Biomechanical Analysis of Ankle during the Stance Phase of Gait on Various Surfaces: A Literature Review

Open access


The purpose of this article is to review the literature that deals with the biomechanical analysis of the ankle during gait stance phase on slopes, on uneven and rock surfaces, on sand, and on grass surfaces, as well as to present the observed differences. Methods. The literature was searched in the databases of PubMed and Google Scholar, for the years of 2005–2015. The keywords were: biomechanics, gait analysis, ankle joint, stance phase, uphill walking, downhill walking, sand surface, uneven surface, grass surface, and ballast. Results. The kinetic and kinematic gait behaviour is directly influenced by the surface on which it is being performed. The uphill or downhill surfaces, the surfaces of stone, sand, grass, and uneven surfaces have a direct impact on the biomechanics on joints of the lower limb, changing the energy cost, muscle activation, the resulting mechanical work, ground reaction forces and balance, and the parameters of the gait cycle. All these changes are raising many questions about the safety and comfort of these surfaces. In the structures of the foot, ankle and lower leg high compressive and rotational forces are transmitted resulting in injuries in these regions. Conclusions. Each surface has its own advantages and disadvantages, changing the biomechanics of the lower extremity and particularly the ankle. According to the purpose that one wants to achieve they can choose a suitable surface. To prevent injuries and falls, we must choose shoes that fit well, are comfortable with cushioning, and have a feeling neither too hard nor too soft, with laces and low collar.

1. Washburn S.L., Tools and human evolution. Sci Am, 1960, 203 (3), 63–75.

2. Lay A.N., Hass C.J., Gregor R.J., The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J Biomech, 2006, 39 (9), 1621–1628, doi:

3. Basmajian J.V., De Luca C.J., Muscles alive: their function revealed by electromyography. Williams & Wilkins, Baltimore 1985.

4. Larsson L.E., Odenrick P., Sandlund B., Weitz P., Oberg P.A., The phases of stride and their interaction in human gait. Scand J Rehabil Med, 1980, 12 (3), 107–112.

5. Wernick J., Volpe R.G., Lower extremity function and normal mechanics. In: Valmassy R.I. (ed.), Clinical biomechanics of the lower extremities. Mosby, St. Louis 1996, 1–57.

6. Lamoreaux L.W., Kinematic measurements in the study of human walking. Bull Prosthet Res, 1971, 10 (15), 3–84.

7. Sekiya N., Nagasaki H., Ito H., Furuna T., Optimal walking in terms of variability in step length. J Orthop Sports Phys Ther, 1997 26 (5), 266–272, doi:10.2519/jospt.1997.26.5.266.

8. Hansen A.H., Childress D.S., Miff S.C., Roll-over characteristics of human walking on inclined surfaces. Hum Mov Sci, 2004, 23 (6), 807–821, doi:10.1016/j.humov.2004.08.023.

9. Redfern M.S., Cham R., Gielo-Perczak K., Grönqvist R., Hirvonen M., Lanshammar H., et al., Biomechanics of slips. Ergonomics, 2001, 44 (13), 1138–1166, doi: 10.1080/00140130110085547.

10. Hunter L.C., Hendrix E.C., Dean J.C., The cost of walking downhill: is the preferred gait energetically optimal? J Biomech, 2010, 43 (10), 1910–1915, doi: 10.1016/j.jbi-omech.2010.03.030.

11. Franz J.R., Kram R., The effects of grade and speed on leg muscle activations during walking. Gait Posture, 2012, 35 (1), 143–147, doi: 10.1016/j.gaitpost.2011.08.025.

12. Donelan J.M., Kram R., Kuo A.D., Simultaneous positive and negative external mechanical work in human walking. J Biomech, 2002, 35 (1), 117–124.

13. Franz J.R., Lyddon N.E., Kram R., Mechanical work performed by the individual legs during uphill and downhill walking. J Biomech. 2012, 45 (2), 257–262. doi: 10.1016/j.jbiomech.2011.10.034.

14. Tulloh B., The role of cross-country in the development of a runner. New Stud Athl, 1998, 13 (4), 9–11.

15. Telhan G., Jason R.F., Dicharry J., Wilder R.P., Riley P.O., Kerrigan D.C., Lower limb joint kinetics during moderately sloped running. J Athl Train, 2010, 45 (1), 16–21, doi: 10.4085/1062-6050-45.1.16.

16. Novacheck T.F., The biomechanics of running. Gait Posture, 1998, 7 (1), 77–95.

17. Murray M.P., Kory R.C., Clarkson B.H., Walking patterns in healthy old men. J Gerontol, 1969, 24 (2), 169–178, doi: 10.1093/geronj/24.2.169.

18. Hak L., Houdijk H., Steinbrink F., Mert A., van der Wurff P., Beek P.J., et al., Speeding up or slowing down? Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture, 2012, 36 (2), 260–264, doi: 10.1016/j.gaitpost.2012.03.005.

19. McAndrew P.M., Dingwell J.B., Wilken J.M., Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J Biomech, 2010, 43 (8), 1470–1475, doi: 10.1016/j.jbiomech.2010.02.003.

20. Donelan J.M., Kram R., Kuo A.D., Mechanical and metabolic determinants of the preferred step width in human walking. Proc. Biol Sci, 2001, 268 (1480), 1985–1992, doi: 10.1098/rspb.2001.1761.

21. Voloshina A.S., Kuo A.D., Daley M.A., Ferris D.P., Biomechanics and energetics of walking on uneven terrain. J Exp Biol, 2013, 216 (21), 3963–3970. doi: 10.1242/jeb.081711.

22. Gates D.H., Wilken J.M., Scott S.J., Sinitski E.H., Dingwell J.B., Kinematic strategies for walking across a destabilizing rock surface. Gait Posture, 2012, 35 (1), 36–42, doi: 10.1016/j.gaitpost.2011.08.001.

23. Hausdorff J.M., Rios D.A., Edelberg H.K., Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil, 2001, 82 (8), 1050–1056, doi: 10.1053/apmr.2001.24893.

24. Maki B.E., Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc, 1997, 45 (3), 313–320, doi: 10.1111/j.1532-5415.1997.tb00946.x.

25. Menz H.B., Lord S.R., Fitzpatrick R.C., Age-related differences in walking stability. Age Ageing, 2003, 32 (2), 137–142.

26. Menant J.C., Steele J.R., Menz H.B., Munro B.J., Lord S.R., Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture, 2009, 29 (3), 392–397, doi: 10.1016/j.gait-post.2008.10.057.

27. Andres R.O., Holt K.G., Kubo M., Impact of railroad ballast type on frontal plane ankle kinematics during walking. Appl Ergon, 2005, 36 (5), 529–534, doi: 10.1016/j.aper-go.2005.03.001.

28. Gaudino P., Gaudino C., Alberti G., Minetti A.E., Biomechanics and predicted energetics of sprinting on sand: hints for soccer training. J Sci Med Sport, 2013, 16 (3), 271–275, doi: 10.1016/j.jsams.2012.07.003.

29. Zamparo P., Perini R., Orizio C., Sacher M., Ferretti G., The energy cost of walking or running on sand. Europ J Appl Physiol, 1992, 65 (2), 183–187, doi: 10.1007/BF00705078.

30. Lejeune T.M., Willems P.A., Heglund N.C., Mechanics and energetics of human locomotion on sand. J Exp Biol, 1998, 201 (13), 2071–2080.

31. Dickinson S., The efficiency of bicycle-pedalling, as affected by speed and load. J Physiol, 1929, 67 (3), 242–255.

32. Pinnington H.C., Dawson B., The energy cost of running on grass compared to soft dry beach sand. J Sci Med Sport, 2001, 4 (4), 416–430, doi: 10.1016/S1440-2440(01)80051-7.

33. McMahon T.A., Greene P.R., The influence of track compliance on running. J Biomech, 1979, 12 (12), 893–904.

34. Ferris D.P., Farley C.T., Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol, 1997, 82 (1), 15–22.

35. Leicht A.S., Crowther R.G., Pedometer accuracy during walking over different surfaces. Med Sci Sports Exerc, 2007, 39(10), 1847–1850, doi: 10.1249/mss.0b013e3181405b9f.

36. MacLellan G.E., Vyvyan B., Management of pain beneath the heel and Achilles tendonitis with visco-elasic heel inserts. Br J Sports Med, 1981, 15 (2), 117–121, doi: 10.1136/bjsm.15.2.117.

37. Shorten, M.R., Running shoe design: protection and performance. In: Pedoe D.T. (ed.), Marathon Medicine. Royal Society of Medicine, London 2000, 159–169.

38. Morgan D.W., Martin P.E, Krahenbuhl G.S., Factors affecting running economy. Sports Med, 1989, 7 (5), 310–330.

39. Menant J.C., Perry S.D., Steele J.R., Menz H.B., Munro B.J., Lord S.R., Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people, Arch Phys Med Rehabil, 2008, 89 (10), 1970–1976, doi: 10.1016/j.apmr.2008.02.031.

Human Movement

The Journal of University School of Physical Education, Wroclaw

Journal Information

CiteScore 2016: 0.41

SCImago Journal Rank (SJR) 2016: 0.208
Source Normalized Impact per Paper (SNIP) 2016: 0.230


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 264 264 26
PDF Downloads 114 114 15