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ABSTRACT 

In sports biomechanics and motor control, a thorough study of coordination 
variability is important to understanding how the human movement system is 
organized. From a more applied sport science perspective, knowledge about 
performance variability is essential regarding the evaluation of true sport specific 
effects of any intervention. While there are many reports of intervention studies in 
team-handball, no description of the amount of normal variability is available. 
This study investigated variability of two important throwing techniques in team-
handball within elite junior players over a 4-month period during a competitive 
season. To evaluate ball speed variability, the intra-individual coefficient of 
variation was calculated. The 95th percentile of ball speed variability over all 
players was 7%, which can be used as an effect size estimate in future research. 
For coordination variability, a qualitative description based on the output of 
neural networks was used. All participants presented multiple coordination 
patterns, representing multi-stability on a month-to-month timescale and switched 
between stable states without the manipulation of any control variable. Some 
limitations in the methodology and applications of neural networks in the present 
study and in biomechanics and motor control in general are highlighted. When 
more researchers adopt these methodologies, a more coherent framework for their 
application can emerge.      

KEYWORDS: TEAM-HANDBALL, BIOMECHANICS, COORDINATION DYNAMICS, 
ATTRACTOR DIAGRAM, SELF-ORGANIZING MAPS 
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INTRODUCTION 

Team handball is a complex sport on both the team- and individual level. Many throwing 
techniques are involved in team handball (jump shot, standing throw with run-up, pivot throw, 
side throw, desaxé and penalty throw). Previous biomechanical analyses assessed the 
relationship of ball speed and accuracy with throwing kinematics under various task 
constraints or between groups (van den Tillaar & Ettema, 2003, 2011; Wagner, Buchecker, von 
Duvillard, & Müller, 2010a, 2010b; Wagner, Pfusterschmied, von Duvillard, & Müller, 2012). 
In a recent review, Wagner, Finkenzeller, Würth, & von Duvillard (2014) reported a lack of 
studies in team-handball aimed at training performance and general coordination. To further 
training interventions, a better understanding and a quantification of normal amounts of  
variability is necessary (i.e. intra-seasonal variability without application of specific 
interventions). Team-handball players are involved in a constant learning process during 
regular training and competitions that already have an effect on coordination and performance. 
Isolating these from effects due to interventions can be hard and researchers should be aware 
of this when evaluating interventions. Longitudinal studies of Gorostiaga, Granados, Ibáñez, 
González-Badillo, & Izquierdo (2006) and Granados, Izquierdo, Ibàñez, Ruesta, & Gorostiaga 
(2008) in which elite male and female team-handball players were followed throughout an 
entire season of regular training and competition showed significant increases in ball speed. 
However, this increase was not a continuous pattern and showed both up- and downward 
fluctuations throughout the season. Preatoni et al. (2012) reviewed the importance of 
coordination variability and stated that the effects of factors such as environmental changes, 
training procedures, learning phenomena, latent pathologies and incomplete recoveries could 
be masked by variability. It is therefore important to explore the intra-seasonal variability in 
performance before evaluating the efficacy of any intervention. To our knowledge, no such 
intervention study for elite youth players or exploration of intra-seasonal performance 
variability has been done. In more experienced team-handball players, different kinds of 
training interventions have demonstrated significant changes in ball speed ranging between 
1.4% and 24.2% increases (Chelly, Hermassi, Aouadi & Shephard, 2014; Ettema, Glosen & 
van den Tillaar, 2008; Hermassi, van den Tillaar, Khlifa, Chelly & Chamari, 2015; 
Saeterbakken, van den Tillaar & Seiler, 2011; van den Tillaar & Marques, 2011; Wagner & 
Müller, 2008). Only the latter two of these studies also analyzed the changes in biomechanical 
parameters in response to the training and found several changes in kinematic variables.   

To our knowledge, no studies have been performed evaluating intra-seasonal variability in 
coordination in team-handball players. Wagner, Pfusterschmied, Klous, von Duvillard & 
Müller (2011) analyzed the variability of six kinematic variables in three handball throwing 
techniques at three different skill levels on ten consecutive trials in one day, which can be 
considered a snapshot as compared to a longer training period of different months. The two-
timescale landscape model of Newell, Mayer-Kress, Hong & Liu (2009) which decomposes 
the performance dynamics into a slow (learning) and fast (adaptation) timescale illustrates that 
products of human motor behavior can change on more than one timescale. Coordination 
variability might also exist on more than one timescale and knowledge of variability on a 
timescale larger than trial-to-trial is still lacking. In gait analysis, it is already shown that 
within a single day and on consecutive days, it is possible to discriminate between patterns 
without an application of any intervention (Horst et al., 2015; Horst, Eekhoff & Schöllhorn, 
2014). Seifert, Button & Davids (2013) pointed out that the variability of human movement not 
only reflects motor command error, but also the ability of the motor system to adapt to external 
perturbations or changing task constraints. Motor learning needs exploration of the degrees of 
freedom during task performance (Kelso, 1995; Schorer, Baker, Fath & Jaitner, 2007). 



IJCSS – Volume 15/2016/Issue 1              www.iacss.org 

   

3 

Consequently, forcing an athlete into a rigid motion pattern (role-model imitation) does not 
stimulate the self-organizing nature to search an individual task-specific optimal solution 
(Ohnjec, Antekolovic & Gruic, 2010; Pori, Bon & Sibila, 2005). Lamb, Bartlett & Robins 
(2011) described a method to visualize the coordination stability as an arbitrary potential 
function which allows an interpretation analogous to potentials in classical physics (~ 
coordination potential) and the original studies in bimanual coordination dynamics (HKB-
model: Haken, Kelso & Bunz, 1985). Local minima in the coordination potentials correspond 
to stable motion patterns (critical points in the language of dynamical systems theory), while 
local maxima or inflection points reflect instabilities. Basically, their method first reduces the 
dimensions of the original dataset to a two-dimensional map and then clusters the overall 
pattern in a one-dimensional string. Using this method in a longitudinal setting could be an 
interesting way to study coordination variability on a longer timescale. Seeing how the 
clustering (position of the critical points) changes over time can give us information on 
coordination stability over longer periods of time.      

The aim of this study is to use this method to describe the stability of throwing coordination of 
elite adolescent team-handball players on a month-to-month timescale. Also the variability in 
their throwing speed will be measured to use as a reference for future training studies. As this 
is an exploratory study, no hypotheses about the outcome were formulated. 

METHODOLOGY 

Subjects 

For this study, thirteen handball players were selected from the national selection under 
nineteen year from the Belgian National Handball Federation. Four of these subjects were 
enrolled at the Topsportschool Hasselt (talent program of the Flemish government for youth 
top-level sport) and most of the others had been at the school until the previous year, but were 
now in their first year at college/university. All thirteen subjects were also playing in a first or 
second team in the first league of the Belgian Handball competition. Individual data on 
anthropometric and team-handball characteristics are provided for all players in Table 1. We 
selected players from all different playing positions to account for any possible differences 
between throwing techniques.  

All of our subjects were free of any injury which would limit the performance of maximal 
velocity throws. They were informed about the study protocol and informed consents were 
signed by the participants and by their parents if they were under eighteen years old. This 
study was approved by the Ethics Committee of the University Hospital Brussels. The subjects 
performed the protocol on three occasions during the handball season over a four-month period 
(February, April, May 2014) where the time between measurements was typical for 
intervention studies. Of our thirteen subjects, five were unable to attend the third measurement 
due to illness (S2, S6, S10) and personal circumstances (S8, S12). Two subjects (S9, S13) also 
participated in another project two months before the start of the longitudinal follow-up 
(December 2013). At that time they were asked to perform the same tasks under the same 
conditions as during the longitudinal follow-up, so these measurements are also included here 
and these players have thus four sessions.  
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Table 1: Anthropometric and team-handball characteristics. 

Subjects Weight (kg) Height (m)  Age (years) Team-handball 
experience (years) 

Position   

S1 77.0 1.86 18 10 BC 
S2 67.5 1.73 18 5 P 
S3 71.5 1.73 17 7 W 
S4 79.5 1.79 18 8 BC 
S5 80.0 1.89 17 8 BC 
S6 67.5 1.73 18 13 BC 
S7 65.1 1.74 17 9 P 
S8 75.5 1.70 17 10 W 
S9 62.5 1.68 17 6 BC 
S10 98.0 1.93 17 13 BC 
S11 78.0 1.75 18 10 W 
S12 67.0 1.75 17 10 W 
S13 68.0 1.80 17 8 W 
Mean  73.6 1.78 18.4 9.0  
SD 9.4 0.08 0.5 2.4  

BC = Backcourt, P = Pivot, W = Wing 

Protocol and measurements 

After a warm-up period of at least fifteen minutes (including general warm-up and throwing 
exercises), the players were instructed to perform four throws with maximal speed of two 
throwing techniques (penalty throw and jump shot). The throw was valid if it hit the target (the 
target was a cross with arms of 0.4 m, 1.60 m high) and when they did not cross the line from 
which they had to throw. For the penalty throw, their front foot had to stay on the 7 m line and 
they had to land before or on this line with the jump shot. Players did require only four or 
maximum five throws to perform four valid ones, which is in agreement with the low speed-
accuracy tradeoff seen in elite team-handball players (van den Tillaar & Ettema, 2006). A 
regular handball (IHF-3: circumference 58-60 cm, weight: 425-475 g) was used for throwing. 
The sequence of the throwing techniques were random for each subject and on every occasion. 
At least 30 s of rest between throws was assured to eliminate possible effects of fatigue. 
Players were equipped with thirty-five retro-reflective markers placed on anatomical 
landmarks (left & right spina iliaca anterior superior, sacrum, left & right acromion, two 
markers on the sternum, seventh cervical and twelfth thoracic vertebrae, left & right trochanter 
major, left & right epicondylus lateralis and medialis femoris, left & right lateral and medial 
malleolus, left & right epicondylus lateralis and medialis humeri, left & right olecranon, left & 
right processus styloideus ulnae and radius, left & right metacarpal II and IV), four markers 
were placed on the ball. Three-dimensional kinematic data were captured with a six-camera 
VICON MX F-20 system at 250 Hz (VICON® Peak, Oxford UK) operated with VICON 
Nexus 1.8.2 software. The origin of the global reference frame was placed on the 7 m line from 
where the players had to throw, with the positive Y-axis towards the target, the positive X-axis 
to the right and the positive Z-axis upward. Three-dimensional marker trajectories were 
reconstructed, labeled and gaps were filled in the VICON Nexus 1.8.2 software and smoothed 
with a low-pass fourth order Butterworth filter (zero lag) at a cut-off frequency of 13 Hz. 

Data processing 

Coordinates (xyz) of the marker trajectories were exported from VICON Nexus to a .csv file 
and imported into a custom-made algorithm in Mathcad 14.0 (Parametric Technology 
Corporation, MA, USA). Ball speed data were calculated in Mathcad with the central 
difference method based on the centroid of the 4 ball markers. Ball speed at release was 
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extracted to an Excel 2013 file to calculate means and standard deviations (SD) for all players 
in every month. Ball release was defined as the moment where a sudden increase in ball-to-
hand distance was observed (van den Tillaar & Ettema, 2004). To estimate the intra-seasonal 
variability in ball speed, the coefficient of variation [CV = (SD/mean)*100%] was calculated 
over all twelve trials for subjects that attended all three measurements (only eight trials for S2, 
S6, S8, S10 and S12 and sixteen trials for S9 and S13).  

Local orthonormal reference frames for the pelvis, trunk, upper arm and lower arm were 
constructed based on the ISB guidelines for joint coordinate systems (Wu et al., 2005). 
Segment angles for the pelvis and trunk in the global reference frame were calculated with the 
Cardan rotation sequence of forward/backward tilting, left/right lateral tilting and rotation. 
Shoulder angles were calculated with the Euler rotation sequence of horizontal ab/adduction, 
ab/adduction and endo/exorotation. The elbow was modeled as a 1-degree of freedom joint and 
the longitudinal vectors of upper- and lower arm were used to calculate this angle. All 
segment- and joint-angle time series were calculated within a time-span of 400 ms before ball 
release (100 data-frames) until 80 ms after ball release (20 data-frames). The Euler/Cardan 
rotation sequences yielded no gimbal-locks during this time-period. The segment- and joint-
angle time series were differentiated with respect to time with the central difference method. 
Afterwards, these were transformed to express them in the original coordinate frame to 
calculate the angular velocity vector (Zatsiorsky, 1998). All kinematic variables for the three 
left-handed players were transformed so the kinematic time series showed the same pattern as 
for all right-handed players, this way positive and negative values had the same anatomical 
meaning for right- and left-handed players. This gave us twenty time series (ten segment/joint 
angles and ten segment/joint angle velocities) that were used to evaluate the coordination 
dynamics. Coordination is not only the relative position of body segments, but also their 
velocity and underlying kinetics and muscular activity. We chose to use angles and angular 
velocities to represent coordination as they are the final product and are most directly linked to 
ball speed. 

Data analysis with Self-Organizing Maps  
To study the coordination dynamics of the throwing motions, a class of neural networks (Self-
Organizing Maps, SOM) was used. These SOMs have been proposed as an effective tool for 
visualization and analysis of high-dimensional data (Kohonen, 2001; Lamb et al., 2011; 
Schöllhorn, 2004). Due to non-linear properties and an unsupervised competitive learning 
algorithm, SOMs have the ability to compress high dimensional input data onto low 
dimensional output maps, while preserving its topologic structure (Kohonen, 2001; Vesanto, 
Himberg, Alhoniemi, & Parhankangas, 2000). Many visualization techniques exist for these 
SOMs and therefore, they are an attractive tool for explorative analysis of high-dimensional 
coordination. The fact that they can reduce high-dimensional data to useful information on a 
two-dimensional output map, allows us to use them to extract an order parameter (i.e. the 
collective coordination variable) that can be used to identify attractor states in a coordination 
potential. Because of the high inter-individual differences in throwing techniques and because 
coordination dynamics is per definition a very subject-specific process with a delicate interplay 
between anthropometrics, muscle mass, muscle innervation, handball experience, position on 
the field, etc., we constructed SOMs for all subjects separately. This makes comparison 
between subjects difficult, but because the aim of this paper was to study changes in 
coordination within subjects, this was not an issue. The same intra-individual SOM analysis 
was followed in Lamb et al. (2011). Because it was not the objective of this research to analyze 
differences in coordination dynamics between throwing types (they are inherent to the sport 
and therefore of less interest here), separate SOMs were constructed per throwing type. The 
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aim of this research was to describe what happens with the motion pattern over time and see if 
the SOM can recognize possible changes. Therefore all throws from all sessions were used for 
the SOM training. Other options for different research settings might use only the throws from 
the first session as a reference and see how it changes with respect to these first measurements 
or update the map after every new measurement. 

We will briefly introduce the SOM algorithm here, more technical information can be found in 
Kohonen (2001) and Vesanto et al., (2000). A SOM consists basically of a number of output 
nodes or units that are all connected to each other and to a number of input nodes. Every unit 
has a weight vector with the same dimension as the input vectors (i.e. number of variables). 
The input vectors in our study are the twenty joint angles and – angular velocities at the 121 
data frames for all throws. So every unit represents a specific coordination state at a specific 
time point: a set of the twenty discrete values for joint angles and angular velocities. The 
metric used by the SOM algorithm is Euclidean and therefore, input vectors need to be 
normalized so that all components of this vector are on a comparable scale. Otherwise, 
components of this vector with the highest values (e.g. shoulder internal rotation velocity 
around ball release) will dominate the SOM algorithm. The normalized input vectors are then 
fed to the input nodes in the SOM in an iterative fashion. At every step, the best-matching unit 
in the output layer is searched by the algorithm by calculating the Euclidean distance between 
weight- and normalized input vector. The unit with the smallest distance to an input vector is 
that vector’s best-matching unit. During this iterative process, the weight vectors are updated 
by decreasing the Euclidean distance with the input vector in a competitive learning process, 
for better representing the original data. The best-matching unit’s weight vector is updated by 
the largest amount and surrounding units are updated by decreasingly smaller amounts. The 
neighborhood of units that are updated is defined by the neighborhood radius and 
neighborhood function. The further away from the best-matching unit, the less a unit’s weight 
vector gets updated. This mechanism is responsible for the topological preservation of the 
original data-set and because this is done for all vector-components independently, variables 
which operate on different timescales, may be included in the input vectors (Lamb, Bartlett, 
Lindinger, & Kennedy, 2014). 

A first visualization for coordination patterns may be done with a unified distance matrix (U-
matrix: see Figure 1). It is possible to draw trajectories of consecutive best-matching units on 
this matrix (white lines in Figure 1) that represent the collective coordination state throughout 
the throwing motion. The different phases of the motion can be recognized in this matrix. The 
U-matrix shows the SOM-units in a grid of cells (little hexagons in Figure 1) where the 
distance between neighboring units (similarity of weight vectors) is represented with a color 
scale. The cells that represent the units themselves are colored according to the mean distance 
to the surrounding units. Blue represents SOM units that lie close together, while red indicates 
a large distance to neighboring units. So in the example of Figure 1, we see that the units on 
the left and middle part of the map (high on the color scale) form a ridge in weight space, 
separating the units that represent the different phases of the throwing motion. For this reason, 
the U-matrix is sometimes referred to as a hybrid representation of grid space and weight space 
(Lamb et al., 2011) and can be interpreted as a coordination landscape. These best-matching 
unit trajectories were used as the collective variable (order parameter) for the further analysis 
with a second SOM.   
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Figure 1: U-matrix visualization of the SOM with best-matching unit trajectories of 4 throws of one session. The 
color map indicates the Euclidean distance between neighboring units. The orange arrows 
indicate a general reference to the throwing phases: (1) preparation phase, (2) cocking phase, 
(3) acceleration phase, (4) ball release and (5) follow-through phase. If defined, these phases 
could be visualized exactly, but this was not the aim of this study. Notice that two trials follow 
the outer part of the map in the lower right corner while two trials follow the path between the 
two low ridges (light blue cells). This indicates two different patterns during the cocking 
phase.  

The second SOM (1-dimensional SOM this time) was then trained with the weight-space 
coordinates of the best-matching unit trajectories of all trials. This part of the data-analysis was 
done with the same algorithm as in (Lamb et al., 2014, 2011) and more detailed information 
can be found in those papers. Basically, the second SOM is used to cluster coordination 
patterns into attractor diagrams that can be visualized as arbitrary coordination potentials. 
Firstly, the weight vectors of the best-matching unit trajectories are projected into a two-
dimensional weight space by Sammon’s mapping technique (Sammon, 1969). These 
coordinates are used to train a one-dimensional SOM where every SOM-unit represents an 
entire throwing pattern (whereas the SOM-units in the first SOM represented coordination 
states at a specific data frame). Basins in these potentials (global or local minima of the 
coordination potential) indicate SOM units with a stable coordination pattern for that specific 
month. The depth of the basin is set according to the hit frequency of best matching units and 
proximity of neighboring units. The algorithm visualizes the one-dimensional SOM as a 
theoretical line that is bent downward every time a unit is hit by an input vector. The deeper 
and the steeper the basin, the more trials are mapped into the same pattern and this indicates a 
stable motion pattern. Coordination stability is decreased when shallower and broader basins 
are observed, meaning that different adjacent units were activated. If the basin is shifted along 
the unit-index between months, this indicates that a shift in the high-dimensional coordination 
space is observed between the months. The stability on the intra-seasonal timescale of the 
coordination pattern can then be qualitatively analyzed as a shift/stationary of the basin of 
attraction along the unit-index. 

The analysis of the coordination with the SOMs was done in Matlab R2015a with the open-
source SOM-toolbox (Vesanto et al., 2000). The construction of the attractor diagrams of the 
coordination stability was done with the same algorithm as in the study of Lamb et al. (2011, 
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2014). All SOM-parameters are shown in Table 2. Also provided in Table 2 are the quality 
parameters of the SOMs (quantization and topographical errors). The quantization error is the 
mean Euclidean distance between the best-matching units and the input vectors and the 
topographical error is the percentage of data vectors for which the best-matching and second 
best-matching units are not neighbors (Vesanto et al., 2000).  

Table 2: SOM training– and quality parameters  

Parameter 1st SOM 2nd SOM  

Normalization Range scaling to [-1 1] Range scaling to [0 1] 

Lattice / Shape Hexagonal / Sheet Hexagonal / Sheet 

Neighborhood function Gaussian Gaussian 
Training type Batch  Batch  
Map size based on ratio of first two 

eigenvalues  
1 x 16 

Initialization Linear Linear 
Steps (rough training) 7  5 
Radius (rough training) 4  1 2  1 
Learning function (rough training) Reciprocally decreasing Reciprocally decreasing 
Steps (fine tuning)   26   20 
Radius (fine tuning) 1  1 1  1 
Learning function (fine tuning) Reciprocally decreasing Reciprocally decreasing 
Quantization error (range over all players) 0.091 – 0.189 0.073 – 0.284 
Topographical error (range over all players) 0.000 – 0.073 0.000 – 0.088 

For the radius parameter, the arrow indicates what the initial and final neighborhood radius was 

RESULTS 

Table 3 summarizes the data on ball speed for all thirteen subjects for every month that they 
participated in the study (mean and SD on the four trials). There is no clear pattern in the ball 
speed data, showing any systematic increase or decrease throughout the season across subjects, 
indicating no structural trend due to fatigue or other reasons. In ball speed of the penalty 
throws, the highest values were observed for players S5, S10 and S13. The ball speed data of 
jump throw reveal the same three athletes who achieved the top speeds over all trials. Lowest 
mean ball speeds over all penalty throws were observed  for players S2, S4 and S11 and for the 
jump shots by players S7, S9 and S11. The last column in Table 3 gives the coefficient of 
variation (CV) of the ball speed over all sessions. This is the variation in ball speed that is to be 
expected due to normal intra-seasonal variations. For the penalty throw, an intra-seasonal 
variation between 2.57% and 11.05% in ball speed was observed in between months. For the 
jump shot, the observed variations were between 1.57% and 8.02%. These data can be used as 
normative data for the evaluation of experiments targeting improvements in ball speed in elite 
youth team-handball players.  

  



IJCSS – Volume 15/2016/Issue 1              www.iacss.org 

   

9 

Table 3: Ball speed data (m/s) as means ± SD per month for all subjects and CV (%) 

Subjects December February  April May CV  
Penalty throw 
S1 -- 19.69 ± 0.80 18.49 ± 1.47 19.74 ± 0.63 5.87 
S2 -- 19.33 ± 0.27 16.46 ± 1.70 --  11.05 (**) 
S3 -- 17.95 ± 0.42 18.59 ± 0.24 17.96 ± 0.56 2.75 
S4 -- 17.18 ± 1.48 17.78 ± 0.16 16.74 ± 0.27 4.94 
S5 -- 22.64 ± 0.35 23.38 ± 0.53 22.81 ± 0.44 2.23 
S6 -- 18.74 ± 0.01 19.58 ± 0.45 -- 2.86 
S7 -- 18.83 ± 0.87 18.29 ± 0.75 19.07 ± 0.53 3.78 
S8 -- 20.06 ± 1.06 19.18± 0.43 -- 4.45 
S9 18.87 ± 0.32 19.04 ± 0.01 18.75 ± 0.54 19.28 ± 0.71 2.57 
S10 -- 23.12 ± 1.27 23.83 ± 0.17 -- 3.53 
S11 -- 17.86 ± 0.27 16.63 ± 0.38 15.44 ± 0.38 6.38 
S12 -- 19.25 ± 0.89 18.55 ± 0.87 -- 4.64 
S13 22.82 ± 0.97 23.26 ± 0.53 21.84 ± 1.51 22.12 ± 1.35 5.10 
Jump shot 
S1 -- 19.19 ± 1.72 19.57 ± 0.08 20.06 ± 0.21 3.68 
S2 -- 19.90 ± 0.26  20.24 ± 0.30 -- 1.57 
S3 -- 20.00 ± 0.44 19.93 ± 0.41 19.61 ± 0.16 1.80 
S4 -- 19.20 ± 0.27 19.16 ± 0.49 18.58 ± 0.88 3.57 
S5 -- 23.95 ± 1.47 23.10 ± 0.41 -- (*) 4.28 
S6 -- 19.55 ± 0.58 20.32 ± 0.71 -- 3.60 
S7 -- 17.98 ± 1.11 18.97 ± 0.24 19.32 ± 0.35 4.86 
S8 -- 20.21 ± 0.61 20.48 ± 0.18 -- 2.10 
S9 18.87 ± 0.28 18.47 ± 0.36 17.60 ± 0.88 18.06 ± 0.48 3.63 
S10 -- 22.78 ± 0.20 21.84 ± 0.90 -- 3.52 
S11 -- 18.18 ± 2.61 17.57 ± 1.06 16.28 ± 0.71 8.02 (**) 
S12 -- 19.86 ± 0.57 19.40 ± 0.95 -- 4.00 
S13 22.24 ± 0.40 23.20 ± 0.11 21.95 ± 1.45 21.98 ± 0.41 3.24 

(*) subject S5 was injured to the knee at the measurements in May, limiting him to perform the jump shot; 
(**) the CV for S2 on the penalty throw and S11 on the jump shot were statistical outliers, but we 
recalculated these ball speeds and they were correct, thus providing useful information. It is noteworthy that 
both outliers show a decreasing trend in ball speed between months. 

The stability of the coordination pattern can be quantified as a trajectory through a 
coordination landscape. A complete example is given of the SOM analysis of player S13, 
thereafter we summarize the results of all players. The orientation in time of the best-matching 
unit trajectories is clockwise in all four panels in Figures 2 and 3, starting at the lower right or 
central region of the coordination landscape. For the jump shots (Figure 2), we clearly see a 
shift in the initial coordination states from the lower right on the SOM in December to the 
central region of the SOM in February and April. In May, the initial coordination states are 
situated in both regions (two trials start in each region). Also during the early cocking – (lower 
left region), late cocking – (upper left region) and acceleration phases (upper region), shifts 
toward other SOM regions are observed in between months, but these shifts appear smaller. To 
explore what these changes mean in terms of the original variables was not the aim of this 
study, but for illustrative purposes, we included the component planes for all variables in the 
Appendix. The fact that mostly differences in the early part of the motion occur, indicates that 
the coordination pattern converges to a similar state from different initial coordination states. 
The point of ball release is situated in the top-right region for all trials. Very low variability is 
observed in the coordination pattern during the acceleration and follow-through phase 
(vertical, downward best-matching unit trajectories after ball release). The lowest within-
month variability in the best-matching unit pattern is observed in December and April, 
resulting in the deepest and steepest basins in the coordination potentials (Figure 4, left). The 
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SOM trajectories showed obvious differences in hit frequencies of best matching units between 
months. The coordination patterns of the trials in February and May were not mapped onto the 
same unit in the one-dimensional SOM, creating a very broad, unstable basin, characterized by 
three or four discernible patterns (three or four adjacent units in the one-dimensional SOM 
were activated).  

 

Figure 2: SOMs (visualized by U-matrices) and best-matching unit trajectories (white lines) for the jump shots 
of subject S13 on all 4 sessions (from left to right: December, February, April, May). The 
color map indicates the Euclidean distance between adjacent units. 

For the penalty throws (Figure 3), we see that the initial conditions (begin of the best-matching 
unit trajectory in the SOM) are similar between December and February (lower mid region), 
but are shifted more to the right in April and May. Another easy discernible difference is the 
coordination variability. During the late cocking phase and begin of the acceleration phase, we 
observe very little variability in May and a lot more variability in the other months. The 
attractor diagrams for the penalty throw (Figure 4, right) show very broad basins for 
December, April and May with a high similarity between the December and May attractor. The 
only stable attractor is seen in February, mapping all four trials in unit six. The attractor of 
April shows a plateau region, indicating an instability around unit six, which was two months 
earlier an attractor. 

 

Figure 3: SOMs (visualized by U-matrices) and best-matching unit trajectories (white lines) for the penalty 
throws of subject S13 on all 4 sessions (from left to right: December, February, April, May). 
The color map indicates the Euclidean distance between adjacent units. 
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Figure 4: attractor diagrams for subject S13 during the 4 months for the jump shot (left) and penalty throw 
(right). On the horizontal axis is the unit-index (1 – 16) and on the vertical axis is the arbitrary 
potential value corresponding to every unit. These values have no real meaning, the only 
relevant aspect is the relative vertical and horizontal position of the basins in between months.   

The analysis with SOMs gives us insight into the stability of the motion pattern as visualized 
by attractor diagrams and we can see the clustering of the trials per month on the attractor by 
mapping them on their best-matching units. The example of S13 indicates that stability of the 
coordination pattern is not constant in time and changes continuously. The one-dimensional 
SOM was able to cluster the trials of different months into different basins. This illustrates the 
necessity of establishing intra-individual baseline levels of coordination patterns and 
variability therein. If all the attractors were stable (steep and deep basins) and located at 
(approximately) the same SOM units, coordination variability would be similar on both the 
trial-to-trial and month-to-month timescale and the effect of an intervention would be easily 
spotted by a shift of the basin along the one-dimensional SOM. Figures 5 and 6 show the 
attractor visualizations for the penalty throw and the jump shot respectively for all players 
during all months. Most players back up the conclusion of the example of S13: coordination 
patterns change over time without the manipulation of control variables.  

Penalty Throws  
For the penalty throws (Figure 5), the coordination potentials of subjects S1, S2 and S12 are 
characterized by a shift of the basin of attraction along the unit index, indicating a change in 
the pattern. Subjects S3 and S8 show beside a small change along the unit index also a 
steepening/broadening of the basin. S7, S10 and S11 swap between stable and unstable 
coordination potentials. For S9, the basin stays around the same unit over M1, M3 and M4, but 
is shifted to the right at M2. The other subjects show more interesting phenomena. For instance 
S4 goes from a totally unstable basin in M1 to a stable basin on the left at M2 and then shifts to 
a new and even more stable basin at the other side of the SOM at M3. This might indicate that 
this subject shifts between these two patterns over time, and a combination of both was used 
when measuring him at M1. Subject S5 has a stable basin at M1, while at M2 and M3, his 
basin shifts to the left, while becoming increasingly more unstable shown by the broadening of 
the basin. Subject S6 has a mono-stable potential at M1 and a bi-stable potential at M2 with 
these two very small basins closely to the original.  
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Figure 5: attractor visualizations (coordination potentials) for the penalty throw. For all players except S9 and 
S13: M1 = February, M2 = April, M3 = May. For S9 and S13: M1 = December, M2 = 
February, M3 = April, M4 = May.  

Jump Shots  
A different image can be observed in the coordination potentials of the jump shot analyses 
(Figure 6). Whereas S1 had three stable patterns in the penalty throw, he shows a very shallow 
basin at M1 for the jump shot (the same for S2 at M2). Subject S3 had three stable basins on 
the penalty throw, showing longitudinal stability, but for the jump shot, he shows a different 
longitudinal pattern. At M1, he has a basin on the left and a plateau region on the right 
(instability). Later at M2 and M3, the basin is located around the unit where the original 
plateau region was located. Comparable to the penalty throw, S4 shows an unstable pattern at 
M1 and stable patterns at M2 and M3. The history of S5 is also interesting from a clinical 
perspective. At M3, he was unable to perform the jump shot trials because he was recovering 
from a jumper’s knee, but the trainers and physiotherapist allowed him to perform the penalty 
throws. We observed two stable coordination potentials for the jump shot at M1 and M2, but 
the penalty throws showed increasing instability at M2 and M3. Whether this was due to the 
injury or not, was not part of this investigation and therefore we gave no special attention to it, 
but this could certainly be a study on its own. The other subjects all show differences between 
penalty throws and jump shots, but no overall discernible differences or similarities across the 
group are visible. It is not the case that more coordination stability is observed in any throwing 
type or in any month. 
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Figure 6: attractor visualizations (coordination potentials) for the jump shots. For all players except S9 and S13: 
M1 = February, M2 = April, M3 = May. For S9 and S13: M1 = December, M2 = February, 
M3 = April, M4 = May. 

DISCUSSION 

This study aimed to analyze the intra-seasonal variability in throwing speed (performance 
parameter) and in coordination dynamics. Given the high individual differences, a single-
subject approach (Glazier, 2010) was used to analyze the data on a qualitative level. On the 
subject-level, many phenomena were observed, but these were mostly individual-specific and 
no patterns across the group were observable. The results of the analysis of ball speed 
variability are practically relevant for the evaluation of training interventions, while the 
coordination dynamics analysis offers insight into the motor control processes involved on a 
month-to-month timescale.     

Ball speed variability 

The first objective of this research was to analyze longitudinal performance variability of two 
team-handball throwing techniques. The intra-seasonal variability in throwing performance 
(CV in ball speed) showed variations between 2.5 and 11% on the penalty throws and between 
1.6 and 8% for the jump shots. The variations observed are comparable to the results of the 
study of Gorostiaga et al. (2006) with elite adult players. These data can be taken as normative 
data for the evaluation of training or other kinds of interventions for adolescent male team-
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handball players. Taking these observed CV as minimum effect sizes, one can compare the 
effect of the interventions to these intra-seasonal variations. Interventions should be able to 
reach an effect of at least this CV to be able to speak of a real practical significant effect, 
surmounting intra-seasonal variation. For example, lower effects could be due to other factors 
as measurement error or the subjects having a good or bad day. Ideally, the individual 
variability of all players in a study should be established over a period similar in length to the 
intervention period and an individual analysis of effectivity should be done. However in most 
research settings, this would be impossible due to time and logistic constraints. The 95th 
percentile of all CV was 7.2%. Thus we can safely state, with a 5% error margin, that taking 
7% as a minimum effect for interventions is a safe choice to exclude potential intra-seasonal 
variations in ball speed. With this guideline, a 10% increase would correspond to a 3% 
structural increase. Besides statistical significance, practical sport-specific significance can be 
evaluated. Due to the complexity of the motion and other factors that are difficult to control 
with in-season interventions (competition, tournaments, training), a high variability is seen in 
the performance. The data also showed great inter-individual differences in ball speed data, 
both in absolute values as in the direction of changes between months. These findings illustrate 
that researchers should perform a more thorough base-line measure of performance variability 
and take at least three measurements for evaluating intervention studies. Three longitudinal 
measurements (during or after the intervention) can distinguish between structural increases 
and intra-seasonal up/downward fluctuations. With these guidelines, only some of the studies 
mentioned in the introduction showed a real sport specific effect (Chelly et al., 2014; Hermassi 
et al., 2015; Wagner & Müller, 2008). 

Coordination Dynamics  
The second part of this study was to analyze the accompanying  changes in coordination 
stability over the same four-month period. This was visualized with coordination potentials, 
and shifts of the basins along this potential indicating a change in motion pattern. No patterns, 
relating differences in the coordination stability to changes in ball speed, were visible across 
the group. This supports the highly individual and non-linear nature of coordination dynamics 
of the human movement system and warrants the use of single-subject analyses at the 
qualitative level. Using a group analysis might delete important information because the SOMs 
would have to map very different throwing techniques on the same set of units causing the 
within-subject intra-seasonal variability to get lost. Also no systematic differences or 
similarities between penalty throws and jump shots were observed across the group. This 
observation is similar to the study of  Wagner et al. (2011), which showed significant main 
effects of throwing type and interaction effects between throwing type and skill level on 
movement variability, indicating a complex interaction between several factors specific to 
throwing types. As the jump shot is the most frequently used throwing technique in team-
handball (Wagner, Kainrath & Müller, 2008), and occurs usually under much higher variable 
and dynamic conditions (opponents, run-up speed, point of take-off, …), this difference was to 
be expected.  

We visualized the stability for all players individually (Figure 5 and 6) and found some very 
typical coordination-dynamics phenomena. The most important phenomenon is shown in 
almost all subjects in both throwing types: most subjects show a shift and/or a reshaping of 
their coordination potential between consecutive measurements. This means that the one-
dimensional SOM clustered trials from different months on different units and thus 
demonstrating that the variability was different on both time-scales (a mono-stable motion 
pattern at a certain month does not mean that there was no variability, but that the overall 
coordination pattern was similar). Lees & Rahnama (2013), studying week-to-week variability 
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in soccer instep kick kinematics, showed that in selected extrema of kinematic time series, a 
quantitative amount of variability of around 5% is to be expected. In our study, we showed that 
the variability is not only quantitative, but also that a qualitative change of the overall 
coordination pattern was present. This is quite remarkable, because qualitative changes of the 
coordination state are usually associated with phase transitions due to the manipulation of 
some control variable, while this study was a longitudinal observational study without 
intervention. Other phenomena like the switching between mono- and bi-stable potentials (S6, 
penalty throw) and stabilities becoming instabilities and vice versa (S4, penalty throw; S7, S9 
and S12, jump shot) were also observed. Subject S6 showed a mono-stable potential in M1 and 
then changed to a bi-stable with both basins on opposite sides of the first one. This could mean 
that, starting from the original basin, the subject explored the surrounding coordination 
landscape and settled simultaneous in two neighboring basins (coexistent stabilities). Subjects 
that transformed their potentials in such a way that an instable unit became a stable one or vice 
versa, form a strong argument for a longitudinal multi-stability. The coordination landscape of 
these subjects has probably a highly variable shape without very stable task-solutions. A unit 
that was a stable attractor before but shows an instability the next month can be seen as 
remnants of a former stable pattern. The other way around, a unit formerly representing an 
instability but is about to change towards a stable one, represents a region in the coordination 
landscape that the subject is exploring.    

These observations can be interpreted as a longitudinal multi-stability, where multiple 
coordination patterns coexist. Just like in gait (Horst et al., 2015, 2014), more complex motion 
patterns seem to fluctuate in a natural way without intervention. Kelso (2012) stated that multi-
stability confers the ability of the motor system to switch between patterns to meet 
environmental or internal demands. A motion pattern can be stable at a certain timescale, but 
due to the highly redundant and degenerate nature of the human neuro-musculoskeletal system 
(Edelman & Gally, 2001) and due to self-organization and dynamic instabilities of synergies 
(Kelso, 2012), other stabilities are possible as well. The neural system may switch between 
these stabilities on a larger timescale depending on a complex interplay between several 
parameters (organismic-task-environment parameters (Newell, 1986)). The study of Morais, 
Silva, Marinho, Seifert & Barbosa (2015) illustrates the same principle, but for young 
swimmers. They used k-means and hierarchical cluster analysis to study the stability of 
performance and its determining factors (kinematics and anthropometrics) over a competitive 
season. They showed only moderate longitudinal cluster stability (range: 46.1% - 75%) and 
that the contribution of each performance determining factor changed over the season. More 
research in (young elite) athletes is necessary to get a better understanding of this phenomenon 
for both theoretical and practical reasons. Besides the fact that athletes are actually in a 
continuous learning process and the reshaping of the potential is natural, this multi-stability 
may also be used to prevent overuse injuries. Staying too long in the same coordination state, 
may put too much stress on the tissues in the same direction (Hamill, Palmer & Van Emmerik, 
2012) and thus an optimal amount of variability could contribute to a non-pathological state 
(Bartlett, Wheat, & Robins, 2007; Stergiou & Decker, 2011). On a smaller timescale such as a 
team-handball game, the athlete can also benefit from this multi-stability. As opponents hinder 
the normal motion or fatigue limits normal performance, and a certain pattern is hard to 
maintain, the athletes can switch to other coordination states by addressing or forming other 
functional synergies able to perform the same task.     

There were several limitations in the current study, that have to be kept in mind when 
interpreting the results. We had only a very small sample size (thirteen players), whereof five 
players were unable to attend the third measurement session in May. These players with only 
two potentials, can only be seen to switch between two basins of stability and are thus less 
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informative than the others with three or four potentials. One player was unable to perform the 
jump shot in the last session due to a knee injury. It was not the objective of this research to 
analyze the effect of his injury on the stability, so the fact that his coordination potential in the 
penalty throw after his injury showed more instability, can be a coincidence. The relationship 
between coordination variability and injuries deserves more attention and could provide very 
insightful information for prevention strategies. A second limitation of this study was the 
number of trials that was performed during every measurement session. During every 
measurement session, the participants had to achieve only four valid trials. A higher number of 
trials could have revealed more multi-stability at the trial-to-trial timescale. We did not control 
for changes in strength or power of the subjects, which could also be an additional explanation 
for the variability in ball speed and coordination patterns. Nor could we control for differences 
in training because they belonged to different teams. We had three players from the same team 
(S2, S3 and S9) and two players from another team (S5 and S12). These players had the same 
training, but also within those groups, we could not see any structural patterns on ball speed 
and coordination between months. A final limitation is the reliability of the marker placement. 
Small differences in placement when measuring on different occasions are possible and could 
influence the calculated joint angles. However, we believe that this should not present 
problems because the raw joint angle and -velocity time series were spatiotemporally 
normalized within each subject and the vector quantization procedure of the SOM would map 
them in the same units if only the marker placement caused a difference.  

Self-Organizing Maps 

A discussion of the use of SOMs in motor control studies deserves some attention because this 
methodology is relatively new. Although sport and human movement scientists have 
recognized their potential quite some time ago (Bartlett, 2006; Bauer & Schöllhorn, 1997), 
there is still no standardized use. As mentioned in the methodology, many alternatives exist on 
how to train and to use them. Also many options are available on which parameters to use in 
their construction (the options we used were displayed in Table 2, mostly these are the default 
parameters of the SOM Toolbox). While for some parameters, there can be a rationale, for 
others none yet exists. Normalization for instance has a natural choice: range scaling kinematic 
variables to a [-1 1] interval does not alter the trajectories, it only rescales them and this is also 
used in phase plane analyses. But training type (sequential vs. batch) or weight vector 
initialization (linear vs. random) do not seem to have natural choices. The quantization- and 
topographical error are the only check points for the quality of the map we have so far. Since 
there is no agreed-upon range for their values, these numbers are not very informative. Button, 
Wheat & Lamb (2014) have argued to use data-driven options for the construction parameters 
and these do seem to be the natural choice. An important question arises with regard to map 
size. In this study and in the one from Lamb et al. (2011), different map sizes for different 
players were created because this was data-driven based on the principal components of the 
original data-sets. These map sizes showed little difference between subjects and in the case of 
the second SOM, these maps yielded always between fifteen and seventeen units. Therefore we 
forced them all to have sixteen units. So when stating that a subject’s stability shifted along the 
coordination potential, this means something completely different for every other subject and 
would need careful interpretations of the component planes to analyze what happened. The 
size of the ‘difference’ in coordination pattern in between months for different subjects needs 
not be of the same size in the original coordination space to show a similar effect on the 
SOMs. This makes it hard to generalize or to perform a quantitative study on longitudinal 
multi-stability. On a qualitative level however, regardless of the size of the difference, the fact 
that the SOMs cluster in different units for different months indicates that the patterns change. 
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Besides map quality and map size, other issues deserve attention too. This will need a study on 
its own and now that SOMs and other neural network applications seem to find their way into 
biomechanics and motor control, some guidelines become necessary.       

Within the limits of this study and the limits of self-organizing maps, we have demonstrated 
that coordination stability differs between the trial-to-trial and month-to-month timescale and 
that both should be quantified before evaluating the effect of certain interventions (Preatoni et 
al., 2012).  

CONCLUSIONS 

This study evaluated both the intra-seasonal ball speed- and coordination variability over a 4-
month period in two team handball throwing techniques in elite youth players. The observed 
variability in ball speed proved higher for many players than in some intervention studies 
(studies that showed statistical significance) targeting improvements in throwing speed. This 
highlights the importance for a better evaluation of intra-seasonal variability for testing sport-
specific results of training programs. If an evaluation of natural variability is impossible in 
practical settings, a safe choice to exclude effects not due to the intervention is minimum a 7% 
difference. The analysis of the coordination dynamics showed that subjects changed between 
coordination patterns in between months and could be classified as longitudinal multi-stable. 
This appears to be a requirement for exploring the coordination landscape in order to find an 
optimal solution under the changing constraints associated with elite youth training. Many of 
the phenomena observed in coordination dynamics in low-dimensional continuous/rhythmic 
tasks were also observed in this complex discrete motion. 

ACKNOWLEDGEMENTS 

We would like to thank the Topsportschool Handball (Hasselt, Belgium) and especially Jos 
Schouterden and the players from the national selection for participation in the project. We 
would like to thank Kenny Bosmans and Jonathan Blondeel for their help in performing the 
measurements and helping in processing the raw data. At last, our great appreciation to Peter 
Lamb and Gavin Kennedy for letting us use their algorithm for the 2nd SOM and their useful 
comments on the first draft of this paper. 

REFERENCES 

Bartlett, R. (2006). Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope? 
Journal of Sport Science and Medecine, 5(July), 474–479. 

Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports 
biomechanists? Sports Biomechanics, 6(2), 224–243. 

Bauer, H., & Schöllhorn, W. (1997). Self-Organizing Maps for the Analysis of Complex 
Movement Patterns. Neural Processing Letters, 5, 193–199. 

Button, C., Wheat, J., & Lamb, P. (2014). Why coordination dynamics is relevant for 
studying sport performance. In K. Davids, R. Hristovski, D. Araújo, N. B. Serre, C. 
Button, & P. Passos (Eds.), Complex Systems in Sport (pp. 44–62). New York: 
Routledge. 

Chelly, M. S., Hermassi, S., Aouadi, R., & Shephard, R. J. (2014). Effects of 8-week in-
season plyometric training on upper and lower limb performance of elite adolescent 
handball players. Journal of Strength and Conditioning Research, 28(5), 1401–1410. 



IJCSS – Volume 15/2016/Issue 1              www.iacss.org 

   

18 

Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. 
Proceedings of the National Academy of Sciences of the United States of America, 98, 
13763–13768. doi:10.1073/pnas.231499798 

Ettema, G., Glosen, T., & van den Tillaar, R. (2008). Effect of specific resistance training on 
overarm throwing performance. International Journal of Sports Physiology and 
Performance, 3, 164–175. 

Glazier, P. (2010). Game, Set and Match? Substantive Issues and Future Directions in 
Performance Analysis. Sports Medicine, 40(8), 625–634. 

Gorostiaga, E. M., Granados, C., Ibáñez, J., González-Badillo, J. J., & Izquierdo, M. (2006). 
Effects of an entire season on physical fitness changes in elite male handball players. 
Medicine and Science in Sports and Exercise, 38(2), 357–366. 
doi:10.1249/01.mss.0000184586.74398.03 

Granados, C., Izquierdo, M., Ibàñez, J., Ruesta, M., & Gorostiaga, E. M. (2008). Effects of an 
entire season on physical fitness in elite female handball players. Medicine and 
Science in Sports and Exercise, 40, 351–361. doi:10.1249/mss.0b013e31815b4905 

Haken, H., Kelso, J. A., & Bunz, H. (1985). A theoretical model of phase transitions in 
human hand movements. Biological Cybernetics, 51, 347–356. 

Hamill, J., Palmer, C., & Van Emmerik, R. E. a. (2012). Coordinative variability and overuse 
injury. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology : 
SMARTT, 4(1), 45. doi:10.1186/1758-2555-4-45 

Hermassi, S., van den Tillaar, R., Khlifa, R., Chelly, M. S., & Chamari, K. (2015). 
Comparison of in-season specific resistance- vs. a regular throwing training program 
on throwing velocity, anthropometry and power performance in elite handball players. 
Journal of Strength and Conditioning Research, 1. 
doi:10.1519/JSC.0000000000000855 

Horst, F., Eekhoff, A., & Schöllhorn, W. (2014). Individual gait patterns are changing much 
more by itself. In A. De Haan, C. De Ruiter, & E. Tsolakidis (Eds.), Book of Abstract 
of the 19th Annual Congress of the European College of Sport Science (p. 42). 
Amsterdam. 

Horst, F., Kramer, F., Schäfer, B., Eekhoff, A., Hegen, P., & Schöllhorn, W. (2015). Daily 
changes of individual gait patterns. In A. Radmann, S. Hedenborg, & E. Tsolakidis 
(Eds.), Book of Abstract of the 20th Annual Congress of the European College of 
Sport Science (p. 53). Malmö. 

Kelso, S. J. A. (1995). Dynamic Patterns. The self-organization of brain and behaviour. 
Cambridge, MA: MIT Press. 

Kelso, S. J. A. (2012). Multistability and metastability: understanding dynamic coordination 
in the brain. Philosophical Transactions of the Royal Society, 367, 906–918. 
doi:10.1098/rstb.2011.0351 

Kohonen, T. (2001). Self-Organizing Maps (3rd. Ed.). Springer. 
Lamb, P., Bartlett, R., Lindinger, S., & Kennedy, G. (2014). Multi-dimensional coordination 

in cross-country skiing analyzed using self-organizing maps. Human Movement 
Science, 33, 54–69. doi:10.1016/j.humov.2013.08.005 

Lamb, P., Bartlett, R., & Robins, A. (2011). Artificial neural networks for analyzing inter-
limb coordination: the golf chip shot. Human Movement Science, 30, 1129–1143. 
doi:10.1016/j.humov.2010.12.006 

Lees, A., & Rahnama, N. (2013). Variability and typical error in the kinematics and kinetics 
of the maximal instep kick in soccer. Sports Biomechanics, 12(3), 283–292. 
doi:10.1080/14763141.2012.759613 



IJCSS – Volume 15/2016/Issue 1              www.iacss.org 

   

19 

Morais, J. E., Silva, A. J., Marinho, D. A., Seifert, L., & Barbosa, T. M. (2015). Cluster 
Stability as a New Method to Assess Changes in Performance and its Determinant 
Factors Over a Season in Young Swimmers. International Journal of Sports 
Physiology and Performance, 10, 261–268. 

Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade & H. 
T. A. Whiting (Eds.), Motor Development in Children: Aspects of Coordination and 
Control. (pp. 341–359). Dordrecht: Martinus Nijhof. 

Newell, K. M., Mayer-Kress, G., Hong, S. L., & Liu, Y. T. (2009). Adaptation and learning: 
Characteristic time scales of performance dynamics. Human Movement Science, 
28(6), 655–687. doi:10.1016/j.humov.2009.07.001 

Ohnjec, K., Antekolovic, L., & Gruic, I. (2010). Comparison of kinematic parameters of 
jump shot performance by female handball players of different ages. Acta 
Kinesiologica, 4(2), 33–40. 

Pori, P., Bon, M., & Sibila, M. (2005). Jump shot performance in team handball - A 
kinematic model evaluated on the basis of expert modelling. Kinesiology, 37(1), 40–
49. 

Preatoni, E., Hamill, J., Harrison, A. J., Hayes, K., Van Emmerik, R. E. a., Wilson, C., & 
Rodano, R. (2012). Movement variability and skills monitoring in sports. Sports 
Biomechanics, (April 2013), 1–24. doi:10.1080/14763141.2012.738700 

Saeterbakken, A. H., van den Tillaar, R., & Seiler, S. (2011). Effect of core stability training 
on throwing velocity in female handball players. Journal of Strength and 
Conditioning Research / National Strength & Conditioning Association, 25(3), 712–8. 
doi:10.1519/JSC.0b013e3181cc227e 

Sammon, J. W. jr. (1969). A Nonlinear Mapping for Data Structure Analysis. IEEE 
Transactions on Computers, C-18(5), 401–409. 

Schöllhorn, W. I. (2004). Applications of artificial neural nets in clinical biomechanics. 
Clinical Biomechanics (Bristol, Avon), 19(9), 876–98. 
doi:10.1016/j.clinbiomech.2004.04.005 

Schorer, J., Baker, J., Fath, F., & Jaitner, T. (2007). Identification of interindividual and 
intraindividual movement patterns in handball players of varying expertise levels. 
Journal of Motor Behavior, 39(5), 409–21. doi:10.3200/JMBR.39.5.409-422 

Seifert, L., Button, C., & Davids, K. (2013). Key properties of expert movement systems in 
sport : an ecological dynamics perspective. Sports Medicine (Auckland, N.Z.), 43(3), 
167–78. doi:10.1007/s40279-012-0011-z 

Stergiou, N., & Decker, L. M. (2011). Human movement variability, nonlinear dynamics, and 
pathology: is there a connection? Human Movement Science, 30(5), 869–88. 
doi:10.1016/j.humov.2011.06.002 

van den Tillaar, R., & Ettema, G. (2003). Instructions emphasizing velocity, accuracy or both 
on kinematics of overarm throwing by experienced team handball players. Perceptual 
and Motor Skills, 97, 731–742. 

van den Tillaar, R., & Ettema, G. (2004). A force-velocity relationship and coordination 
patterns in overarm throwing. Journal of Sports Science and Medecine, 3, 211–219. 

van den Tillaar, R., & Ettema, G. (2006). A comparison between novices and experts of the 
speed-accuracy trade-off in overarm throwing. Perceptual and Motor Skills, 103, 
503–514. 

van den Tillaar, R., & Ettema, G. (2011). A comparison of kinematics between overarm 
throwing with 20% underweight, regular, and 20% overweight balls. Journal of 
Applied Biomechanics, 27(3), 252–7. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/21844614 



IJCSS – Volume 15/2016/Issue 1              www.iacss.org 

   

20 

van den Tillaar, R., & Marques, M. C. (2011). Effect of training on the kinematics and 
performance in overarm throwing in experienced female handball players. Portuguese 
Journal of Sport Sciences, 11(2), 125–128. 

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM Toolbox for Matlab 
5. 

Wagner, H., Buchecker, M., von Duvillard, S. P., & Müller, E. (2010a). Kinematic 
comparison of team handball throwing with two different arm positions. International 
Journal of Sports Physiology and Performance, 5, 469–483. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/21266732 

Wagner, H., Buchecker, M., von Duvillard, S. P., & Müller, E. (2010b). Kinematic 
description of elite vs . low level players in team-handball jump throw. Journal of 
Sports Science and Medecine, 9, 15–23. 

Wagner, H., Finkenzeller, T., Würth, S., & von Duvillard, S. P. (2014). Individual and Team 
Performance in Team-Handball : A Review. Journal of Sports Science and Medicine, 
13, 808–816. 

Wagner, H., Kainrath, S., & Müller, E. (2008). Coordinative and tactical parameters in the 
handball throw and their influence to the level of performance. In 13 th Annual 
Congress of the European College of Sport Science. 

Wagner, H., & Müller, E. (2008). The effects of differential and variable training on the 
quality parameters of a handball throw. Sports Biomechanics / International Society of 
Biomechanics in Sports, 7(1), 54–71. doi:10.1080/14763140701689822 

Wagner, H., Pfusterschmied, J., Klous, M., von Duvillard, S. P., & Müller, E. (2011). 
Movement variability and skill level of various throwing techniques. Human 
Movement Science, 31(1), 78–90. doi:10.1016/j.humov.2011.05.005 

Wagner, H., Pfusterschmied, J., von Duvillard, S. P., & Müller, E. (2012). Skill-dependent 
proximal-to-distal sequence in team-handball throwing. Journal of Sports Sciences, 
30(1), 21–9. doi:10.1080/02640414.2011.617773 

Wu, G., van der Helm, F. C. T., (DirkJan) Veeger, H. E. J., Makhsous, M., Van Roy, P., 
Anglin, C., … Buchholz, B. (2005). ISB recommendation on definitions of joint 
coordinate systems of various joints for the reporting of human joint motion—Part II: 
shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981–992. 
doi:10.1016/j.jbiomech.2004.05.042 

Zatsiorsky, V. (1998). Kinematics of Human Motion. Human Kinetics, Leeds UK. 

APPENDIX  

Figure A shows the 20 component planes for the SOM of S13 for the jump shot. These 
component planes correspond to the U-matrix and best-matching unit trajectories in Figure 2 
from the main manuscript. The coordination states during the motion can be interpreted 
according to these planes. In Figure 2, we saw a shift in the initial conditions from the lower 
right corner of the map to higher and more centrally located parts of the map. In Figure A, we 
can see that this corresponds mainly to changes in pelvis lateral tilt angle (latPG), pelvis 
for/backward tilt angle and velocity (fwbwPG, VfwbwPG), trunk lateral tilt angle (latTG) and 
shoulder ab/adduction (Abad). Other variables show smaller differences between these two 
map regions. 
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Figure A: Twenty component planes of the SOM from Figure 2 in the main manuscript. RELBOW = elbow 

angle (°, 0=full extension), VRELBOW = elbow angular velocity (°/s, + values are extension). 
PG and TG indicate the pelvis and trunk angles (°) in the global reference frame and V 
indicates their velocity (°/s): lat = lateral tilt (+ values are right tilt), fwbw = for/backward tilt 
(+ values are forward), rot = rotation (+ values are rotation toward the goal). Shrot, Abad, 
Horabad are shoulder endo/exorotation (+ values are endorotation), shoulder ab/adduction (+ 
values are abduction) and horizontal ab/adduction (+ values are horizontal abduction ) 
respectively.  


