β-Glucan and parasites

Open access


Immunosuppression caused by parasitic infections represents the foremost way by which the parasites overcome or escape the host’s immune response. Glucan is a well-established natural immunomodulator with the ability to significantly improve immune system, from innate immunity to both branches of specific immunity. Our review is focused on the possible role of glucan’s action in antiparasite therapies and vaccine strategies. We concluded that the established action of glucan opens a new window in treatment and protection against parasitic infections.

Al Tuwaijri, A.S., Mahmoud, A.A., Al Mofleh, I.A., Al Khuwaitir, S.A. (1987): Effect of glucan on Leishmania major infection in BALB/c mice. J Med. Microbiol., 23(4): 363 – 365. DOI: 10.1099/00222615-23-4-363

Alves da Cunha, M.A., Albornoz, S.L., Queiroz Santos, V.A., Sanchez, W.N., Barbosa-Dekker, A.M., Dekker, R.F.H. (2017): Structure and biological functions of D-glucan and their applications. In A.-u.-R. Atta-ur-Rahman (Eds) Studies in Natural Products Chemistry. (1st edition), Waltham, MA, Elsevier, pp. 309 – 337

Anderson, D.P. (1992): Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annual Review of Fish Diseases, 2: 281 – 307. DOI: 10.1016/0959-8030(92)90067-8

Bacha, U., Nasir, M., Iqbal, S., Anjum, A.A. (2017): Nutraceutical, anti-Inflammatory, and immune modulatory effects of beta-glucan isolated from yeast. Biomed Res. Int., 8972678. DOI: 10.1155/2017/8972678

Beschin, A., Bilej, M., Hanssens, F., Raymakers, J., Van Dyck, E., Revets, H., Brys, L., Gomez, J., De Baetselier, P., Timmermans, M. (1998): Identification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J. Biol. Chem., 273(38): 24948 – 24954. DOI: 10.1074/jbc.273.38.24948

Bhutta, Z.A., Sommerfeld, J., Lassi, Z.S., Salam, R.A., Das, J.K. (2014): Global burden, distribution, and interventions for infectious diseases of poverty. Infect. Dis. Poverty, 3: 21. DOI: 10.1186/2049-9957-3-21

Boroskova, Z., Reiterova, K., Dubinsky, P., Tomasovicova, O., Machnicka, B. (1998). Inhibition of lymphoproliferative response and its restoration with a glucan immunomodulator in mice with experimental larval toxocarosis. Folia Microbiol., (Praha), 43(5): 475 – 476

Braaten, J.T., Wood, P.J., Scott, F.W., Wolynetz, M.S., Lowe, M.K., Bradley-White, P., Collins, M.W. (1994): Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur. J. Clin. Nutr., 48(7): 465 – 474

Browder, W., Williams, D., Lucore, P., Pretus, H., Jones, E., McNamee, R. (1988): Effect of enhanced macrophage function on early wound healing. Surgery, 104(2): 224 – 230

Brown, G.D. (2006). Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol., 6(1): 33 – 43. DOI: 10.1038/nri1745

Buddle, B.M., Pulford, H.D., Ralston, M. (1988): Protective effect of glucan against experimentally induced staphylococcal mastitis in ewes. Vet. Microbiol., 16(1): 67 – 76. DOI: 10.1016/0378-1135(88)90127-7

Bushkin, G.G., Motari, E., Magnelli, P., Gubbels, M.J., Dubey, J.P., Miska, K.B., Bullitt, E., Costello, C.E., Robbins, P.W., Samuelson, J. (2012): Beta-1,3-glucan, which can be targeted by drugs, forms a trabecular scaffold in the oocyst walls of Toxoplasma and Eimeria. M. Biol, 3(5). DOI: 10.1128/mBio.00258-12

Cook, J.A., Holbrook, T.W. (1983): Immunogenicity of soluble and particulate antigens from Leishmania donovani: effect of glucan as an adjuvant. Infect. Immun., 40(3): 1038 – 1043

Cook, J.A., Holbrook, T.W., Dougherty, W.J. (1982): Protective effect of glucan against visceral leishmaniasis in hamsters. Infect. Immun., 37(3): 1261 – 1269

De Oliveira, C.A.F., Vetvicka, V., Zanuzzo, F.S. (2018): b-Glucan successfully stimulated the inmmune system in different jawed vertebrate species. Vet. Immunol. Immunopathol., (submitted)

de Oliveira Silva, V., Oliveira de Moura, N., Rodrigues de Oliveira, L.J., Peconick, A.P., Pereira, L.J. (2017): Promising effects of beta-glucan on metabolism and on the immune responses: Review article. Am. J. Immunol., 13(1): 62 – 72. DOI: 10.3844/ajisp.2017.62.72

De Smet, R., Allais, L., Cuvelier, C.A. (2014): Recent advances in oral vaccine development: yeast-derived beta-glucan particles. Hum. Vaccin. Immunother., 10(5): 1309 – 1318. DOI: 10.4161/hv.28166

Duvic, B., Soderhall, K. (1990): Purification and characterization of a beta-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. J. Biol. Chem., 265(16): 9327 – 9332

Fang, J., Wang, Y., Lv, X., Shen, X., Ni, X., Ding, K. (2012): Structure of a beta-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-kappaB signaling. Glycoconj J., 29(5 – 6): 365 – 377. DOI: 10.1007/s10719-012-9416-z

Ghosh, K., Sharma, G., Saha, A., Kar, S., Das, P.K., Ukil, A. (2013): Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J. Infect. Dis., 207(6): 1016 – 1025. DOI: 10.1093/infdis/jis771

Goldman, R., Jaffe, C.L. (1991): Administration of beta-glucan following Leishmania major infection suppresses disease progression in mice. Parasite Immunol., 13(2): 137 – 145. DOI: 10.1111/j.1365-3024.1991.tb00270.x

Gorocica, P., Taylor, M.L., Alvarado-Vasquez, N., Perez-Torres, A., Lascurain, R., Zenteno, E. (2009): The interaction between Histoplasma capsulatum cell wall carbohydrates and host components: relevance in the immunomodulatory role of histoplasmosis. Mem. Inst. Oswaldo Cruz, 104(3): 492 – 496. DOI: 10.1590/S0074-02762009000300016

Guselle, N.J., Speare, D.J., Markham, R.J.F., Patelakis, S. (2010): Efficacy of intraperitoneally and orally administered ProVale, a yeast β-(1,3)/(1,6)-D-glucan product, in inhibiting xenoma formation by the microsporidian Loma salmonae on rainbow trout gills. N. Am. J. Aquac., 72(1): 65 – 72. DOI: 10.1577/A09-017.1

Herczeg, D., Sipos, D., Dan, A., Loy, C., Kallert, D.M., Eszterbauer, E. (2017): The effect of dietary immunostimulants on the susceptibility of common carp (Cyprinus carpio) to the white spot parasite, Ichthyophthirius multifiliis. Acta. Vet. Hung., 65(4): 517 – 530. DOI: 10.1556/004.2017.050

Holbrook, T.W., Cook, J.A., Parker, B.W. (1981a): Glucan-enhanced immunogenicity of killed erythrocyte stages of Plasmodium berghei. Infect. Immun., 32(2): 542 – 546

Holbrook, T.W., Cook, J.A., Parker, B.W. (1981b): Immunization against Leishmania donovani: glucan as an adjuvant with killed promastigotes. Am. J. Trop. Med. Hyg., 30(4): 762 – 768. DOI: 10.4269/ajtmh.1981.30.762

Horvathova, E., Eckl, P.M., Bresgen, N., Slamenova, D. (2008): Evaluation of genotoxic and cytotoxic effects of H2O2 and DMNQ on freshly isolated rat hepatocytes; protective effects of carboxymethyl chitin-glucan. Neuro Endocrinol Lett., 29(5): 644 – 648

Hrckova, G., Velebny, S., Kogan, G. (2007): Antibody response in mice infected with Mesocestoides vogae (syn. Mesocestoides corti) tetrathyridia after treatment with praziquantel and liposomised glucan. Parasitol. Res., 100(6): 1351 – 1359. DOI: 10.1007/s00436-006-0434-2

Jaafar, R.M., Skov, J., Kania, P.W., Buchmann, K. (2011): Dose dependent effects of dietary immunostimulants on rainbow trout immune parameters and susceptibility to the parasite Ichthyophthirius multifiliis. Aquaculture Res. Dev., S3: 001. DOI: 10.4172/2155-9546-S3-001

Jarecki-Black, J.C., Glassman, A.B., James, E.R. (1985): Adoptive transfer of vaccine-induced resistance to Leishmania donovani. Am. J. Trop. Med. Hyg., 34(6): 1095 – 1097. DOI: 10.4269/ajtmh.1985.34.1095

Kushner, B.H., Cheung, I.Y., Modak, S., Kramer, K., Ragupathi, G., Cheung, N.K. (2014): Phase I trial of a bivalent gangliosides vaccine in combination with beta-glucan for high-risk neuroblastoma in second or later remission. Clin. Cancer. Res., 20(5): 1375 – 1382. DOI: 10.1158/1078-0432.CCR-13-1012

Lasarow, R.M., Williams, D.L., Theis, J.H. (1992): Humoral responses following immunization with Leishmania infantum (ex. Oklahoma): a comparison of adjuvant efficacy in the antibody responses of Balb-C mice. Int. J. Immunopharmacol., 14(5): 767 – 772. DOI: 10.1016/0192-0561(92)90074-U

Lauridsen, J.H., Buchmann, K. (2010): Effects of short- and long-term glucan feeding of rainbow trout (Salmonidae) on the susceptibility to Ichthyophthirius multifiliis infections. Acta Ichthyol. Piscat., 40(1): 61 – 66. DOI: 10.3750/Aip2010.40.1.08

Legentil, L., Paris, F., Ballet, C., Trouvelot, S., Daire, X., Vetvicka, V., Ferrieres, V. (2015): Molecular interactions of beta-(1-->3)-glucan with their receptors. Molecules, 20(6): 9745 – 9766. DOI: 10.3390/molecules20069745

Li, P., Wang, F. (2015). Polysaccharides: Candidates of promising vaccine adjuvants. Drug Discov. Ther., 9(2): 88 – 93. DOI: 10.5582/ddt.2015.01025

Mazzei, M., Fronte, B., Sagona, S., Carrozza, M.L., Forzan, M., Pizzurro, F., Bibbiani, C., Miragliotta, V., Abramo, F., Millanta, F., Bagliacca, M., Poli, A., Felicioli, A. (2016): Effect of 1,3-1,6 beta-glucan on natural and experimental deformed wing virus infection in newly emerged honeybees (Apis mellifera ligustica). PLoS One, 11(11): e0166297. DOI: 10.1371/journal.pone.0166297

Netea, M.G., Joosten, L.A., Latz, E., Mills, K.H., Natoli, G., Stunnenberg, H.G., O’Neill, L.A., Xavier, R.J. (2016): Trained immunity: A program of innate immune memory in health and disease. Science, 352(6284): aaf1098. DOI: 10.1126/science.aaf1098

Novak, M., Vetvicka, V. (2008). Beta-glucan, history, and the present: immunomodulatory aspects and mechanisms of action. J. Immunotoxicol, 5(1): 47 – 57. DOI: 10.1080/15476910802019045

Obaid, K.A., Ahmad, S., Khan, H.M., Mahdi, A.A., Khanna, R. (1989): Protective effect of L. donovani antigens using glucan as an adjuvant. Int. J. Immunopharmacol., 11(3): 229 – 235. DOI: 10.1016/0192-0561(89)90159-8

Patchen, M.L., MacVittie, T.J. (1982): Use of glucan to enhance hemopoietic recovery after exposure to cobalt-60 irradiation. Adv. Exp. Med. Biol., 155: 267 – 272. DOI: 10.1007/978-1-4684-4394-3_27

Picka, M.C.M., Calvi, S.A., Lima, C.R.G., Santos, I.A.T., Marcondes-Machado, J. (2005): Measurement of IL-10 serum levels in balb/c mice treated with beta-1, 3 polyglucose or sulfadiazine and acutely infected by Toxoplasma gondii. J. Venom Anim. Toxins Incl. Trop. Dis., 11(4): 540 – 556. DOI: 10.1590/S1678-91992005000400012

Reynolds, J.A., Kastello, M.D., Harrington, D.G., Crabbs, C.L., Peters, C.J., Jemski, J.V., Scott, G.H., Di Luzio, N.R. (1980): Glucan-induced enhancement of host resistance to selected infectious diseases. Infect. Immun., 30(1): 51 – 57

Richter, J., Svozil, V., Kral, V., Rajnohova Dobiasova, L., Stiborova, I., Vetvicka, V. (2014). Clinical trials of yeast-derived beta-(1,3) glucan in children: effects on innate immunity. Ann. Transl. Med., 2(2): 15. DOI: 10.3978/j.issn.2305-5839.2014.02.01

Rodriguez-Tovar, L.E., Speare, D.J., Markham, R.J. (2011): Fish microsporidia: immune response, immunomodulation and vaccination. Fish Shellfish Immunol., 30(4 – 5): 999 – 1006. DOI: 10.1016/j.fsi.2011.02.011

Roohvand, F., Shokri, M., Abdollahpour-Alitappeh, M., Ehsani, P. (2017): Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin. Ther. Pat., 27(8): 929 – 951. DOI: 10.1080/13543776.2017.1339789

Samuel, F. (2016): Opportunistic parasitism: Parasitic association with the host that has compromised immune system. J. Bacteriol. Parasitol., 7(1): 1000261 – 1000264. DOI: 10.4172/2155-9597.1000261

Shivahare, R., Ali, W., Singh, U.S., Natu, S.M., Khattri, S., Puri, S.K., Gupta, S. (2016): Immunoprotective effect of lentinan in combination with miltefosine on Leishmania-infected J-774A.1 macrophages. Parasite Immunol., 38(10): 618 – 627. DOI:10.1111/pim.12346

Sima, P., Vannucci, L., Vetvicka, V. (2015): Glucan and cancer: historical prospective. Canc. Transl. Med., 1(6): 209 – 214

Soderhall, K., Cerenius, L. (1998): Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol., 10(1): 23 – 28. DOI: 10.1016/S0952-7915(98)80026-5

Soltys, J., Boroskova, Z., Dubinsky, P., Tomasovicova, O., Auer, H., Aspock, H. (1996): Effect of glucan immunomodulator on the immune response and larval burdens in mice with experimental toxocarosis. Appl. Parasitol., 37(3): 161 – 167

Torgerson, P.R., Devieesschauwer, B., Praet, N., Speybroek, N., Willingham, A.L., Kasuga, F., Rokni, M.B., Zhou, X.N., Fevre, E.M., Sripa, B., Gargouri, N., Furst, T., Budke, C.M., Carabin, H., Kirk, M.D., Angulo, F.J., Havelaar, A., de Silva, N. (2015): World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A data synthesis. PLoS Med, 12(12): e.1001920. DOI: 10.1371/journal.pmed.1001920

Vannucci, L., Sima, P., Vetvicka, V., Krizan, J. (2017): Lentinan properties in anticancer therapy: A review on the last 12-year literature. Am. J. Immunol., 13(1): 50 – 61. DOI: 10.3844/ajisp.2017.50.61

Velebny, S., Hrckova, G., Kogan, G. (2008): Impact of treatment with praziquantel, silymarin and/or beta-glucan on pathophysiological markers of liver damage and fibrosis in mice infected with Mesocestoides vogae (Cestoda) tetrathyridia. J. Helminthol., 82(3): 211 – 219. DOI: 10.1017/S0022149X08960776

Vetvicka, V., Novak, M. (2011): Biological action of β-glucan. In: V. Vetvicka, M. Novak (Eds) Biology and Chemistry of Beta Glucan: Bentham Science, Vol. 1., pp. 10 – 18

Vetvicka, V., Oliveira, C. (2014a): Beta(1-3)(1-6)-D-glucan modulate immune status in pigs: potential importance for efficiency of commercial farming. Ann. Transl. Med., 2(2): 16. DOI: 10.3978/j.issn.2305-5839.2014.01.04

Vetvicka, V., Oliveira, C. (2014b): β(1-3)(1-6)D-glucan modulate immune status and blood glucose levels in dogs. Br. J. Pharmaceut Res., 4: 981 – 991. DOI : 10.9734/BJPR/2014/7862

Vetvicka, V., Oliveira, C. (2014c): β(1,3)(1,6)-D-glucan with strong effects on immune status in chicken: potential importance of efficiency of commercial farming. J. Nutr. Health Science, 1: 310 – 317

Vetvicka, V., Sima, P. (2017): Various roles of β-glucan in invertebrates. Invertebrate Surviv. J., 14: 488 – 493

Vetvicka, V., Sima, P., Vannucci, L. (2017): Beta glucan as therapeutic food. In A. M. Holban, A. M. Grumezescu (Eds.), Handbook of Food Bioengineering (Therapeutic Foods), Academic Press. Vol. 8, pp. 239 – 256

Vetvicka, V., Vetvickova, J. (2008): A comparison of injected and orally administered b-glucans. J. Am. Nutr. Assoc., 11: 42 – 49

Vetvicka, V., Vetvickova, J. (2014): Anti-stress action of an orally-given combination of resveratrol, beta-glucan, and vitamin C. Molecules, 19(9): 13724 – 13734. DOI: 10.3390/molecules190913724

Vetvicka, V., Vetvickova, J. (2015): β-glucan attenuates chronic fatique syndrome in murine model. J. Nat. Sci.,1: e112

Větvička, V. (2013): β-glucan as Natural Biological Response Modifiers. New York: Nova Science Publishers, Inc. pp. 1 – 162

Vojtek, B., Mojzisova, J., Smrco, P., Drazovska, M. (2017): Effects of orally administered b-1,3/1,6-glucan on vaccination responses and immunological parameters in dogs. Food Agricul. Immunol., 28(6): 993 – 1002. DOI: 10.1080/09540105.2017.1324407

Wang, L., Behr, S.R., Newman, R.K., Newman, C.W. (1997): Comparative cholesterol-lowering effects of barley β-glucan and barley oil in golden syrian hamsters. Nutrition Research, 17(1): 77 – 88. DOI: 10.1016/S0271-5317(96)00234-5

Wursch, P., Pi-Sunyer, F.X. (1997): The role of viscous soluble fiber in the metabolic control of diabetes. A review with special emphasis on cereals rich in beta-glucan. Diabetes Care, 20(11): 1774 – 1780

Xia, Y., Vetvicka, V., Yan, J., Hanikyrova, M., Mayadas, T., Ross, G.D. (1999): The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol., 162(4): 2281 – 2290

Yanagawa, T., Oguro, M., Takagi, T., Takenaga, K. (1984): Direct antitumor activity of biologica response modifiers (B.R.M.) proven by an in vitro sensitivity test. Gan To Kagaku Ryoho, 11(10): 2155 – 2162

Yatawara, L., Wickramasinghe, S., Nagataki, M., Takamoto, M., Nomura, H., Ikeue, Y., Watanabe, Y., Agatsuma, T. (2009): Aureobasidium-derived soluble branched (1,3-1,6) beta-glucan (Sophy beta-glucan) enhances natural killer activity in Leishmania amazonensis-infected mice. Korean J. Parasitol., 47(4): 345 – 351. DOI: 10.3347/kjp.2009.47.4.345

Yun, C.H., Estrada, A., Van Kessel, A., Gajadhar, A.A., Redmond, M.J., Laarveld, B. (1997): Beta-(1-->3, 1-->4) oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int. J. Parasitol., 27(3): 329 – 337. DOI: 10.1016/S0020-7519(96)00178-6

Yun, C.H., Estrada, A., Van Kessel, A., Park, B.C., Laarveld, B. (2003): Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol., 35(1): 67 – 75. DOI: 10.1016/S0928-8244(02)00460-1

Zhou, L.D., Zhang, Q.H., Zhang, Y., Liu, J., Cao, Y.M. (2009): The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune-responses. Int. Immunopharmacol., 9(4): 455 – 462. DOI: 10.1016/j.intimp.2009.01.010

Journal Information

IMPACT FACTOR 2017: 0.417
5-year IMPACT FACTOR: 0.619

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2015: 0.316
Source Normalized Impact per Paper (SNIP) 2015: 0.678

Target Group researchers in the field of human, veterinary medicine and natural science


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 334 334 29
PDF Downloads 202 202 21