) was derived for a full 
minute (bpm) and used to calculate VO2max based on the following formula for female 
subjects from Haff and Dumke (2012):  

 VO2max [ml·kg−1·min−1] = 65.81 - (0.1847·HR)) (2)
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The 4x1000 m Field Test (FT):  

This test from Held (2000) was done on the same day as the QCST. For this test, written 
instructions defined the different 1000 m running intensities according to (a) the usual 
durations of such runs, (b) a rating of perceived exertion after these runs, and (c) information 
about the breathing during the runs (e.g., “slow” refers to an intensity of a 1 h jog which is a 
bit tiring but not exhausting, where breathing and talking is easy). Participants were also 
instructed to run a preferably constant pace in each trial (Held, Steiner, Hübner, Tschopp, 
Peltola & Marti, 2000). Accordingly, the subjects were to choose their running speeds 
individually. The first three runs requested incremental running speeds corresponding to 
common training intensities (slow, medium, and fast). The last run had to be performed with 
maximal effort and thus corresponded to the maximal mean speed that the subjects were able 
to run for 1000 m. Between each run a two-minute rest was allowed. Due to the QCST, which 
is a submaximal test and was done a few minutes before the FT, and due to the first 1000 m 
run, which was “slow” and equaled a low intensity jog, no particular warm up was done before 
the FT. The test ended with an individual cool down (walk or jog).  

One week before the first test, the test instructions were handed out to the participants and 
reminded them to avoid exercise for the previous 24 h, to fasten for at least 2 h prior to the test, 
and to avoid the use of foods and drugs that alter heart rate (e.g., coffee, soda, energy drinks, 
diet pills, beta-blockers) (Haff & Dumke, 2012).  

The SRT and QCST were chosen, because they estimated the subjects’ VO2max from different 
points of view. SRT is a maximal effort test that aims at an athlete’s ability to continue an 
incremental endurance activity and primarily to resist fatigue. In contrast, QCST is a 
submaximal effort test which measures the recovery heart rate of an athlete, because it returns 
to resting values more quickly in fitter people than it does in those who are less fit (Darr, 
Bassett, Morgan & Thomas, 1988; Dimpka, 2009).  

Linear prediction model: Multiple linear regression 

For the comparison of linear and nonlinear prediction models a multiple linear regression 
(MLR) was used to predict the maximal mean speed in a FT. In general, this approach helps to 
quantify the relationship between several independent (predictor) variables and the dependent 
(criterion) variable based on the assumption of linearity. The VO2max estimates from SRT and 
QCST were used in this multiple regression model as predictor variables. Both predictor 
variables were expressed in units of ml·kg−1·min−1. Maximal mean speed in the last 1000 m run 
(in FT) served as the criterion variable (i.e., the outcome) and was measured in km·h−1. The 
predictors were tested for multicollinearity using variance inflation factors (VIF) and yielded 
VIF for both predictor variables below 1.17. Therefore, multicollinearity does not seem to be 
an issue in this regression analysis and it is acceptable for both variables to be included in the 
model, although the interpretation of VIF still has to be done carefully (O’Brian, 2007). 

Nonlinear prediction model: Multilayer perceptron  

A multilayer perceptron was used in a nonlinear approach to predict maximal mean speed. As 
a feedforward artificial neural network, the multilayer perceptron (MLP) is capable to classify 
even not linearly separable data and can be applied to learn nonlinear function mappings. The 
MLP architecture consisted of two input neurons (for the VO2max values from the subjects’ in 
QCST and in SRT) and three hidden neurons in the second layer with logistic activation 
functions. The output layer, i.e. the third layer, had one neuron representing the maximal mean 
speed [km·h−1] in the FT and used a linear activation function. Before training the network, 
data were preprocessed by scaling input to [0;1] so that they have a minimum of zero, a 
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maximum of one, and also a range of one. In the training phase, a resilient backpropagation 
algorithm with weight backtracking was used. This algorithm is based on the traditional 
backpropagation algorithm (e.g., Kattan, Abdullah & Geem, 2011). But, separate learning rates 
which can be changed during training process are used for each weight of the network 
(Günther & Fritsch, 2010). Therefore no over-all learning rate had to be predefined. A 
threshold of 0.005 was set as stopping criteria in the training process.  

Model validation 

For validating the models, first, the root mean squared prediction error (RMSE) was 
determined. This error was calculated for both the linear and the nonlinear model built on the 
whole data set and was used to measure the model fit. Second, a 10 fold cross validation was 
applied. Therefore, the whole data set was split randomly into 10 mutually disjoint subsets 
(i.e., the folds) leading to seven subsets with five cases and three subsets with six cases. 
Subsequently, one fold was excluded and the models (MLR and MLP) were built on the other 
folds. This procedure was repeated 10-times, while every single fold was excluded once in 
order to provide a test set (Schöllhorn, Jäger & Janssen, 2008). The cross validated root mean 
squared prediction error (cvRMSE) of the models’ predictions on the test sets was not only 
calculated to compare the accuracy of the two models but also in order to account for 
overfitting problems in modeling.  

All calculations were done with R (3.2.4) (R Core Team, 2016) – especially the neuralnet and 
DAAG packages. 

Results 

Estimated VO2max values were 40.8 ± 3.5 ml·kg−1·min−1 in QCST and 46.7 ± 4.5 
ml·kg−1·min−1 in SRT. Results from QCST and SRT were significantly correlated (r = 0.38, p < 
0.01). Maximal mean speed in the FT was 12.8 ± 1.6 km·h−1. 

MLR analysis was used to test if the estimated VO2max values from QCST and SRT 
significantly predicted participants' maximal mean speed. The results of the regression model 
indicated that 70% of the variance in maximal mean speed can be explained (R2

ad = 0.70, 
F(2,50) = 62.94, p < 0.01). However, in this model only the VO2max estimate from the SRT 
had a significant (p < 0.01) partial effect as a predictor. The accuracy of this model was 
obtained through the RMSE of prediction. An RMSE of 0.82 km·h−1 was found for the model 
fit (built on the whole data set). Furthermore, the cvRMSE of the predicted speed compared to 
the real speed was calculated and resulted in an error of 0.89 km·h−1.  

The architecture of the net and the results of the neural network trained on the whole data set 
are shown in figure 1. RMSE was 0.74 km·h−1, which was the smallest error found in this 
study. Thus, the neural network model was able to fit the data best. However, cvRMSE of the 
net was derived by comparing the networks’ predicted results, which were built on the training 
folds, to the measured maximal mean speed in the FT in the test sets. This led to a cvRMSE of 
0.95 km·h−1, which is about 0.06 km·h−1 higher than the cross validated error of the linear 
model and 0.13 km·h−1 higher than its RMSE.  

A detailed plot of the predictions from the linear model (MLR) and nonlinear neural network 
model (MLP) is shown in figure 2. Predictions are plotted against the measured speeds of 
subjects.  
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Figure 1. Model of the trained feed-forward artificial neural network (multilayer perceptron) for predicting 

maximal mean speed in a 1000 m run. 
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Figure 2: Predicted versus measured speed of both the linear model (MLR) and the nonlinear model (MLP) for 

all 53 subjects. 

Discussion 

The estimated VO2max from both the SRT and the QCST are able to explain a remarkable 
amount (70%) of variance in maximal mean speed in a 1000 m run. This result of the MLR 
analysis is in line with the concept that VO2max is a good predictor of endurance running 
performance in recreationally active individuals. However, it is mainly the VO2max estimate 
from the SRT that has a major influence on the predicted speed in MLR analysis. Therefore, 
the SRT appears to be more appropriate than the QCST for assessing the maximal mean speed 
in the FT. That might be due to the faster and more complex movement of running in the SRT 
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compared to the slower, less complex movement of stepping up and down a bench. Since the 
participants in this study vary in their ability to run economically and because this ability is 
also inherent in the VO2max estimates, the prediction of the maximal mean speed may rely 
stronger on the SRT’s VO2max estimate. 

However, there is still 30% variance left that could not be explained by the linear model. Many 
aspects may have contributed to this unexplained variance and error in prediction. For instance, 
the motivation of the subjects in maximal effort tests (such as the SRT and the last trial in FT) 
and environmental factors could have influenced the results profoundly. With respect to 
environmental factors, the tests were performed on varying floor types and different days and 
therefore with varying weather conditions. Other aspects may be related to the different facets 
of endurance. The FT requires resistance to fatigue (in each run) as well as a quick recovery 
(between two runs). Thus, a specific combination of these two aspects is important for this test 
and affects the maximal mean speed in the last 1000 m run. The SRT and the QCST, however, 
focus mainly on one of these two aspects rather than the combination of both. Last but not 
least, the athletes’ anaerobic energetics might have an impact, too. In a short duration 1000 m 
run, anaerobic metabolism contributes substantially to the total energy expenditure 
(Newsholm, Blomstrand & Ekblom, 1992; van Someren, 2006). Therefore, variations in the 
anaerobic energetics between athletes might also contribute to the observed variance in 
running speed. Taken together, these aspects may limit the prediction of speed exclusively 
based on estimated VO2max values of subjects.  

Furthermore, even though the estimated VO2max values from SRT and QCST were 
significantly correlated, both tests did not measure oxygen uptake directly with a spirometer. 
Although the SRT was validated with respect to estimating VO2max (Mayorga-Vega, Aguilar-
Soto & Viciana, 2015), we still have to consider an estimation error. For instance, Léger and 
Lambert (1982) found a standard error of estimate (SEE) of 5.4 ml·kg−1·min−1 in an early 
version of the SRT and Stickland, Petersen and Bouffard (2003) a SEE of 4.07 ml·kg−1·min−1 
for males and 3.64 ml·kg−1·min−1 for females. This applies analogously to the inaccuracy of the 
QCST results. While formulas from Haff and Dumke (2012) appear to be very accurate, 
McArdle, Katch, Pechar, Jacobson and Ruck (1972) found a standard error of prediction of 2.9 
ml·kg−1·min−1 in their test population. Hence, the two predictor variables in our MLR and 
accordingly the input variables of the MLP may be inaccurate to a certain degree, which also 
affects the accuracy in predicting the speed as outcome variable. Finally, modeling in this 
study also neglects other potential predictors like age or further experiences with endurance 
sports, which can provide a basis to improve the quality of prediction. Altogether, these 
aspects certainly have contributed to the prediction errors.  

Although a RMSE of prediction with approximately 0.82 km·h−1 in the applied linear model 
and 0.74 km·h−1 in the nonlinear model seems to be small, it may still be too big to allow 
detailed recommendations for training. Especially, when we take the cross validated errors 
with 0.89 km·h−1 (linear model) and 0.95 km·h−1 (nonlinear model) into account. It should be 
noted, though, that this difference in cross validated prediction accuracy of both the linear and 
nonlinear models is not substantial. The MLP with its chosen specifications (architecture, 
algorithm etc.) was not superior to the linear regression model in this study. Nevertheless, 
other studies had found nonlinear models to allow better predictions (Edelmann-Nusser, 
Hohmann, & Henneberg, 2002; Maszczyk, Zajac, & Ryguła, 2011; Maszczyk, Rocznoik, 
Waskiewicz, Czuba, Mikolajec, Zajac, & Stanula, 2012). 

A next step should be to built and evaluate models for male athletes or to add further variables 
that might influence and explain performance in a 1000 m run. Additionally, other statistical 
approaches like random forests analyses (Breiman, 2001; Verikas, Gelzinis & Bacauskiene, 
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2011) may enhance the performance prediction. However, a major amount of variance in 
maximal mean speed can already be explained from the linear model approach chosen in this 
study. 

Conclusion 

The current study compared the accuracy of linear and nonlinear models for predicting 
performance in a 1000 m run. The models, i.e. a multiple linear regression model and a 
multilayer perceptron, were built using estimated VO2max from Queens College Step Test as 
well as the Shuttle Run Test and predicted the maximal mean speed in an incremental 4x1000 
m field test. Although there is some evidence that nonlinear models may outperform linear 
models in performance prediction, both models in this study showed a comparable precision. 
Therefore, it is incidental that possible advantages of linear or nonlinear models depend on the 
specific phenomenon they are applied to. 
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