Selective Removal of Hydrogen Sulphide from Industrial Gas Mixtures Using Zeolite NaA

Open access


Hydrogen sulphide removal from simple gas mixtures using a highly polar zeolite was studied by molecular simulation. The equilibrium adsorption properties of hydrogen sulphide, hydrogen, methane and their mixtures on dehydrated zeolite NaA were computed by Grand Canonical Monte Carlo simulations. Existing all-atom intermolecular potential models were optimized to reproduce the adsorption isotherms of the pure substances. The adsorption results of the mixture, also confirmed by IAST calculations, showed very high selectivities of hydrogen sulphide to the investigated non-polar gases, predicting an outstanding performance of zeolite NaA in technological applications that target hydrogen sulphide capture.

[1] Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. (Eds.): Handbook of Zeolite Science and Technology (Marcel Dekker, New York) 2003 ISBN: 0-8247-4020-3

[2] Xu, X.; Yang, W.; Liu, J.; Chen, X.; Lin, L.; Stroh, N.; Brunner, H.: Synthesis and gas permeation properties of an NaA zeolite membrane, Chem. Commun. 2000 0, 603-604 DOI: 10.1039/B000478M

[3] Aoki, K.; Kusakabe, K.; Morooka, S.: Separation of gases with an A-type zeolite membrane, Ind. Eng. Chem. 2000 39, 2245-2251 DOI: 10.1021/ie990902c

[4] Okamoto, K.; Kita, H.; Horii, K.; Tanaka, K.; Kondo, M.: Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. 2001 40, 163-175 DOI: 10.1021/ie0006007

[5] Zhu, W.; Gora, L.; van den Berg, A.W.C.; Kapteijn, F.; Jansen, J.C.; Moulijn, J.A.: Water vapour separation from permanent gases by a zeolite-4A membrane, J. Membrane Sci. 2005 253, 57-66 DOI: 10.1016/j.memsci.2004.12.039

[6] Yamamotoa, T.; Kimb, Y.H.; Kimb, B.C.; Endoa, A.; Thongprachana, N.; Ohmoria, T.: Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure, Chem. Eng. J. 2012 181-2, 443-448 DOI: 10.1016/j.cej.2011.11.110

[7] Lee, S.H.; Moon, G.K.; Choi, S.G.; Kim, H.S.: Molecular dynamics simulation studies of zeolite-A. 3. Structure and dynamics of Na+ ions and water molecules in a rigid zeolite-A, J. Phys. Chem. 1994 98, 1561-1569 DOI: 10.1021/j100057a006

[8] Akten, E.D.; Siriwardane, R.; Sholl, D.S.: Monte Carlo Simulation of Single- and Binary Component Adsorption of CO2, N2, and H2 in Zeolite Na-4A, Energy & Fuels 2003 17, 977-983 DOI: 10.1021/ef0300038

[9] Furukawa, S.; Goda, K.; Zhang, Y.; Nitta, T.: Molecular simulation study on adsorption and diffusion behavior of ethanol/water molecules in NaA zeolite crystal, J. Chem. Eng. Japan 2004 37, 67-74 DOI: 10.1252/jcej.37.67

[10] Kristóf, T.; Csányi, É.; Rutkai, G.; Merényi, L.: Prediction of adsorption equilibria of watermethanol mixtures in zeolite NaA by molecular simulation, Mol. Sim. 2006 32, 869-875 DOI: 10.1080/08927020600934179

[11] Cosoli, P.; Ferrone, M.; Pricl, S.; Fermeglia, M.: Hydrogen sulphide removal from biogas by zeolite adsorption, Part I-II, Chem. Eng. J. 2008 145, 86-92 and 93-99 DOI: 10.1016/j.cej.2008.07.034 & 10.1016/j.cej.2008.08.013

[12] Rutkai, G.; Csányi, É.; Kristóf, T.: Prediction of adsorption and separation of water-alcohol mixtures with zeolite NaA, Microporous and Mesoporous Mat. 2008 114, 455-464 DOI: 10.1016/j.micromeso.2008.01.044

[13] Csányi, É.; Kristóf, T.; Lendvay, Gy.: Potential model development using quantum chemical information for molecular simulation of adsorption equilibria of water-methanol (ethanol)mixtures in zeolite NaA-4, J. Phys. Chem. C 2009 113, 12225-12235 DOI: 10.1021/jp902520p

[14] Csányi, É.; Ható, Z.; Kristóf, T.: Molecular simulation of water removal from simple gases with zeolite NaA, J. Mol. Model. 2009 18, 2349-2356 DOI: 10.1007/s00894-011-1253-7

[15] Sun, Y.; Han, S.: Diffusion of N2, O2, H2S and SO2 in MFI and 4A zeolites by molecular dynamics simulations, Mol. Sim. 2015 41, 1095-1109 DOI: 10.1080/08927022.2014.945082

[16] Vujic, B.; Lyubartsev, A.P.: Transferable forcefield for modelling of CO2, N2, O2 and Ar in all silica and Na+ exchanged zeolites, Modelling Simul. Mater. Sci. Eng. 2016 24, 045002 (1-26) DOI: 10.1088/0965-0393/24/4/045002

[17] Pluth, J.J.; Smith, J.V.: Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of Si, Al-ordered superstructure, J. Am. Chem. Soc. 1980 102, 4704-4708 DOI: 10.1021/ja00534a024

[18] Mikula, A.; Król, M.; Kolezynski, A.: Periodic model of an LTA framework, J. Mol. Model. 2015 21, 275 (1-9) DOI 10.1007/s00894-015-2820-0

[19] Bai, P.; Tsapatsis, M.; Siepmann, J.I.: TraPPE-zeo: Transferable Potentials for Phase Equilibria Force Field for All-Silica Zeolites, J. Phys. Chem. C 2013 117, 24375-24387 DOI: 10.1021/jp4074224

[20] Shah, M.S.; Tsapatsis, M.; Siepmann, J.I.: Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide, J. Phys. Chem. B 2015 119, 7041-7052 DOI: 10.1021/acs.jpcb.5b02536

[21] Kaminski, G.; Duffy, E.; Matsui, T.; Jorgensen, W.: Free Energies of Hydration and Pure Liquid Properties of Hydrocarbons from the OPLS All-Atom Model, J. Phys. Chem. 1994 98, 13077-13081 DOI: 10.1021/j100100a043

[22] Darkrim, F.; Levesque, D.: Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chem. Phys. 1998 109, 4981-4984 DOI: 10.1063/1.477109

[23] Waldman, M.; Hagler, A.: New combining rules for rare gas van der Waals parameters, J. Comput. Chem. 1993 14, 1077-1084 DOI: 10.1002/jcc.540140909

[24] Song, W.; Rossky, P.J.; Maroncelli, M.: Modelling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules, J. Chem. Phys. 2003 119, 9145-9162 DOI: 10.1063/1.1610435

[25] Gubbins, K.E.; Quirke, N. (Eds.): Molecular Simulation and Industrial Applications: Methods, Examples and Prospects (Gordon & Breach, Amsterdam) 1997 ISBN: 9056990055, 9789056990053

[26] Wolf, D.; Keblinski, P.; Phillpot, S.R.; Eggebrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation, J. Chem. Phys. 1999 110, 8254-8282 DOI: 10.1063/1.478738

[27] Demontis, P.; Spanu, S.; Suffritti, G.B.: Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminosilicates and water, J. Chem. Phys. 2001 114, 7980-7988 DOI: 10.1063/1.1364638

[28] Nicholson, D.; Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London) 1982 ISBN: 0125180608, 9780125180603

[29] Karavias, F.; Myers, A.L.: Isosteric heats of multicomponent adsorption: thermodynamics and computer simulations, Langmuir 1991 7, 3118-3126 DOI: 10.1021/la00060a035

[30] Myers, A.; Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption, AIChE J. 1965 11, 121-127 DOI: 10.1002/aic.690110125

[31] Simon, C.M.; Smit, B.; Haranczyk, M.: pyIAST: Ideal adsorbed solution theory (IAST) Python package, Comp. Phys. Commun. 2016 200, 364-380 DOI: 10.1016/j.cpc.2015.11.016

[32] Cruz, A.J.; Pires, J.; Carvalho, A.P.; Carvalho, M.B.: Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure, Adsorption 2005 11, 569-576 DOI: 10.1007/s10450-005-5614-3

[33] Mohr, R.J.; Vorkapic, D.; Rao, M.B.; Sircar, S.: Pure and Binary Gas Adsorption Equilibria and Kinetics of Methane and Nitrogen on 4A Zeolite by Isotope Exchange Technique, Adsorption 1999 5, 145-158 DOI: 10.1023/A:1008917308002

[34] Tant, Z.; Gubbins, K.E.: Selective Adsorption of Simple Mixtures in Slit Pores: A Model of Methane-Ethane Mixtures in Carbon, J. Phys. Chem. 1992 96, 845-854 DOI: 10.1021/j100181a059

[35] Battisti, A.; Taioli, S.; Garberoglio, G.: Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation, Microporous and Mesoporous Mat. 2011 143, 46-53 DOI: 10.1016/j.micromeso.2011.01.029

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 273 28
PDF Downloads 144 104 21