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Abstract 

Two different computational approaches were used to predict Olympic distance 
triathlon race time of German male elite triathletes. Anthropometric 
measurements and two treadmill running tests to collect physiological variables 
were repeatedly conducted on eleven male elite triathletes between 2008 and 
2012. After race time normalization, exploratory factor analysis (EFA), as a 
mathematical preselection method, followed by multiple linear regression (MLR) 
and dominance paired comparison (DPC), as a preselection method considering 
professional expertise, followed by nonlinear artificial neural network (ANN) 
were conducted to predict overall race time. Both computational approaches 
yielded two prediction models. MLR provided R² = 0.41 in case of 
anthropometric variables (predictive: pelvis width and shoulder width) and R² = 
0.67 in case of physiological variables (predictive: maximum respiratory rate, 
running pace at 3-mmol·L-1 blood lactate and maximum blood lactate). ANNs 
using the five most important variables after DPC yielded R² = 0.43 in case of 
anthropometric variables and R² = 0.86 in case of physiological variables. The 
advantage of ANNs over MLRs was the possibility to take non-linear 
relationships into account. Overall, race time of male elite triathletes could be 
well predicted without interfering with individual training programs and season 
calendars. 

KEYWORDS: PROFESSIONAL TRIATHLETES, PERFORMANCE PREDICTION, 
RACETIME NORMALIZATION, FACTOR ANALYSIS, DOMINANCE PAIRED 
COMPARISON 
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Introduction 

Performance prediction in training-intensive sports like triathlon (a combination of swimming, 
cycling, and running) could be beneficial for optimizing training protocols and identifying 
talent. It is therefore important to identify performance parameters predicting triathlon race 
performance (Landers, Blanksby, Ackland, & Smith, 2000), such as anthropometric and 
physiological parameters based on laboratory tests (Schabort, Killian, St Clair Gibson, 
Hawley, & Noakes, 2000). 

Several studies have shown the importance of maximum oxygen uptake (VO2max) and 
anaerobic thresholds (Millet, Vleck, & Bentley, 2009; Millet, Vleck, & Bentley, 2011) in 
endurance running or running in triathlon. These parameters showed significant correlations to 
race performance (Bassett, 2000; McLaughlin, Howley, Bassett, Thompson, & Fitzhugh, 
2010). Similar results were found for swimming and cycling (Millet et al., 2009; Sleivert & 
Rowlands, 1996). However, these variables only have a prerequisite function, and are not 
performance predictors in homogenous samples, because of the small variation between 
athletes (Bassett, 2000; Sleivert & Rowlands, 1996; Stratton et al., 2009). Nonetheless, blood 
lactate concentrations from treadmill or cycle ergometer tests were useful parameters in 
predicting triathlon performance independent of athletes’ performance level (Schabort et al., 
2000; Van Schuylenbergh, Eynde, & Hespel, 2004). Besides such physiological factors, 
anthropometric variables such as percent body fat, body mass index (BMI), and the 
circumferences of several parts of the body could also be important for performance in 
triathlon races (Knechtle, Wirth, Rüst, & Rosemann, 2011) and therefore for performance 
prediction. 

Unlike in the individual sports of swimming, cycling, and running, which constitute triathlon, 
the relationship between one or a combination of anthropometric and physiological parameters 
and overall race time with regard to performance prediction have rarely been investigated in 
triathlon. Schabort et al. (2000) used multiple linear regressions to predict overall Olympic 
distance triathlon race time of the South African national team by using physiological 
parameters such as peak treadmill running speed [km·h-1] and blood lactate value at 4 W·kg-1 
body mass on a cycle ergometer. The correlation between predicted and actual race time was 
highly significant (r = 0.90, p < 0.001). Multiple regression analysis (R² = 0.98; SEE = 0.95 
[min]) was also used by Van Schuylenbergh et al. (2004) to predict sprint distance triathlon 
performance of male physical education students. In each of these two studies, subjects 
competed in the same triathlon competition, which likely caused the high explanation of 
variance (R²) because of comparable conditions. Nonetheless, this kind of experimental design 
is rarely possible with elite triathletes due to their individual season calendar. Artificial neural 
networks (ANNs) are an alternative computational approach for performance predicition. 
Edelmann-Nusser, Hohmann, and Henneberg (2002) as well as Silva et al. (2007) showed that 
artificial neural networks could be a valuable method for performance modelling, without the 
restrictions of distribution and independence of variables. Edelmann-Nusser et al. (2002) 
predicted the 200 m backstroke time of an elite female swimmer in the finals of the Olympic 
games by using artificial neural networks (multi-layer perceptrons) based on collected training 
data. The accuracy of the results of this approach were attributed to the fact that “the adaptive 
behavior of the system athlete is quite a complex, non-linear problem” (Edelmann-Nusser et 
al., 2002). However, multiple linear regression analyses have been more widely used to 
develop prediction models. Linear regressions require linear relationships between independent 
variables and a dependent variable, whereas artificial neural networks could also handle non-
linear relationships based on a different model architecture. Nevertheless, ANNs have rarely 
been used to predict race-performance, possibly because the network design of an ANN 
requires a lot of specifications concerning the number of neurons, layers, training algorithm 



IJCSS – Volume 16/2017/Issue 2 (Special Edition)              www.iacss.org 

103 

etc. (Zhang, Eddy Patuwo, & Y. Hu, 1998). 

Both computational approaches have a major limitation while working with measurement data 
from elite athletes: large numbers of independent variables require many sets of data, which 
are rarely available while working with elite athletes. Therefore, a preselection of parameters is 
necessary to reduce the number of independent variables. If there are only a few variables with 
non-linear relationships, a purely statistical approach like an exploratory factor analysis can be 
used to preselect variables before computing a prediction model. In case of ANNs, which 
could also handle non-linear relationships, a dominance paired comparison based on the 
expertise of professional triathlon coaches could be beneficial, since this method utilizes a 
more subjective point of view and practical experiences.  

In summary, the prediction of individual overall race time in elite Olympic distance triathlon 
competition, by using several anthropometric and physiological parameters as well as different 
computational approaches, has not been investigated to date. Previous studies mostly tested 
recreational triathletes (Kohrt, Morgan, Bates, & Skinner, 1987; Millet et al., 2011; Miura, 
Kitagawa, & Ishiko, 1997; Sleivert & Wenger, 1993) because of the availability of a larger 
number of potential athletes. National squads normally consist of 4–5 athletes, which makes it 
very difficult to get a sufficient sized sample. Moreover, elite athletes are often reluctant to 
participate in experiments. In addition, individual training programs and different season 
calendars complicate experimental laboratory studies with elite athletes. Therefore, the first 
aim of this study was to assess whether overall Olympic distance triathlon race time of elite 
athletes could be predicted using regular performance diagnostics. The second aim was to 
compare two computational approaches and determine whether one is better than the other. A 
purely statistical approach consisting of an exploratory factor analysis to preselect variables in 
combination with a multiple linear regression to predict overall race time was compared to an 
expertise-based non-linear approach consisting of a dominance paired comparison as a 
preselection method in combination with an artificial neural network to predict overall race 
time. In both cases several anthropometric and physiological variables measured during 
laboratory tests over a period of four years in German male elite Olympic distance triathletes 
were used.  

Methods 

Subjects 

Eleven male German elite triathletes (age: 23.38 ± 2.79 years) competing in national or 
international championships were included in this study. Written informed consent in the form 
of an athlete agreement between each national squad triathlete and the German national 
triathlon association (DTU), as well as a cooperation agreement with the Institute for Applied 
Training Science (Leipzig, Germany), which is responsible for classic performance diagnostics 
of elite athletes in Germany, were mandatory. Participation in the performance diagnostics was 
voluntary and the triathletes could opt out at any time. After data acquisition, all statistical 
analyses were conducted anonymously. Table 1 shows descriptive characteristics (mean value 
and standard deviation (SD) as well as the coefficient of variation (CV = (SD/Mean)*100)) of 
the triathletes. 
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Table 1. Descriptive variables of German elite triathletes (N = 11). 

 mean ± SD CV (%) 

Anthropometric   

age [yrs] 23.38 ± 2.79 11.93 

body height [cm] 187.0 ± 2.90 1.55 

body weight [kg] 74.46 ± 4.28 5.75 

seat height [cm] 96.38 ± 1.59 1.65 

shoulder width [cm] 40.16 ± 2.24 5.58 

pelvis width [cm] 28.65 ± 1.61 5.62 

thorax width [cm] 28.27 ± 1.29 4.56 

thorax depth [cm] 21.06 ± 1.41 6.70 

Quetelet Index [g·cm-1] 398.15 ± 21.32 5.35 

BMI [kg·m-2] 21.29 ± 1.17 5.50 

body fat [%] 10.70 ± 1.36 12.71 

body fat [kg] 8.00 ± 1.35 16.88 

lean body mass [kg] 66.46 ± 3.27 4.92 

Physiological   

VO2max [mL·min-1] 5457.67 ± 292.56 5.36 

VO2max [mL·min-1·kg-1] 72.02 ± 4.29 5.96 

PL3 [m·s-1] 5.08 ± 0.23 4.53 

max running pace [m·s-1] 5.22 ± 0.27 5.17 

max running pace mobi [m·s-1] 6.92 ± 0.17 2.46 

LA max mobi [mmol·L-1] 9.18 ± 1.30 14.16 

VCO2 max mobi [mL] 6472.75 ± 431.74 6.67 

max distance mobi [m] 1762.69 ± 136.70 7.76 

RMV max mobi [mL·min-1] 187.73 ± 12.40 6.61 

RR max mobi [breaths·min-1] 63.18 ± 10.10 15.99 

BLC 3 min [mmol·L-1] 8.08 ± 1.31 16.21 

BLC 6 min [mmol·L-1] 9.13 ± 1.29 14.13 

BLC 10 min [mmol·L-1] 8.62 ± 1.38 16.01 

normalized overall race time 
Olympic distance [min] 

113.79 ± 3.21 2.82 

Notes: PL3 = running pace at 3-mmol·L-1 blood lactate; mobi = mobilization test; LA 
max mobi = maximum blood lactate in mobilization test; RMV max 
Mo = maximum respiratory minute volume in mobilization test; RR 
max Mo = maximum respiratory rate in mobilization test; BLC 3, 6, 10 
min = blood lactate concentration 3, 6, 10 min after load in 
mobilization test, respectively 
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Experimental Procedure 

The data in this study were derived from laboratory tests performed between 2008 and 2012 at 
the Institute for Applied Training Science (Leipzig, Germany) within the frame of national 
squad investigations. Because elite triathletes were tested at various time slots based on their 
competition calendar, the distribution of tests was not consistent. Overall, 23 men completed 
58 laboratory tests between 2008 and 2012. The iterative approach to select valid sets of 
variables was based on the following requirements: (1) complete sets of variables of the 
laboratory tests and (2) finished Olympic distance triathlon races within 8 weeks after each 
single performance diagnostic. Twenty-five sets of variables from eleven triathletes fulfilled 
these criteria and were eventually used. 

The anthropometric characteristics of each triathlete were selected and determined based on 
the information provided by Tittel and Wutscherk (1972) and Knussmann and Barlett (1988). 
Body height and segment lengths and widths were measured using precise measuring 
instruments and valid measurement regulations, and provided the basis to calculate the various 
indices (Tittel & Wutscherk, 1972). Body fat was determined by measuring skin fold thickness 
of ten skin folds with a caliper (Tittel & Wutscherk, 1972); lean body mass could then be 
calculated. The anthropometric variables mentioned in Table 1 (except age and body weight, 
which are only listed for a better characterization of the sample) were used for computation. 

For the physiological parameters, the triathletes had to perform two different motorized 
treadmill running tests under laboratory conditions (gradient of 0°). First, a classic step test 
with an individual initial speed between 4 and 4.5 m·s-1 depending on general performance was 
conducted. The step length was 4 km, with an increasing rate of 0.25 m·s-1 between two 
consecutive steps. The test was stopped after a maximum of four steps. One day later, a 
maximum mobilization test with an initial speed of 5 m·s-1, an increasing rate of 0.25 m·s-1 per 
step, and a step length of 30 s until voluntary exhaustion was performed. In both tests, blood 
lactate measurements and spirometry were conducted. Pulmonary and respiratory gas-
exchange parameters were measured using a calibrated breath-by-breath gas-analyzer (Cortex 
METAMAX 3B and Cortex METALYZER 3B). The physiological variables considered for 
computation are shown in Table 1 (except relative VO2max, which is only listed for a better 
characterization of the sample).  

Data analysis 

Normalization of race time 

Normalization was necessary to obtain comparable individual race times independent of the 
various triathlon races in which the subjects participated. These normalized race times were 
fundamental to all following analyses, since they accounted for the slightly different 
competition calendars of each elite triathlete. Races with a maximum time lag of 8 weeks to 
each single performance diagnostic were selected from official results 
(www.triathlondata.org). To guarantee a similar race progress, the minimum requirement was 
participation in the German, European, or World championships as well as in races within the 
World Triathlon Series (WTS).  

The reference factor was calculated as the mean value of overall race times of the Top 10 
athletes in WTS between 2009 and 2012. All finished races within each year were considered. 
The resulting mean value for Olympic distance triathlon race time was used to normalize each 
individual race time. 

reference factor = mean (overall race times of Top 10 WTS athletes of all races within the 
WTS 2009, 2010, 2011, 2012) 



IJCSS – Volume 16/2017/Issue 2 (Special Edition)              www.iacss.org 

106 

Up to two races of the WTS are sprint distance triathlons. To use these race times, the same 
approach was applied to determine a factor transforming sprint distance triathlon race time into 
an Olympic distance equivalent.  

Statistical methods 

The statistical analyses applied after race time normalization could be divided into two 
computational approaches to identify performance-relevant parameters and predict overall race 
times of German male elite triathletes: 

 A purely statistical approach consisting of an exploratory factor analysis, to preselect 
important anthropometric and physiological parameters, and multiple linear regressions 
to identify performance-relevant parameters and predict overall race times of German 
male elite triathletes. 

 An expertise-based non-linear approach consisting of a dominance paired comparison 
with four professional German triathlon coaches, to preselect important anthropometric 
and physiological parameters, and the application of artificial neural networks to 
predict overall race times of German male elite triathletes. 

The converse implementation of the preselection and prediction methods (e.g. dominance 
paired comparison and multiple linear regressions) were deemed unsuitable because of their 
different fields of application, based on the linear and non-linear relationships between the 
independent variables and the dependent variable, normalized overall race time. 

The purely statistical approach could be divided into two consecutive steps: An exploratory 
factor analysis (EFA) was first applied to preselect relevant independent variables, followed by 
a multiple linear regression (MLR) to determine potential prediction models and the priority of 
the used parameters. An EFA helps to uncover structures in large sets of variables. This allows 
a preselection of parameters with high correlations among themselves and similar explanation 
of variance to the same underlying factor. For small sample sizes, which are inevitable while 
working with elite triathletes, a reduction of variables can improve the results in MLR, and 
prevent multicollinearity. Therefore, an EFA was conducted using the ‘principal component’ 
method. The Kaiser-Meyer-Olkin Measure of Sampling Adequacy of 0.726 (based on 
anthropometric variables) and 0.697 (based on physiological variables) show a “middling” 
suitability (Kaiser & Rice, 1974) for both EFAs. A varimax rotation led to the final solution, 
with variables sorted by the size of factor loadings related to a general factor. With this step, 
variables such as relative VO2max (less descriptive than absolute VO2max) and the maximum 
blood lactate concentration in classic step test (less descriptive than maximum blood lactate 
concentration in mobilization test or blood lactate concentrations after load) could be excluded 
with a minimal loss of information. Based on these results, a stepwise multiple linear 
regression analysis (backward method, default exclusion criteria: probability of F to remove ≥ 
0.1) was used to detect the relationships between independent variables and overall race time 
in Olympic distance triathlon. Each parameter had to be significant (p < 0.05). To avoid 
multicollinearity, Variance Inflation Factor (VIF) was checked with a cut-off of 10 (Hair, 
1995). Additionally, the normality of residuals was examined via normal distribution plots, and 
residual independence and homoscedasticity were determined by plotting the residuals against 
the estimated data. Furthermore, Cook’s Distance was used with a cut-off ≥1 to identify and 
remove influential cases in case of homoscedasticity (Heiberger & Holland, 2004). The 
coefficient of determination (percentage of variance explained; R²) and the standard error of 
the estimate (SEE) were used to evaluate the models. The adjusted R², in particular, allows a 
comparison between several MLR models, considering the number of variables used in each 
case.  
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The expertise-based non-linear approach also consisted of two conscecutive steps: A 
dominance paired comparison was first conducted to identify performance-relevant 
parameters, based on the expertise of four professional German triathlon coaches, followed by 
the computation of artificial neural networks (ANNs) to determine potential prediction models. 
A dominance paired comparison helped raters to prioritize influencing variables in a 
systematic and objective way. Thus, personal preferences and subjective influences could be 
avoided with regard to prioritization of the independent variables. Each national triathlon 
coach had to rate the significance of each variable against all others. The overall sum score was 
used for the final prioritization. To ensure solvability of the numerous connections in the 
artificial neural networks with regard to the sample size, the five most relevant variables were 
finally selected. Two dominance paired comparisons were conducted (for anthropometric and 
physiological variables separately). The selected relevant parameters were used to compute 
two-layer feedforward artificial neural networks as a non-linear approach to predict overall 
race time in Olympic distance triathlon of elite triathletes. In general, ANNs have the ability to 
learn relationships between variables in complex, non-linear contexts. A multi-layer perceptron 
with one input layer (one input neuron for each independent variable), one hidden layer (two 
neurons), and one output layer (one neuron for the dependent variable, normalized overall race 
time), as shown in Figure 1, was selected as a universal approach (Hornik, Stinchcombe, & 
White, 1989). To minimize mean squared error, Levenberg-Marquardt algorithm was used as a 
training algorithm due to its attribute of robustness (Marquardt, 1963). The dataset was 
randomly divided into datasets for training (80% of the sample), validation (10% of the 
sample), and testing (10% of the sample). In the training process, a set of input-output patterns 
was used to adjust the weights of all interconnections between the neurons in an ANN. The 
validation set is mainly used to avoid over fitting in the learning process. The test data is 
finally used to predict an output, which should be within an acceptable margin compared to the 
actually given output. The presented results below involving the entire sample. The coefficient 
of determination (R²) and the standard error of the estimate (SEE) were used to evaluate the 
models. The SEE was calculated to ensure comparability between both computational 
approaches, even though it is not common in ANNs. 

 
Figure 1. Internal characteristics of an Artificial Neural Network consisting of five Input-Neurons, two Hidden-

Neurons, and one Output-Neuron. 

SPSS Statistics (Version 22, IBM) and MATLAB (Version R2015b, MathWorks) with Neural 
Network Toolbox were used for statistical analyses. The level of significance was set to p < 
0.05. 
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Results 

Normalization of race time 

The normalization of race times yielded a mean ± standard deviation of overall race time in 
Olympic distance triathlon of 6827.57 ± 192.56 [s] (approximately 1:54 h) for male elite 
triathletes. The conversion factor for sprint distance race times into an Olympic distance 
equivalent is 2.08 ± 0.03. 

Preselection of variables 

Exploratory factor analysis 

EFA yielded four factors in case of anthropometric variables and three factors in case of 
physiological variables. Tables 2 and 3 show the variables sorted by the size of factor loadings 
related to the general factor, and after varimax rotation. A suppression level of 0.5 was used to 
point out decisive variables (Hair, 1995) and to exclude variables with poorer explanation to 
one general factor (e.g. relative VO2max). 

Most of the variables showed a strong relationship to one single factor. Lean body mass was 
related to body composition and height. Running pace at 3-mmol·L-1 blood lactate and 
maximum running pace in classic step test were both related to respiration and velocity as well 
as respiration and velocity in the mobilization test. The variables in Table 2 and Table 3 were 
therefore used to compute the following multiple linear regression analyses.  

Table 2. Varimax-rotated factor loadings of exploratory factor analysis for anthropometric variables. 

 
Factor 1 Factor 2 Factor 3 Factor 4 

BMI .908    

Quetelet Index .863    

lean body mass .777  .551  

thorax depth .613    

body fat % .968   

body fat kg  .839   

pelvis width  .583   

body height   .930  

seat height   .802 

shoulder width   .888 

thorax width  .852 

possible factor 
interpretation 

„body 
composition“

„body fat“ „height“ 
„segment 

width“ 
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Table 3. Varimax-rotated factor loadings of exploratory factor analysis for physiological variables. 

 
Factor 1 Factor 2 Factor 3 

LA max mobi .966  

BLC 6 min .959  

BLC 10 min .921  

BLC 3 min .824  

VCO2 max mobi  .870 

VO2 max  .834 

PL3  .708 .591 

max running pace  .682 .523 

RR max mobi  .788 

max distance mobi   .689 

max running pace mobi   .684 

RMV max mobi   .655 

possible factor 
interpretation „lactate“ 

„respiration 
and velocity“

„respiration 
and velocity 

mobi“ 

 

Dominance paired comparison 

The dominance paired comparisons as a second preselection approach yielded five parameters 
concerning anthropometric and physiological parameters, shown in Table 4. Anthropometric 
parameters mostly described the body composition of the athletes. The selection of 
physiological parameters consisted of respiratory, lactate, and velocity-related variables. 

Table 4. Results of dominance paired comparisons with national triathlon coaches for anthropometric and 
physiological variables. 

Five most important parameters 

anthropometric physiological 

body weight [kg] absolute VO2max [mL·min-1] 

BMI [kg·m-2] relative VO2max [mL·min-1·kg-1] 

body fat [%] running pace at 3-mmol·L-1 blood lactate 
[m·s-1] 

body fat [kg] maximum running pace [m·s-1] 

lean body mass [kg] maximum running pace in mobilization 
test [m·s-1] 
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Performance prediction models 

Multiple linear regression 

Statistical assumptions of multiple linear regression (normal distribution of regression 
residuals, homoscedasticity) were validated by assessment and testing of residuals. Multiple 
linear regression analysis after EFA revealed that, among anthropometric parameters, pelvis 
width and shoulder width were the best predictors of overall race time in Olympic distance 
triathlon. The R² showed an explanation of variance of 40.5% of overall race time by the 
anthropometric based model. The multiple linear regression model after EFA based on 
physiological parameters included running pace at 3-mmol·L-1 blood lactate, maximum lactate, 
and maximum respiratory rate in the mobilization test. The physiological model showed a 
higher R² of 66.5, with a lower SEE in comparison (Table 5). The results led to two equations 
predicting overall Olympic distance triathlon race time for male elite triathletes:  

Predicted race time [s] based on anthropometric variables = 7643.56 - 80.889 × (pelvis width 
[cm]) + 37.388 × (shoulder width [cm]) 

Predicted race time [s] based on physiological variables = 8521.03 + 8.556 × (maximum 
respiratory rate [breaths·min-1]) - 332.80 × (running pace at 3-mmol·L-1 blood lactate [m·s-1]) - 

61.658 × (maximum blood lactate [mmol·L-1]) 

Table 5. Parameter and model estimates of multiple linear regression analyses for male elite triathletes. 

 value β-coefficient R² Adjusted R² SEE [s] p-value VIF 

EFA + MLR 

(anthropometric) 

  0.405 0.351 155.14 0.003  

Constant 7643.56       

SW 37.39 0.434    0.025 1.199 

PW -80.89 -0.674    0.001 1.199 

EFA + MLR 

(physiological) 

  0.665 0.582 117.27 0.003  

Constant 8521.03       

PL3 -332.80 -0.474    0.018 1.065 

LA max Mo -61.66 -0.450    0.028 1.161 

RR max Mo 8.56 0.505    0.014 1.103 

Notes: SEE = standard error of the estimate, VIF = Variance Inflation Factor, SW = shoulder width; PW = pelvis 
width; PL3 = running pace at 3-mmol·L-1 blood lactate; LA max Mo = maximum blood lactate in 
mobilization test; RR max Mo = maximum respiratory rate in mobilization test; general format for 
multiple regression equation: y = constant + value1 × variable1 + value2 × variable2 + … 

Artificial neural networks 

The artificial neural network computed after dominance paired comparison using the 
anthropometric variables body weight, BMI, lean body mass, and absolute and relative body 
fat explained 43.4% of the variance in overall race time (R² = 0.43; SEE = 144.56 [s]). The 
artificial neural network after dominance paired comparison using the physiological variables 
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maximum running pace, running pace at 3-mmol·L-1 blood lactate, absolute and relative 
VO2max, and maximum running pace in mobilization test explained 86.2% of the variance in 
overall race time (R² = 0.86; SEE = 91.82 [s]). Both artificial neural networks, with their 
specific characteristics, could be used to predict overall Olympic distance triathlon race time 
based on a single input pattern. 

Discussion 

The aim of the current study was to assess whether overall Olympic distance triathlon race 
time of male elite athletes could be predicted using regular performance diagnostics, and to 
compare two different computational approaches. Anthropometric and physiological variables 
measured during routine laboratory tests provided a database for the prediction, without 
interfering with individual training programs and season calendars of the elite triathletes. Both 
the combinations assessed (an exploratory factor analysis and multiple linear regression, and a 
dominance paired comparison and artificial neural network), yielded prediction models of 
overall triathlon race time.  

Assessment of parameters 

Table 1 shows the homogeneous appearance of elite triathletes within the sample. 
Anthropometric characteristics had only small variations, except for body fat [% and kg], 
which became obvious because of a larger CV. The physiological variables showed a partially 
similar distribution: VO2max [mL·min-1 and mL·min-1·kg-1] showed a small variation because 
of its premising function in samples consisting of elite triathletes. Maximum lactate value and 
maximum respiratory rate in mobilization tests as well as the lactate values after load showed 
higher CVs. Different individual strengths in the three disciplines likely affected the results of 
running-specific step tests. 

The selection of parameters has an important effect on the prediction results. Body height, 
body weight, and resulting BMI, as well as age were in accordance to the reports of Hue 
(2003), Schabort et al. (2000) and Hue, Le Gallais, Boussana, Chollet, and Prefaut (2000) 
(slightly lower body height and weight) as well as Ackland, Blanksby, Landers, and Smith 
(1998) (slightly older, smaller, and lighter). VO2max [mL·min-1·kg-1] as gross criterion of 
endurance performance was slightly lower than that reported by Hue, Le Gallais, Chollet, and 
Préfaut (2000) and Schabort et al. (2000), and similar to that reported by Hue (2003). Lactate 
values could not be compared because of various specifications such as defined bounds, 
running paces, or power outputs while cycling. McLaughlin et al. (2010) showed a 
considerably slower running pace at 3-mmol·L-1 blood lactate (4.41 m·s-1), which is likely 
because their sample consisted of well-trained but non-elite triathletes. In summary, our set of 
variables seemed to be accurately selected and showed values similar to those reported in other 
studies using male elite triathletes. 

Normalization of race time 

The mean and standard deviation of normalized overall race time in Olympic distance triathlon 
for male triathletes (6827.57 ± 192.56 [s]; approximately 1:54 h) calculated in this study were 
comparable to those reported by Landers et al. (2000). A closer look at the Top 10 ranked 
athletes in the WTS from 2009 until 2012 showed that the mean ± SD of overall race time 
were consistent with the values used, considering that German elite triathletes commonly have 
a Top 20 position in WTS races. 
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Preselection of variables 

The purely statistical approach using exploratory factor analysis is devoid of subjective 
influences, and prioritizes variables based on their influence to a general factor. Therefore, 
variables with a small variance will typically be sorted out. This could be why only two 
anthropometric and three physiological variables provided a significant contribution in the 
computed linear regression models, which is unfavorable because it could result in a lack of 
explanation of variance. Additionally, a sufficient sized sample must be available. In contrast, 
the dominance paired comparison does not have high demands regarding the number of 
coaches consulted. An objective prioritization based on professional expertise seems to be a 
plausible preprocessing step, if combined with ANNs to model complex and non-linear 
patterns. A reduction of variables similar to an exploratory factor analysis could therefore not 
be achieved and the maximum number of variables used in the computational model must be 
specified manually. As a prime example, VO2max is a common parameter characterizing the 
endurance of heterogeneous groups and predicting performance (Butts, Henry, & Mclean, 
1991; Miura et al., 1997). This could be why national triathlon coaches select absolute and 
relative VO2max as predictive parameters. In homogenous groups, VO2max normally has only 
premising instead of predicting character, because of the small variation (Sleivert & Rowlands, 
1996). This could possibly be a drawback of subjective assessments compared to the 
exploratory factor analysis as a purely statistical approach, which sorted out VO2max. 

Performance prediction 

Landers et al. (2000) underlined the importance of identifying parameters predicting race 
performance. Besides potentially supporting the creation of new training programs, the 
information provided by performance prediction models could also be used in the field of 
talent diagnostics. Considering that the small and homogenous sample limits generalizability, 
the reported performance prediction models showed that specific influencing parameters 
generally exist. These parameters could allow more objective talent selection by defining 
minimum physical requirements (e.g. for specific age groups). Talent identification programs 
could also use information on advantageous anthropometric requirements to direct young 
athletes to the sport of triathlon. The design of training programs could be influenced by 
focusing on optimal training levels (e.g. to improve identified lactate levels). 

The combination of a professional triathlon coach survey and ANNs provided two 
performance prediction models with medium and large explained percentages of variance, 
respectively (anthropometric: R² = 0.43; physiological: R² = 0.86). In comparison, the MLR 
showed clearly poorer results (anthropometric: R² = 0.41; physiological: R² = 0.67). Therefore, 
the predictions using ANNs outperformed those from the purely statistical approach 
comprising factor analysis and multiple regressions. Furthermore, a closer look at the SEE 
(based on MLR: anthropometric: 155.14 [s]; physiological: 117.27 [s]; based on ANN: 
anthropometric: 144.56 [s]; physiological: 92.82 [s]) revealed that these are smaller than the 
performance variation of individual athletes (e.g. SD of race time of Javier Gomez during 
WTS 2014: 200.93 [s]) and of the Top 10 athletes in WTS 2014 (SD of race time: 217.83 [s]), 
which confirms the results of the performance prediction models. 

The first MLR model yielded the anthropometric parameters pelvis width and shoulder width 
as significant predictors of overall race time in elite Olympic distance triathlon. These two 
variables could theoretically have an impact on running economy (Barnes & Kilding, 2015). 
Shoulder width seems to be a predictor for swimming performance, which is necessary to be in 
the first group getting out of the water. In contrast, pelvis width should be smaller, which was 
already shown for distance runners (Anderson, 1996; Williams, Cavanagh, & Ziff, 1987), and 
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is therefore plausible in connection with the importance of the run part in elite Olympic 
distance triathlon. The ANN model used the five anthropometric parameters, body weight, 
BMI, lean body mass, and absolute as well as relative body fat, which were identified through 
dominance paired comparison as most important for overall race time in elite Olympic distance 
triathlon. Parameters such as body height or BMI normally show too small variations to get 
significant results in small and homogenous samples (Table 1). In the present study, the 
triathlon coaches were partially responsible for young athletes in national squads, where the 
mentioned variables have a higher influence and a greater variance than in elite triathletes.  

The second MLR model yielded the physiological parameters running pace at 3-mmol·L-1 

blood lactate, maximum lactate, and maximum respiratory rate in mobilization test as 
significant predictors of overall race time in elite Olympic distance triathlon. The ANN model 
used the five physiological parameters, maximum running pace, running pace at 3-mmol·L-1 
blood lactate, maximum running pace in mobilization test, and absolute as well as relative 
VO2max identified by a dominance paired comparison as most important for overall race time 
in elite Olympic distance triathlon. Both approaches identified running pace at 3 mmol·L-1 

blood lactate as important for overall race time. This variable describes the possibility of an 
athlete to realize a higher pace with the same utilization of metabolic processes. The mentioned 
lactate interval is mainly used while competing in Olympic distance triathlon, and therefore 
leads directly to a faster race time. Some studies identified VO2max or ventilatory thresholds 
as important for performance prediction in heterogeneous groups (Butts et al., 1991; Miura et 
al., 1997). This could be why national triathlon coaches select absolute and relative VO2max as 
predictive parameters, particularly for young athletes. In homogenous groups, VO2max 
normally has only premising instead of predicting character because of only small variation in 
VO2max (Sleivert & Rowlands, 1996). In contrast, maximum values such as maximum lactate 
and maximum respiratory rate in mobilization as well as maximum running pace allow a valid 
assessment of anaerobic capacities. EFA and MLR as well as DPC and ANN used these kind 
of variables, which seems to be plausible: nearly all races of the WTS were actually won 
during the running discipline, especially in the final spurt. High lactate values and high running 
paces could therefore be important factors for overall race time. The maximum respiratory rate 
could also influence this kind of race situation, because a selectively high oxygen uptake is 
required to prevent the formation of lactate. 

Limitations 

The sample in this study was elite, small, and homogenous, which limits generalizability to 
other triathlete cohorts. However, generalizability of results to other triathlete cohorts was not 
the aim of this study; we focused on elite athletes. National squads for triathlon are generally 
small; compared to other sports, only 4 -5 athletes are included in the elite Olympic distance 
triathlon squad each year, and elite athletes are often reluctant to participate in experiments. 
Additionally, individual training schedules and differences in season calendars complicate 
experimental laboratory studies with this special population. Therefore, one of our aims was to 
assess whether overall Olympic distance triathlon race time of elite athletes could be predicted 
using regular performance diagnostics. To overcome the drawback of having a small number 
of available athletes, we developed an algorithm that helped us to increase the number of 
datasets used in the statistical analyses, by collecting performance diagnostics over a period of 
four years. We only included data sets if two requirements were fulfilled: (1) availability of a 
complete set of variables from the laboratory tests and (2) a finished Olympic distance 
triathlon race within 8 weeks after each single performance diagnostic. However, despite this 
improvement, no prediction models could be determined by combining anthropometric and 
physiological variables due to the sample size.  
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Further, we did not take the results of laboratory tests in swimming and cycling into account. 
This was because the protocols slightly changed over the period of interest (2008-2012), which 
led to inconsistent data sets. Therefore, we decided to exclude these sources of information to 
avoid a further reduction of the sample size. Nevertheless, the general tactical behavior in elite 
Olympic distance triathlon races allows the use of running diagnostics alone to generate 
meaningful results. The swimming and cycling disciplines in elite Olympic distance triathlon 
only have premising function whereas the running discipline is normally the critical factor for 
success (Fröhlich, Klein, Pieter, Emrich, & Gießling, 2008; Vleck, Burgi, & Bentley, 2006). 
Therefore, the results of the present prediction models, with only running diagnostics as 
physiological parameter, could be considered appropriate. However, we are planning to 
incorporate more comprehensive data sets (swimming, cycling, and running diagnostics) in 
future studies, since the test protocols for swimming and cycling have now been standardized. 

Conclusion 

Two different approaches to determine performance prediction models of overall race time in 
elite Olympic distance triathlon were developed without interfering with individual training 
programs, through triathlete participation in a standardized experimental study and the 
identification of important parameters collected through laboratory tests. According to these 
models, the combination of an exploratory factor analysis and multiple linear regression 
provided appropriate explanations of variance in case of anthropometric (R² = 0.41) and 
physiological (R² = 0.67) variables. These were selected with a strong analytical procedure, 
using variables with a greater variance. The corresponding SEEs of 155.14 [s] (anthropometric 
variables) and 117.27 [s] (physiological variables) showed acceptable results when compared 
to performance variations of individual athletes (e.g. SD of race time of Javier Gomez during 
WTS 2014: 200.93 [s]) and of the Top 10 athletes in WTS 2014 (SD of race time: 217.83 [s]), 
and therefore confirmed the results of the performance prediction models.  

The advantage of ANNs compared to MLRs is the possibility to take non-linear relationships 
into account and to model more complex patterns. Therefore, the trained ANNs considering 
expertise of professional triathlon coaches through dominance paired comparison as 
preselection method could preferably be used to predict individual race time based on the 
values of an actual performance diagnostic. The explanations of variance and the standard 
errors of the estimate in case of anthropometric (R² = 0.43; SEE = 144.56 [s]) and 
physiological (R² = 0.86; SEE = 91.82 [s]) variables were an improvement over those of the 
the purely statistical approach. 

Finally, the results of the present study show that future research should focus on collecting 
larger samples, and on the developmental process of young triathletes, with a focus on the 
influence on performance prediction models. Information from previous races, such as overall 
or split times and training indicators, could also enhance prediction (Gilinsky, Hawkins, Tokar, 
& Cooper, 2014).  
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