From Epigenetics to Anti-Doping Application: A New Tool of Detection

Open access

Abstract

Eukaryotic genomes transcribe up to 90% of the genomic DNA but only 1-2% of these transcripts encode for proteins, whereas the vast majority are transcribed as non-coding RNAs (ncRNAs). They are divided into short ncRNA, particularly micro-RNA (miRNA) and small interference RNA (siRNA), and long ncRNAs. Noteworthy, they are unexpectedly stable since they are protected from degradation through different mechanisms: package in exosomes/microvesicles structures, in apoptotic bodies, in HDL lipoprotein, or by RNA binding proteins. For several years already, biomarkers have been used to detect biological disease; in the last years, a requirement appeared to find some of them to unearth the signs of doping. The potential of ncRNAs as a biological candidate is strongly debated and it seems to have become the right tool in the anti-doping hands. In the recent years, the next-generation sequencing (NGS) technology was used by the World Anti-Doping Agency to draft the athlete biological passport (ABP), measuring the circulating miRNAs and applying these new biomarkers in anti-doping. NGS technology does not require any prior knowledge of ncRNAs, but the limit to employ this biomarker to detect performance-enhancing drug use must consider the intrinsic and extrinsic factors that might affect measurements.

1. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007; 27:363-388; doi:

2. Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15(6):423-437; doi:

3. Meyer CA, Liu XS. Identifying and mitigating bias in nextgeneration sequencing methods for chromatin biology. Nat Rev Genet. 2014;15(11):709-721; doi:

4. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9):915-925; doi:

5. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Noncoding RNAs: regulators of disease. J Pathol. 2010;220(2): 126-139; doi:

6. Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription. 2014; 5(4):e944014; doi:

7. Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986-991; doi:

8. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629-641; doi:

9. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798-801; doi:

10. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull. 2013;97:69-80; doi:

11. Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome. 2008;19(7-8):454-492; doi:

12. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13(8):528-541; doi:

13. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNAworld. Genes Dev. 2009; 23(13):1494-1504; doi:

14. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 2008;105(2): 716-721; doi:

15. Mehler MF, Mattick JS. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev. 2007;87(3):799-823; doi:

16. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012;30(5): 453-459; doi:

17. Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci USA. 2007; 104(25):10679-10684; doi:

18. Zhang F, Liu G, Wei C, Gao C, Hao J. Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. Faseb J. 2016; 31(2):519-525; doi:

19. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15:R17-R29; doi:

20. Mattick JS. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 2003;25(10):930-939; doi:

21. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559-1563; doi:

22. Engström PG, Suzuki H, Ninomiya N, Akalin A, Sessa L, Lavorgna G, et al. Complex loci in human and mouse genomes. PLoS Genet. 2006;2(4):e47; doi:

23. Inagaki S, Numata K, Kondo T, Tomita M, Yasuda K, Kanai A, et al. Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells. 2005;10 (12):1163-1173; doi:

24. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16(1):11-19; doi:

25. Furuno M, Pang KC, Ninomiya N, Fukuda S, Frith MC, Bult C, et al. Clusters of internally-primed transcripts reveal novel long noncoding RNAs. PLoS Genet. 2006;2(4):e37; doi:

26. Paralkar V, Weiss M. Long noncoding RNAs in biology and hematopoiesis. Blood. 2013;121(24):4842-4846; doi:

27. Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 2004;6(11): 1048-1053; doi:

28. Katayama S, Tomaru Y, Kasukawa T., Waki K., Nakanishi M, Nakamura M, et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309(5740): 1564-1566; doi:

29. Korneev S, O’Shea M. Natural antisense RNAs in the nervous system. Rev Neurosci. 2005;16(3):213-222; doi:

30. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358-369; doi:

31. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science. 2001;294(5543):797-799; doi:

32. Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res. 2011;717(1-2):1-8; doi:

33. Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals. Int J Mol Med. 2014;33(4):747-762; doi:

34. Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet. 2015;6: 186; doi:

35. Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8): 1917-1946; doi:

36. Iwakawa HO, Tomari Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25(11):651-665; doi:

37. Sen CK, Ghatak S. miRNA control of tissue repair and regeneration. Am J Pathol. 2015;185(10):2629-2640; doi:

38. Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev. 2009;23(10):1151-1164; doi:

39. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science. 2008;320 (5879):1077-1081; doi:

40. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453(7194):534-538; doi:

41. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453(7149):539-543; doi:

42. Ghildiyal, M, Zamore, PD, Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94-108; doi:

43. Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KS, Saprunoff HL, et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer. 2016;15:5; doi:

44. Sarkar A, Volff JN, Vaury C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation? Faseb J. 2017;31(2):436-446; doi:

45. Sai Lakshmi S, Agrawal S. piRNA bank: A web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008;36:D173-D177; doi:

46. Kosik KS. Molecular biology: Circles reshape the RNA world. Nature. 2013;495(7441):322-324; doi:

47. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441): 333-338; doi:

48. Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89(4):527-537.

49. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441): 384-388; doi:

50. Lasda E, Parker R. Circular, RNAs: diversity of form and function. RNA. 2014;20(12):1829-1842; doi:

51. Schiera G, Di Liegro CM, Di Liegro I. Extracellular membrane vesicles as vehicles for brain cell-to-cell interactions in physiological as well as pathological conditions. Biomed Res Int. 2015;2015; doi:

52. Zhu H, Fan GC. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis. 2011;1(2):138-149.

53. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101(10):2087-2092; doi:

54. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733-1741; doi:

55. Wittmann J, Jäck HM. Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta. 2010;1806(2): 200-207; doi:

56. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143-1149; doi:

57. Skog J, Wurdinger T, van Rijn S, Meijer D, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and protein that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(2): 1470-1476; doi:

58. Schiera G, Di Liegro CM, Saladino P, Pitti R, Savettieri G, Proia P, et al. Oligodendroglioma cells synthesize the differentiation- specific linker histone H1° and release it into the extracellular environment through shed vesicles. Int J Oncol. 2013;43(6):1771-1776; doi:

59. Schiera G, Di Liegro CM, Puleo V, Colletta O, Fricano A, Cancemi P, et al. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins. Int J Oncol. 2016;49(5): 1807-1814; doi:

60. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81; doi:

61. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108(12): 5003-5008; doi:

62. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423-433; doi:

63. Sodi R, Eastwood J, Caslake M, Packard CJ, Denby L. Relationship between circulating microRNA-30c with totaland LDL-cholesterol, their circulatory transportation and effect of statins. Clin Chim Acta. 2017;466:13-19; doi:

64. Kohler M, Thomas A, Walpurgis K, Schänzer W, Thevis M. Mass spectrometric detection of siRNA in plasma samples for doping control purposes. Anal Bioanal Chem. 2010; 398(3):1305-1312; doi:

65. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Kömen W, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26): 2682-2688; doi:

66. Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R, et al. Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Ther. 2008;15(3): 155-160; doi:

67. Schwarzenbach H. Impact of physical activity and doping on epigenetic gene regulation. Drug Test Anal. 2011;3(10): 682-687; doi:

68. Thomas A, Walpurgis K, Delahaut P, Kohler M, Schänzer W, Thevis M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test Anal. 2013;5(11-12):853-860; doi:

69. Kohler M, Schänzer W, Thevis M. RNA interference for performance enhancement and detection in doping control. Drug Test Anal. 2011;3(10):661-667; doi:

70. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513-10518; doi:

71. Leuenberger N, Schumacher YO, Pradervand S, Sander, T, Saugy M, Pottgiesser T. Circulating microRNAs as biomarkers for detection of autologous blood transfusion. PLoS One. 2013;8(6):e66309; doi:

72. Quek C, Bellingham SA, Jung CH, Scicluna BJ, Shambrook MC, Sharples RA, et al. Defining the purity of exosomes required for diagnostic profiling of small RNA suitable for biomarker discovery. RNA Biol. 2017;14(2): 245-258; doi:

73. Leuenberger N, Jan N, Pradervand S, Robinson N, Saugy M. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse. Drug Test Anal. 2011;3(11-12):771-776; doi:

74. Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol. 2008;81(4):304-310; doi:

75. He Y, Jiang X, Chen J. The role of miR-150 in normal and malignant hematopoiesis. Oncogene. 2014;33(30):3887-3893; doi:

76. Citartan M, Gopinath SC, Chen Y, Lakshmipriya T, Tang TH. Monitoring recombinant human erythropoietin abuse among athletes. Biosens Bioelectron. 2015;63: 86-98; doi:

77. Schumacher YO, Pottgiesser T. Comments on Lundby et al.’s “Testing for recombinant human erythropoietin in urine: problems associated with current anti-doping testing”. New strategies in the fight against doping are necessary. J Appl Physiol. 2008;105(6):1994, author reply 1997-1998.

78. Leuenberger N, Robinson N, Saugy M. Circulating miRNAs: a new generation of anti-doping biomarkers. Anal Bioanal Chem. 2013;405(30):9617-9623; doi:

79. Oliveira CD, Bairros AV, Yonamine M. Blood doping: risks to athletes’ health and strategies for detection. Subst Use Misuse. 2014;49(9):1168-1181; doi:

Human Movement

The Journal of University School of Physical Education, Wroclaw

Journal Information


CiteScore 2016: 0.41

SCImago Journal Rank (SJR) 2016: 0.208
Source Normalized Impact per Paper (SNIP) 2016: 0.230

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 183 8
PDF Downloads 109 99 5