In vitro and in vivo activities of flavonoids – apigenin, baicalin, chrysin, scutellarin – in regulation of hypertension – a review for their possible effects in pregnancy-induced hypertension

Open access

Summary

Flavonoids and their conjugates are the most important group of natural chemical compounds in drug discovery and development. The search for pharmacological activity and new mechanisms of activity of these chemical compounds, which may inhibit mediators of inflammation and influence the structure and function of endothelial cells, can be an interesting pharmacological strategy for the prevention and adjunctive treatments of hypertension, especially induced by pregnancy. Because cardiovascular diseases have multi-factorial pathogenesis these natural chemical compounds with wide spectrum of biological activities are the most interesting source of new drugs. Extracts from one of the most popular plant used in Traditional Chinese Medicine, Scutellaria baicalensis Georgi could be a very interesting source of flavonoids because of its exact content in quercetin, apigenin, chrysin and scutellarin as well as in baicalin. These flavonoids exert vasoprotective properties and many activities such as: anti-oxidative via several pathways, anti-in-flammatory, anti-ischaemic, cardioprotective and anti-hypertensive. However, there is lack of summaries of results of studies in context of potential and future application of flavonoids with determined composition and activity. Our review aims to provide a literature survey of in vitro, in vivo and ex vivo pharmacological studies of selected flavonoids (apigenin, chrysin and scutellarin, baicalin) in various models of hypertension carried out in 2008–2018.

1. Fairbairn J W (ed.). The pharmacology of plant phenolics. Academic Press INC. New York 1959.

2. Ożarowski M, Mikołajczak PŁ, Kujawski R, Wielgus K, Klejewski A, Wolski H et al. Phar-macological effect of quercetin in hypertension and its potential application in pregnancy-induced hypertension: review of in vitro, in vivo, and clinical studies. Evid Based Complement Alternat Med 2018:7421489. doi: http://dx.doi.org/10.1155/2018/7421489

3. Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 2016; 61(18):1391-1398. doi: http://dx.doi.org/10.1007/s11434-016-1136-5

4. Kosakowska O, Bączek K, Przybył JL, Pióro-Jabrucka E, Węglarz Z. Chemical variability of common skullcap (Scutellaria galericulata L.) wild growing in the area of eastern Poland. Herba Pol 2016; 62(3):7-19. doi: http://dx.doi.org/10.1515/hepo-2016-0013

5. Laishram S, Moirangthem DS, Borah JC, Pal BC, Suman P, Gupta SK et al. Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci 2015; 143:105-113. doi: http://dx.doi.org/10.1016/j.lfs.2015.10.035

6. Lin W, Liu S, Wu B. Structural identification of chemical constituents from Scutellaria baicalensis by HPLC-ESI-MS/MS and NMR spectroscopy. Asian J Chem 2013; 25(7):3799-3805. doi: http://dx.doi.org/10.14233/ajchem.2013.13788

7. Shang X, He X, He X, Li M, Zhang R, Fan P et al. The genus Scutellaria an ethnopharmaco-logical and phytochemical review. J Ethnop-harmacol 2010; 128:279-313. doi: http://dx.doi.org/10.1016/j.jep.2010.01.006

8. Wang Y, Jia Y, Yang X, Liang B, Gao H, Yang T. A potential role of baicalin to inhibit apoptosis and protect against acute liver and kidney injury in rat preeclampsia model. Biomed Pharmacother 2018; 108:1546-1552. doi: http://dx.doi.org/10.1016/j.biopha.2018.09.107

9. Luanni VB, Ota E, Togoobaatar G, Rintaro M, Joao PS. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low-and middle income countries: a WHO secondary analysis. PLoS ONE 2014; 9(3):e91198. doi: http://dx.doi.org/10.1371/journal.pone.0091198

10. Fauci AS, Braunwald E, Kasper DL. Disorders of intermediary metabolism. In: Fauci AS, Braun-wald E, Kasper DL (eds.). Harrison’s Principles of Internal Medicine.17th ed. New York 2008:2426-2429.

11. Meyer H, Bolarinwa A, Wolfram G, Linseisen J. Bioavailability of apigenin from apiin-rich pars-ley in humans. Ann Nutr Metab 2006; 50:167-172. doi: http://dx.doi.org/10.1159/000090736

12. Haghi G, Hatami A, Safaei A, Mehran M. Analysis of phenolic compounds in Matricaria chamo-milla and its extracts by UPLC-UV. Res Pharm Sci 2014; 9(1):31-37.

13. Tashakori-Sabzevar F, Marjan Razavi B, Imen-shahidi M, Daneshmandi M, Fatehi H, Entezari Sarkarizi Y et al. Evaluation of mechanism for antihypertensive and vasorelaxant effects of hex-anic and hydroalcoholic extracts of celery seed in normotensive and hypertensive rats. Rev Bras Farmacogn 2016; 26:619-626. doi: http://dx.doi.org/10.1016/j.bjp.2016.05.012

14. Zhou X, Wang F, Zhou R, Song X, Xie M. Api-genin: A current review on its beneficial biological activities. J Food Biochem 2017; 41:e12376. doi: http://dx.doi.org/10.1111/jfbc.12376

15. Wang X, Ouyang YY, Liu J, Zhao G. Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2014; 111(1):1-11. doi: http://dx.doi.org/10.1017/S000711451300278X

16. Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: a review. Int J Food Prop 2017; 20(6):1197-38. doi: http://dx.doi.org/10.1080/10942912.2016.1207188

17. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun 2001; 87:914-920. doi: http://dx.doi.org/10.1006/bbrc.2001.5672

18. Ko FN, Huang TF, Teng CM. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. Biochim Biophys Acta 1991; 1115(1):69-74. doi: http://dx.doi.org/10.1016/0304-4165(91)90013-7

19. Jin BH, Qian LB, Chen S, Li J, Wang HP, Bruce IC et al. Apigenin protects endothelium-dependent relaxation of rat aorta against oxidative stress. Eur J Pharmacol 2009; 616(1-3):200-205. doi: http://dx.doi.org/10.1016/j.ejphar.2009.06.020

20. Senejoux F, Demougeot C, Kerram P, Aisa HA, Berthelot A, Bévalot F et al. Bioassay-guided isolation of vasorelaxant compounds from Ziziphora clinopodioides Lam. (Lamiaceae). Fitoterapia. 2012; 83(2):377-82. doi: http://dx.doi.org/10.1016/j.fitote.2011.11.023

21. Tang J, Zhang Y, Hartman TG, Rosen RT, Ho CT. Free and glycosidically bound volatile compounds in fresh celery (Apium graveolens L.). J Agric Food Chem 1990;38:1937-1940.

22. Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD et al. Flavonoids in kidney health and disease. Front Physiol 2018; 24:394. doi: http://dx.doi.org/10.3390/nu10081107

23. Paredes MD, Romecín P, Atucha NM, O’Valle F, Castillo J, Ortiz MC et al. Beneficial effects of different flavonoids on vascular and renal function in L-NAME hypertensive rats. Nutrients 2018; 10:484. doi: http://dx.doi.org/10.3390/nu10040484

24. Sui H, Yu Q, Zhi Y, Geng G, Liu H, Xu H. Effects of apigenin on the expression of angiotensin-converting enzyme 2 in kidney in spontaneously hypertensive rats. Wei Sheng Yan Jiu 2010; 39(6):693-6:700.

25. Soñanez-Organis JG, Godoy-Lugo JA, Hernández-Palomares ML, Rodríguez-Martínez D, Rosas-Rodríguez JA, González-Ochoa G et al. HIF-1α and PPARγ during physiological cardiac hypertrophy induced by pregnancy: Transcriptional activities and effects on target genes. Gene 2016; 591(2):376-81. doi: http://dx.doi.org/10.1016/j.gene.2016.06.025

26. Zhu ZY, Gao T, Huang Y, Xue J, Xie ML. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats. Food Funct 2016; 7(4):1992-1998. doi: http://dx.doi.org/10.1039/c5fo01464f

27. Wei X, Gao P, Pu Y, Li Q, Yang T, Zhang H et al. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Clin Sci (Lond) 2017; 131(7):567-581. doi: http://dx.doi.org/10.1042/CS20160780

28. Zhang K, Song W, Li D, Jin X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp Ther Med 2017; 13(5):1719-1724. doi: http://dx.doi.org/10.3892/etm.2017.4165

29. Alig SK, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A et al. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. PLoS One. 2015;10:e0121113. doi: http://doi.org/10.1371/journal.pone.0121113

30. Zargaran A, Borhani-Haghighi A, Faridi P, Daneshamouz S, Kordafshari G, Mohagheghzadeh A. Potential effect and mechanism of action of topical chamomile (Matricaria chammomila L.) oil on migraine headache: a medical hypothesis. Med Hypotheses 2014; 83:566-569. doi: http://dx.doi.org/10.1016/j.mehy.2014.08.023

31. Lim R, Barker G, Wall CA, Lappas M. Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol Hum Reprod 2013; 19(7):451-62. doi: http://dx.doi.org/10.1093/molehr/gat015

32. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010; 42:1634-1650. doi: http://dx.doi.org/10.1016/j.biocel.2010.06.001

33. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011; 15:3061-3100. doi: http://dx.doi.org/10.1089/ars.2010.3765

34. Woods JR Jr. Reactive oxygen species and preterm premature rupture of membranes – a review. Placenta 2001; 22(Suppl. A):S38-S44. doi: http://dx.doi.org/10.1053/plac.2001.0638

35. Chai M, Barker G, Menon R, Lappas M. Increased oxidative stress in human fetal membranes overlying the cervix from term nonlabouring and post labour deliveries. Placenta 2012; 33(8):604-610. doi: http://dx.doi.org/10.1016/j.placenta.2012.04.014

36. Awad JA, Roberts LJ II, Burk RF, Morrow JD. Isoprostanes – prostaglandin – like compounds formed in vivo independently of cyclooxygenase: use as clinical indicators of oxidant damage. Gastroenterol Clin North Am 1996; 25:409-427.

37. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD et al. Apigenin blocks lipopol ysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF – kappaB through the suppression of p65 phos-phorylation. J Immunol 2007; 179:7121-7127. doi: http://dx.doi.org/10.4049/jimmunol.179.10.7121

38. Chandler D, Woldu A, Rahmadi A, Shanmugam K, Steiner N, Wright E et al. Effects of plant-derived polyphenols on TNF –alpha and nitric oxide production induced by advanced glycation endproducts. Mol Nutr Food Res 2010; 54(Suppl. 2):S141-S150. doi: http://dx.doi.org/10.1002/mnfr.200900504

39. Chen G, Zhang H, Ye J. Determination of baicalein, baicalin and quercetin in Scutellariae radix and its preparations by capillary electrophoresis with electrochemical detection. Talanta 2000; 53:471–479.

40. Tuan PA, Kim YS, Kim Y, Thwe AA, Li X, Park CH et al. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J Biol Sci 2018; 25(8):1639-1647. doi: http://dx.doi.org/10.1016/j.sjbs.2016.08.011

41. Wang Y, Wei Z, Zhang J, Wang X. Electrochemical determination of baicalein, baicalin and quercetin in Scutellaria barbata. Int J Electrochem Sci 2016; 11:8323-8331. doi: http://dx.doi.org/10.20964/2016.10.03

42. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 2014; 4:5452. doi: http://dx.doi.org/10.1038/srep05452

43. Slachmuylders L, Van Acker H, Brackman G, Sass A, Van Nieuwerburgh F, Coenye T. Elucidation of the mechanism behind the potentiating activity of baicalin against Burkholderia cenocepacia biofilms. PLoS ONE 2018; 13(1): e0190533. doi: http://dx.doi.org/10.1371/journal.pone.0190533

44. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Neuroprotective and cognitive enhancement potentials of baicalin: A review. Brain Sci 2018; 8(6):104. http://dx.doi.org/10.3390/brainsci8060104

45. Liang W, Huang X, Chen W. The effects of baica-lin and baicalein on cerebral ischemia: A review. Aging Dis 2017; 8(6):850-867. doi: http://dx.doi.org/10.14336/AD.2017.0829

46. Luan Y, Chao S, Ju ZY, Wang J, Xue X, Qi TG et al. Therapeutic effects of baicalin on monocrotaline-induced pulmonary arterial hypertension by inhibiting inflammatory response. Int Immunopharmacol 2015; 26(1):188-193. doi: http://dx.doi.org/10.1016/j.intimp.2015.01.009

47. Donald G, Hertzer K, Eibl G. Baicalein – an intriguing therapeutic phytochemical in pancreatic cancer. Curr Drug Targets 2012; 13(14):1772–1776.

48. Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev 2009; 35(1):57-68. doi: http://dx.doi.org/10.1016/j.ctrv.2008.09.005

49. He P, Wu Y, Shun J, Liang Y, Cheng M, Wang Y. Baicalin ameliorates liver injury induced by chronic plus binge ethanol feeding by modulating oxidative stress and inflammation via CYP2E1 and NRF2 in mice. Oxid Med Cell Longev 2017; 4820414. doi: http://dx.doi.org/10.1155/2017/4820414

50. Zhang Y, Liao P, Zhu M, Li W, Hu D, Guan S et al. Baicalin attenuates cardiac dysfunction and myocardial remodeling in a chronic pressure-overload mice model. Cell Physiol Biochem 2017; 41(3):849-864. doi: http://dx.doi.org/10.1159/000459708

51. Huang X, Wu P, Huang F, Xu M, Chen M, Huang K et al. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci 2017; 24(1):52. doi: http://dx.doi.org/10.1186/s12929-017-0359-3

52. Dai H, Zhang X, Yang Z, Li J, Zheng J. Effects of baicalin on blood pressure and left ventricular remodeling in rats with renovascular hypertension. Med Sci Monit 2017; 23:2939-2948. doi: http://dx.doi.org/10.12659/MSM.902536

53. Chen Z, Wang Q. Activation of PPARγ by baicalin attenuates pulmonary hypertension in an infant rat model by suppressing HMGB1/RAGE signaling. FEBS Open Bio 2017; 7(4):477-484. doi: http://dx.doi.org/10.1002/2211-5463

54. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D et al. Baicalin attenuates hypoxia-induced pulmonary arterial hypertension to improve hypoxic cor pulmonale by reducing the activity of the p38 MAPK signaling pathway and MMP-9. Evid Based Complement Alternat Med 2016; vol. 2016. doi: http://dx.doi.org/10.1155/2016/2546402

55. Liu P, Yan S, Chen M, Chen A, Yao D, Xu X et al. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension. Int J Mol Med 2015; 35(4):901-988. doi: http://dx.doi.org/10.3892/ijmm.2015.2110

56. El-Bassossy HM, Hassan NA, Mahmoud MF, Fahmy A. Baicalein protects against hypertension associated with diabetes: effect on vascular reactivity and stiffness. Phytomedicine 2014; 21(12):1742-1745. doi: http://dx.doi.org/10.1016/j.phymed.2014.08.012

57. Zhang L, Pu Z, Wang J, Zhang Z, Hu D, Wang J. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway. Int J Mol Sci 2014; 15(5):8153-8168. doi: http://dx.doi.org/10.3390/ijms15058153

58. Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm Biol 2012; 50:401-406. doi: http://dx.doi.org/10.3109/13880209.2011.608076

59. Lin YL, Dai ZK, Lin RJ, Chu KS, Chen IJ, Wu JR et al. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotidedependent protein kinases in mesenteric artery. Phytomedicine 2010; 17:760-770. doi: http://dx.doi.org/10.1016/j.phymed.2010.01.003

60. Chang CP, Huang WT, Cheng BC, Hsu CC, Lin MT. The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke. Neuropharmacol 2007; 52(3):1024-1033. doi: http://dx.doi.org/10.1016/j.neuropharm.2006.10.018

61. Lee W, Ku SK, Bae JS. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch Pharm Res 2015; 38:893-903. doi: http://dx.doi.org/10.1007/s12272-014-0410-9

62. Dong SJ, Zhong YQ, Lu WT, Li GH, Jiang HL, Mao B. Baicalin inhibits lipopolysaccharideinduced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells. Inflammation 2015; 38(4):1493-501. doi: http://dx.doi.org/10.1007/s10753-015-0124-2

63. Shou X, Wang B, Zhou R, Wang L, Ren A, Xin S et al. Baicalin suppresses hypoxia-reoxygenation-induced arterial endothelial cell apoptosis via suppressing PKCδ/p53 Signaling. Med Sci Monit 2017; 23:6057-6063. doi: http://dx.doi.org/10.12659/MSM.907989

64. Yang X, Zhang Q, Gao Z, Yu C, Zhang L. Baicalin alleviates IL-1β-induced inflammatory injury via down-regulating miR-126 in chondrocytes. Biomed Pharmacother 2018; 99:184-190. doi: http://dx.doi.org/10.1016/j.biopha.2018.01.041

65. Li M, Wang Y, Li X, Li J, Wang B. Protection of compatibility of saikosapon d and baicalin on carbon tetrachloride injured L-02 cells based on TLR4-NFκB signaling pathway. Medicinal Plant, 2018; 9(2):61-64. doi: http://dx.doi.org/10.19600/j.cnki.issn2152-3924.2018.02.015

66. Wu T, Liu T, Xing L, Ji G. Baicalin and puerarin reverse epithelial-mesenchymal transition via the TGF-β1/Smad3 pathway in vitro. Exp Ther Med 2018; 16(3):1968-1974. doi: http://dx.doi.org/10.3892/etm.2018.6400

67. Wang Q, Xu H, Zhao X. Baicalin inhibits human cervical cancer cells by suppressing protein kinase C/signal transducer and activator of transcription (PKC/STAT3) signaling pathway. Med Sci Monit 2018; 24:1955-1961. doi: http://dx.doi.org/10.12659/MSM.909640

68. Zhang YM, Zhang YY, Bulbul A, Shan X, Wang XQ, Yan Q. Baicalin promotes embryo adhesion and implantation by upregulating fucosyltransferase IV (FUT4) via Wnt/beta-catenin signaling pathway. 2015; 589(11):1225-33. doi: http://dx.doi.org/10.1016/j.febslet.2015.04.011

69. Chen JG, Chen T, Ding Y, Han L, Zhou FY, Chen WZ et al. Baicalin can attenuate the inhibitory effects of mifepristone on Wnt pathway during peri-implantation period in mice. J Steroid Biochem Mol Biol 2015; 149:11-6. doi: http://dx.doi.org/10.1016/j.jsbmb.2014.11.023

70. Ma AT, Zhong XH, Meng LG, Ni YD, Xu L, Chen YX. Effects of monomer ingredients of Scutellaria baicalensis Georgi on the maternalfetal immunity in pregnant mice. Chin J Vet Sci 2007; 27:412-415.

71. Wang X, Zhao Y, Zhong X. Protective effects of baicalin on decidua cells of LPS-induced mice abortion. J Immunol Res 2014; 2014:859812. doi: http://dx.doi.org/10.1155/2014/859812

72. Ma AT, Zhong XH, Liu ZM, Shi WY, Du J, Zhai XH et al. Protective effects of baicalin against bromocriptine-induced abortion in mice. Am J Chin Med 2009; 37(1):85-95. doi: http://dx.doi.org/10.1142/S0192415X09006709

73. Mo J, Yang R, Li F, Zhang X, He B, Zhang Y et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine 2018; 42:66-74. doi: http://dx.doi.org/10.1016/j.phymed.2018.03.021

74. Huang H, Geng Q, Yao H, Shen Z, Wu Z, Miao X et al. Protective effect of scutellarin on myocardial infarction induced by isoprenaline in rats. Iran J Basic Med Sci 2018; 21(3):267-276. doi: http://dx.doi.org/10.22038/ijbms.2018.26110.6415

75. Chen YJ, Wang L, Zhou GY, Yu XL, Zhang YH, Hu N et al. Scutellarin attenuates endothelium-dependent vasodilation impairment induced by hypoxia reoxygenation, through regulating the PKG signaling pathway in rat coronary artery. Chin J Nat Med 2015; 13(4):0264-0273. doi: http://dx.doi.org/10.1016/S1875-5364(15)30013-3

76. Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190:105-127. doi: http://dx.doi.org/10.1016/j.pharmthera.2018.05.006

77. Yuan Y, Fang M, Wu CY, Ling EA. Scutellarin as a potential therapeutic agent for microglia-mediated neuroinflammation in cerebral ischemia. Neuromol Med 2016; 18:264-273. doi: http://dx.doi.org/10.1007/s12017-016-8394-x

78. Fang M, Yuan Y, Lu J, Li HE, Zhao M, Ling EA et al. Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem Int 2016; 97:154-171. doi: http://dx.doi.org/10.1016/j.neuint.2016.04.007

79. Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H et al. Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci 2015; 16:84. doi: http://dx.doi.org/10.1186/s12868-015-0219-6

80. Zhang HF, Hu XM, Wang LX, Xu SQ, Zeng FD. Protective effects of scutellarin against cerebral ischemia in rats: evidence for inhibition of the apoptosis-inducing factor pathway. Planta Medica 2009; 75(2):121-126. doi: http://dx.doi.org/10.1371/journal.pone.0146197

81. Chen X, Shi X, Zhang X, Lei H, Long S, Su H et al. Scutellarin attenuates hypertension-induced expression of brain toll-like receptor 4/Nuclear Factor Kappa B. Mediators Inflamm 2013; vol. 2013. doi: http://dx.doi.org/10.1155/2013/432623

82. Lin LL, Liu AJ, Liu JG, Yu XH, Qin LP, Su DF. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J Cardiovasc Pharmacol 2007; 50:327-332.

83. Li L, Li L, Chen C, Yang J, Li J, Hu N et al. Scutellarin’s cardiovascular endothelium protective mechanism: important Role of PKG-Iα. PLoS ONE 2015; 10(10): e0139570. doi: http://dx.doi.org/10.1371/journal.pone.0139570

84. Pan Z, Feng T, Shan L, Cai B, Chu W, Niu H et al. Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother Res 2008; 22(11):1428-33. doi: http://dx.doi.org/10.1002/ptr.2364

85. Li X, Wang L, Li Y, Bai L, Xue M. Acute and subacute toxicological evaluation of scutellarin in rodents. Regul Toxicol Pharmacol 2011; 60(1):106-11. doi: http://dx.doi.org/10.1016/j.yrtph.2011.02.013

86. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochem 2018;145:187-196. doi: http://dx.doi.org/10.1016/j.phytochem.2017.09.016

87. Ożarowski M, Piasecka A, Paszel-Jaworska A, Chaves DSA, Romaniuk A, Rybczynska M et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev Bras Farmacogn 2018; 28:179–191. doi: http://dx.doi.org/10.1016/j.bjp.2018.01.006

88. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 2014; 279:1-7. doi: http://dx.doi.org/10.1016/j.taap.2014.05.007

89. Missassi G, Borges CS, Rosa JL, Silva PV, Martins AC, Barbosa F et al. Chrysin administration protects against oxidative damage in varicocele-induced adult rats. Oxid Med Cell Longev 2017; 2017:2172981. doi: http://dx.doi.org/10.1155/2017/2172981

90. Veerappan R, Malarvili T. Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Ind J Clin Biochem 2018. doi: http://dx.doi.org/10.1007/s12291-018-0761-y

91. Li XW, Wang XM, Li S, Yang JR. Effects of chrysin (5,7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chinese Med 2015; 10(4):1-13. doi: http://dx.doi.org/10.1186/s13020-015-0032-2

92. Samarghandian S, Farkhondeh T, AzimiNezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2):1559325817711782. doi: http://dx.doi.org/10.1177/1559325817711782

93. Zhao S, Liang M, Wang Y, Hu J, Zhong Y, Li J et al. Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J Cardiovasc Pharmacol Ther 2018:1074248418810809. doi: http://dx.doi.org/10.1177/1074248418810809

94. Villar IC, Vera R, Galisteo M, O’Valle F, Romero M, Zarzuelo A et al. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Planta Med 2005; 71:829-834. doi: http://dx.doi.org/10.1055/s-2005-871296

95. Yamamoto Y. Effects of dietary chrysin supplementation on blood pressure and oxidative status of rats fed a high-fat high-sucrose diet. Food Sci Technol Res 2014; 20(2):295-300. doi: http://dx.doi.org/10.3136/fstr.20.295

96. Pelissero C, Lenczowski MJ, Chinzi D, Davail-Cuisset B, Sumpter JP, Fostier A. Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 1996; 57(34):215-23.

97. Edmunds KM, Holloway AC, Crankshaw DJ, Agarwal SK, Foster WG. The effects of dietary phytoestrogens on aromatase activity in human endometrial stromal cells. Reprod Nutr Dev 2005; 45(6):709-20. doi: http://dx.doi.org/10.1051/rnd:2005055

Herba Polonica

From Botanical to Medical Research

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 12
PDF Downloads 65 65 9