Molecular and ultrastructure characterization of two nematodes (Thelandros scleratus and Physalopteroides dactyluris) based on ribosomal and mitochondrial DNA sequences

Open access

Summary

The phylogenetic relationships of the nematode species Thelandros scleratus (Oxyurida: Pharyn-godonidae) and Physalopteroides dactyluris (Spirurida: Physalopteridae) were analyzed using the ribosomal 18S rRNAand the mitochondrial cytochrome C oxidase subunit genes. The nematodes were recovered from Brook's house gecko, Hemidactylus brooki (Reptilia: Gekkonidae) from Hast-inapur, Meerut (U.P.), India. The results demonstrated that T. scleratus shows 100% similarity with another sequence available from the same species and a close relationship (98-99%) with species of Parapharyngodon in both 18S rRNAand cox 1 regions. Regarding the nematode Physalopteroides. analysis showed a close phylogenetic relationship between P. dactyluris and several species of Phy-saloptera. This is the first sequence of 18S available for any species of the genus Physalopteroides

Summary

The phylogenetic relationships of the nematode species Thelandros scleratus (Oxyurida: Pharyn-godonidae) and Physalopteroides dactyluris (Spirurida: Physalopteridae) were analyzed using the ribosomal 18S rRNAand the mitochondrial cytochrome C oxidase subunit genes. The nematodes were recovered from Brook's house gecko, Hemidactylus brooki (Reptilia: Gekkonidae) from Hast-inapur, Meerut (U.P.), India. The results demonstrated that T. scleratus shows 100% similarity with another sequence available from the same species and a close relationship (98-99%) with species of Parapharyngodon in both 18S rRNAand cox 1 regions. Regarding the nematode Physalopteroides. analysis showed a close phylogenetic relationship between P. dactyluris and several species of Phy-saloptera. This is the first sequence of 18S available for any species of the genus Physalopteroides

Introduction

Various parasitological studies on nematode infecting Hemidactylus brooki (Brooke's house gecko), have been performed in India for many years. Regarding the intestinal nematode parasites of H. brooki. several species of different genera have been described (Sood, 1999). This includes Thelandros Wedl, 1861 and Physalopteroides Wu & Liu, 1940 living in the intestine of H. brooki. During the past decades, at least 11 Thelandros species have been described in this Indian region (Sood, 1999).

Parasitic nematode Parapharyngodon maplestoni found in the intestine of Calotes versicolor lizard was described in 1933 by Chatterji. Later, Baylis 1936 considered P. maplestoni. a synonym of Thelandros Wedl, 1861. Thelandros scleratus. from the same host, was described by Travassos, 1923. The differentiation between Parapharyngodon Chatterji, 1933 and Thelandros Wedl, 1861 has been controversial by reason of the morphological similarities. Several authors considered them as synonym (Baylis, 1936; Karve, 1938; Vicente et al.. 1993), while others considered them as different genera (Ramallo et al.. 2002; Bursey & Goldberg, 2005). Both genera can be differentiated from each other on the basis of posterior end morphology in both sexes (Bursey & Goldberg, 2005). Status of Thelandros species in India has also been questionable due to lack of molecular tools. Some phylogenetic studies of T. scleratus have been carried out with nuclear genes like 18S and 28S (Kumari et al.. 2011; Chaudhary et al.. 2014).

The genus Physalopteroides was recognized in China by Wu & Liu, 1940 with the type species of P. dryophisi collected from Dry-ophis prasinus. Excluding P. dactyluris (Karve, 1938; Chabaud & Brygoo, 1960) the, other species of this genus described in India include P. asymmetrica (Baylis, 1930; Chabaud & Brygoo, 1960), P. quadridentata (Khera, 1951; Chabaud & Brygoo, 1960) and P. versicoloris (Deshmukh, 1969). The status of genus Physalopteroides in India has also been controversial for long time for the reason that different species show similar morphologies and there is no molecular data available to compare them precisely. Nematode taxonomy is mostly based on morphological features such as oesophagus structure, pharynx and structures of males and females reproductive organs. Although, morphological characteristics contribute to the species identification further authentication DNA sequence data is needed for a complete description and identification of a species. Morphological diagnosis in nematodes is very difficult because the characters that serve to distinguish between each other overlap. For molecular analysis of nematodes ribosomal RNAgene has been widely applied in phylogenetic and systematic studies to discriminate among species (Bae et al., 2008; van Megen etal.. 2009; Bhadury & Austen, 2010; Perera et al.. 2013). However, less attention has been paid to the mitochon-drial DNA (mt DNA). Mitochondrial gene analysis has been used successfully in studies regarding identification and phylogenetic relationships in some nematode groups (Blouin etal.. 1997; Ked-die etal.. 1998; Hoberg etal.. 1999; Denver etal.. 2000; Blouin, 2002; Lavrov & Brown, 2001; Liu et al., 2013). The cytochrome c-oxidase subunit1 (Cox 1) gene has been successfully used to resolve the phylogenies of closely allied species in most animal phyla including nematodes (Kumazawa & Nishida, 1993; Hebert etal.. 2003; Prosseret al., 2013).

Previous to this study, no molecular information from Physalop-teroides was available in GenBank. The present study analyzes for the first time the phylogenetic relationships the nematode species of Thelandros and Physalopteroides belonging to the same geographical area using the partial 18S and Cox 1 genes.

Materials and Methods

Brook's house gecko (N=15), Hemidactylus brooki infected with nematodes were collected from Hastinapur (29°01'N and 77°45'E), Meerut (U.P.), India and were sacrificed using chloroform or ether anesthetic. Their digestive tracts were removed for further examination. Nematodes were collected into 0.6 % saline solution, then fixed with 70 % hot alcohol, mounted in glycerin for morphological analysis, and then subjected to light microscopy and photography. The surface morphology analysis by scanning electron microscopy (SEM) was also performed. For the SEM, parasites were fixed in 70 % ethanol, dried using critical point-drier, mounted on SEM stubs, coated with a thin layer of gold and finally examined with a JOEL Neoscope JCM5000 SEM at an accelerating voltage of 10 kV.

For molecular analysis, nematodes were fixed in 95 % ethanol and genomic DNA was isolated using the DNeasy Tissue Kit (Qiagen, Germany) according to the manufacturer's instructions. PCR were used to amplify the 18S and Cox 1 regions using the primers, Nem 18S F (5'-CGCGAATRGCTCATTACAACAGC-3') and Nem 18S R (5'-GGGCGGTATCTGATCGCC-3') (Floyd etal.. 2005); LCO1490 F (5'-GGTCAACAAATCATAAAGATATTGG-3') and HC02198 R (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al., 1994), respectively. The PCR were performed in volumes of 25 μl under standard conditions according to Singh et al., 2013. The PCR products were electrophoresed in 1 % agarose gel in TAE buffer, stained with ethidium bromide. Subsequently, PCR products were purified using PurelinkTM Quick Gel Extraction and PCR Purification Combo Kit (Invitrogen, Germany) following the manufacturer's instructions. Amplicons were sequenced (in both directions) with Big Dye Terminator version 3.1 cycle sequencing kit in an ABI 3130 Genetic Analyzer (Applied Biosystems)

To identify related sequences, a BLAST search was carried out on NCBI database (http://www.ncbi.nlm.nih.gov/BLAST/). The 18S and COX 1 sequences were aligned using the Clustal W algorithm (Thompson et al., 1994) implemented in MEGA 6.0 (Tamura et al., 2013) with defaulted parameters. Maximum likelihood (ML) and Bayesian interference (BI) phylogenetic analyses were performed for congruence among topologies. The ML analysis was performed in MEGA6.0 with GTR + G +I model and the bootstrap values generated were based on 1,000 resampled datasets. The dataset was tested on MEGA 6.0 for the nucleotide substitution model of best fit and the best-fitting model according to the Akaike Information Criterion (AIC). The substitution models were tested by the Bayesian Information Criterion as determined by the model test algorithm of the software and GTR + G +I model was selected to be the best fit for analysis. BI analysis was computed using TOPALi 2.5 interface (Milne et al.. 2009). Posterior probabilities were estimated over 1,000,000 generations conducted by two independent runs of four simultaneous MCMCMC chains. The burn in was 25.

Results and Discussion

The following two nematode species were found to parasitize H. brooki

Thelandros scleratus Travassos, 1923 (Fig. 1 A – F) Description: T. scleratus was identified on the basis of their mouth bounded by three bilobed lips and oesophagus type. Buccal cavity short, without chitinous walls. Oesophagus display very short pharynx and posterior bulb. In females, tail is constricted behind anus to form a terminal spike, vulva positioned little behind the middle of body. Uterine branches parallel, oviparous, eggs oval, not embryonated when laid. In males, posterior extremity is truncated with tail process mid-dorsally, caudal alae absent, spicule short, sharp, pointed and absent gubernaculum.

Fig.1
Fig.1

The SEM photographs of females of T. scleratus (A – F) andP. dactyluris (G-K). A and B, SEM photograph of anterior portion of T. scleratus. Cand D, Enlarged view of mouth and lips. E and F, Tail at greater magnification. G, Anterior part of body. H, Posterior part of body. I – K, Lower to higher magnification of head region.

Citation: Helminthologia 53, 2; 10.1515/helmin-2016-0013

Host: Hemidactylus brooki (Brook's house gecko); Site Intestine; Locality Hastinapur (29°01'N and 77°45'E), Meerut, Uttar Pradesh, India; Reference material: Thelandros scleratus; Family: Pharyngodonidae. Prepared slides were deposited in the Museum of the Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India, under the voucher number Nem/2014/01.

Molecular characterization The 18S (800 bp) and Cox 1 (612 bp) sequences obtained from T. scleratus were deposited in GenBank under the accession numbers KP338604 and KP338607, respectively. Sequences of the 18S rDNA and mt Cox 1 genes showed 100 % similarity with the sequences isolated from the same species available in GenBank. Sequences were also closely related (98 - 99 %) to the genus Parapharyngodon as they have shown only 0.01 to 0.02 % divergence for the 18S region. The results from the phylogenetic analysis based on ML and BI are shown in figure 2 A and B. In Figure 2 A, the 18S analysis depicts that T. scleratus clusters with another species of the same genus, T. tinerfensis which was reported from Spain through high bootstrap support (98/0.99). Moreover, T. scleratus always grouped together with Parapharyngodon species (Figs 2 A and B) in phylogenetic analysis based on 18S and Cox 1 gene sequences. The findings of the study also indicate that except T. scleratus. no molecular data is available from any other Thelandros species for comparison of mtCox1 region (Fig. 2 B).

Fig.2
Fig.2

Phylogenetic trees generated by maximum likelihood (ML) and Bayesian Inference (BI) analyses. Numbers at nodes indicated bootstrap values (ML) and posterior probabilities (BI). Phylogenetic tree A and B shows, respectively, 18s and Cox 1 results for T. scleratus and C shows 18s results for P. dactyluris. Oxyuris equi, Enterobius vermicularis and Ascarophis arctica were used as outgroups

Citation: Helminthologia 53, 2; 10.1515/helmin-2016-0013

Physalopteroides dactylurisKarve, 1938(Fig. 1 G - K)

Description Identification of this parasite is based on its oesophagus, caudal extremity and pedunculated papillae. Body is delicate, slender, mouth comprises two simple lateral lips. Collar cuticular are present at the base of muscular lips. In females, vulva in pre-equatorial position, uterine branches parallel. Thick shelled eggs contain larvae at the deposition and with conical tail.

In males, caudal papillae pedunculated, spicules simple, unequal, chitinized. Right spicule is smaller than the left one. Caudal end consist of curved pointed tail.

Host: Hemidactylus brooki (Brook's house gecko); Site Intestine; Locality Hastinapur (29°01'N and 77°45'E), Meerut, Uttar Pradesh, India; Reference material: Physalopteroides dactyluris; Family: Physalopteridae Railliet, 1893; Prepared slides of this parasite were deposited in the Museum of the Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India, under the voucher number Nem/2014/02.

Molecular characterization The 18S sequence obtained from P. dactyluris was deposited in GenBank under the accession number KP338605. Unfortunately, we failed to amplify the mt Cox 1 region of P. dactyluris. Maximum likelihood (ML) and Bayesian inferences (BI) placed P. dactyluris on a basal position within the genus Phy-saloptera (94 - 96 %) along with Turgida. Both ML and BI methods conferred similar topologies (Figure 2 C). The 18S sequence of P. dactyluris (930 bp) was closely related to the sequence available for P. turgida (96 %) and it was also closely related to the Turgida torresi and other Physaloptera sp. (94 - 95 %; Fig. 2 C).

The present study provides the first molecular identification of T. scleratus and P. dactyluris. This is the first report of molecular identification of P. dactyluris based on 18S ribosomal RNAgene data (Fig. 2 C). The phylogenetic tree based on ML and BI analyses for the 18S (Fig. 2 A) and Cox 1 (Fig. 2 B) gene shows that T. scleratus clusters with high bootstrap support (98 - 100 %) together with other representative of the same species collected from the same host (H. brooki). The phylogenetic tree also groups closely T. scleratus and Parapharyngodon. This supports the previous findings which already pointed on the closeness of these two genera (Chaudhary et al., 2014). In fact, the two genera are morphologically very similar (Mašová et al., 2008). Sequences of T. scleratus and Parapharyngodon spp. showed only 0.01 - 0.02 % divergence. This lower sequence divergence supports that they are sister taxa. This is also supported by similar topology for both the 18S and Cox 1 gene sequences (Fig. 2 A and B).

With regards to the genus Physalopteroides our analysis unambiguously places P. dactyluris as closely related to the Physaloptera. P. dactyluris shows morphological similarities with the species of Physaloptera but both these genera are morphologically different on the basis of an anterior region, pre-equatorial vulva, conical tail, thick shelled egg, unequal-chitinized spicules and pedunculated caudal papillae. Moreover, the 18S rDNA sequence of the P. dactyluris described here is clustered in the same clade of Physaloptera (Fig. 2 C). So far, there were no reports available providing the SEM images for T. scleratus and P. dactyluris from India. In biological research, the DNA based taxonomy is a reliable tool for identification of species. However, for the delineation of future phylogenetic inferences an addition of more molecular data is needed for the Thelandros and Physalopteroides species.

In summary, further morphological studies along with the SEM and molecular analyses are needed to elucidate the stability of the morphological characters used so far for the identification. Moreover, our analyses confirm the necessity of getting additional molecular data for other representatives of genus Thelandros and Physalopteroides.

Acknowledgments

We thank to the Head of the Department of Zoology, Chaudhary Charan Singh University, Meerut (U.P.), India, for providing laboratory facilities. Authors have no competing interest related to this work.

References

  • Bae C.H. Szalanski A.L. Robbins R.T. (2008): Molecular Analysis of the Lance Nematode Hoplolaimus spp. Using the First Internal Transcribed Spacer and the D1 - D3 Expansion Segments of 28S Ribosomal DNA. J. Nematol.. 40: 201 - 209

  • Baylis H.A. (1930): A third species of the nematode genus Thubunaea. Ann. mag. nat. hist.. 5: 246 - 249. DOI: 10.1080/00222933008673128

    • Crossref
    • Export Citation
  • Baylis H.A. (1936): Nematoda. I. Ascaridoidea and Strongyloidea. The Fauna of British India including Ceylon and Burma. London UK Taylor and Francis 408 pp.

  • Bhadury P. Austen M.C. (2010): Barcoding marine nematodes: unimproved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia. 641: 245 - 251. DOI: 10.1007/s 10750-009-0088-z

    • Crossref
    • Export Citation
  • Blouin M.S. (2002): Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol.. 32: 527 - 531. DOI: 10.1016/s0020-7519(01)00357-5

    • Crossref
    • Export Citation
  • Blouin M.S. Yowell C.A. Courtney C.H. Dame J.B. (1997): Haemonchus placei and Haemonchus contortus are distinct species based on mtDNAevidence. Int. J. Parasitol.. 27:1383 – 1387. DOI: 10.1016/s0020-7519(97)00125-2

    • Crossref
    • Export Citation
  • Bursey C.R. Goldberg S.R. (2005): Two new species of Pharyn-godonidae (Nematoda: Oxyuroidea) and other nematodes in Ag-ama caudospina (Squamata: Agamidae) from Kenya Africa. J. Parasitol.. 91: 591-599

  • Chabaud A.G. Brygoo E.R. (1960): Nématodes parasites de caméléons malgaches. Memoires de I’’ Institut Scientifique de Madagascar Séries A. 14:125 - 159

  • Chatterji R.C. (1933): On a new nematode Parapharyngodon maplestoni gen. nov. sp. nov. from a Burmese lizards. Ann. Trop. Med. Parasitol.. 27:131-134

    • Crossref
    • Export Citation
  • Chaudhary A. Kansal G. Singh N. Singh H.S. (2014): New molecular data for parasites Hammerschmidtiella indicus and Thelandros scleratus (Nematoda: Oxyurida) to infer phylogenetic position. Turk. J. Zool.. 38. DOI: 10.3906/zoo-1311-18

  • Denver D.R. Morris K. Lynch M. Vassilieva L. Thomas W.K. (2000): High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science. 289: 2342-2344. DOI: 10.1126/science.289.5488.2342

    • Crossref
    • Export Citation
  • Deshmukh P.G. (1969): Physalopteroides versicoloris n. sp. from garden lizard Calotes versicolor. Riv. Parassitol.. 30:125-128

  • Floyd R.M. Rogers A.D. Lambshead P.J.D. Smith C.R. (2005): Nematode specific PCR primers for the 18S small subunit rRNA gene. Mol. Ecol. Notes. 5: 611 - 612. DOI: 10.1111/j. 1471-8286.2005.01009.x

    • Crossref
    • Export Citation
  • Folmer O. Black M. Hoeh W. Lutz R. Vrijenhoek R. (1994): DNA primers for amplification of mitochondrial cytochrome c oxi-dase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol.. 3: 294 - 299

  • Gasser R.B. (2001): Identification of parasitic nematodes and study of genetic variability using PCR approaches. In: KENEDDY M.W. HARNETT W. (Eds) Parasitic nematodes: Molecular biology biochemistry and immunology. London UK: CAB International pp. 53-82

  • Hebert P.D.N. Ratnasingham S. Dewaard J.R. (2003): Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. 270: S96 - S99. DOI: 10.1098/rsbl.2003.0025

    • Crossref
    • Export Citation
  • Hoberg E.P. Monsen K.J. Kutz S. Blouin M.S. (1999): Structure biodiversity and historical biogeography of nematode faunas in holarctic ruminants: morphological and molecular diagnoses for Teladorsagia boreoarcticus sp. n. (Nematoda: Ostertagiinae) a dimorphic cryptic species in muskoxen (Ovibos moschatus). J. Parasitol.. 85: 910-934. DOI: 10.2307/3285831

    • Crossref
    • Export Citation
  • Jones R. Brown D.S. Harris E. Jones J. Symondson W.O.C. Bruford M.W. Cable J. (2012): First record of Neoxysomatium brevicaudatum through the non-native invasive sampling of Anguis fragilis complementary morphological and molecular detection. J. Helminthol.. 86: 125 - 129. DOI: 10.1017/s0022149x11000174

    • Crossref
    • Export Citation
  • Karve J.N. (1938): Some nematode parasites of lizards. Libro Ju-bilar Travassos Rió de Janeiro. 251 - 258

  • Keddie E.M. Higazi T. Unnasch T.R. (1998): The mitochondrial genome of Onchocerca volvulus sequence structure and phy-logenetic analysis. Mol. Biochem. Parasitol.. 95: 111 - 127. DOI: 10.1016/s0166-6851(98)00102-9

    • Crossref
    • Export Citation
  • Khera S. (1951): Thubunaea quadridentata n. sp. (subfamily Phy-salopterinae Railliet 1893: Family Physalopteridae Leiper 1908: Nematoda) from wall lizard Hemidactylus flaviviridis. Indian J. Helminthol.. 3:111 - 116

  • Kumari S. Chaudhary A. Malti Singh H.S. (2011): Further observation of Thelandros scleratus Travassos 1923 based on 28s rDNA. J. Nematode Morphol. System.. 14: 63 - 66

  • Kumazawa Y. Nishida M. (1993): Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol.. 37: 380-398. DOI: 10.1007/bf00178868

  • Lavrov D.V. Brown W.M. (2001): Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has gene arrangement relat-able to those of coelomate metazoans. Genetics. 157: 621 - 637

  • Liu G.H. Shao R. Li J.Y. Zhou D.H. Li H. Zhu X.Q. (2013): The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genomics. 14: 414.DOI: 10.1186/1471-2164-14-414

    • Crossref
    • Export Citation
  • MaŠOvÁ S. BaruŠ V. HodovÁ I. MatĚJusovÁ I. Koubek P. (2008): Morphometric and molecular characterization of Parapharyngo-don echinatus (Nematoda Pharyngodonidae) from the Senegal gecko (Tarentola parvicarinata). Acta Parasitol.. 53: 274 - 283. DOI: DOI: 10.2478/s 11686-008-0039-2

  • Milne I. Lindner D. Bayer M. Husmeier D. Mcguire G. Marshall D.F. Wright F. (2009): TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics. 25: 126 - 127. DOI: 10.1093/bioinformatics/btn575

    • Crossref
    • Export Citation
  • Pekmezci G.Z. (2014): Occurrence ofAnisakis simplex sensu stric-to in imported Atlantic mackerel (Scomber scombrus) represents a risk for Turkish consumers. Int. J. Food Microbiol.. 185: 64 - 68. DOI: 10.1016/j.ijfoodmicro.2014.05.018

    • Crossref
    • Export Citation
  • Perera A. Maia J.P.M.C. Jorge F. Harris D.J. (2013): Molecular screening of nematodes in lacertid lizards from the Iberian Peninsula and Balearic Islands using 18S rRNA sequences. J. Helminthol.. 87: 189-194. DOI: 10.1017/s0022149x12000181

    • Crossref
    • Export Citation
  • Prosser S.W.J. Velarde-Aguilar M.G. LeÓLeÓN-RÈGagnon V. Hebert P.D.N. (2013). Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Mol. Ecol. Resour.. 13:1108 - 1115

  • Railliet A. (1893): Traité de zool. Méd. Et agricole. 2nd ed (fasc. 1). Paris 736 pp.

  • Ramallo G. Bursey C.R. Goldberg S.R. (2002). Parapharyngo-don riojensis n. sp. (Nematoda: Pharyngodonidae) from the lizard Phymaturus punae (Squamata: Iguania: Liolaemidae) from Northwestern Argentina. J. Parasitol.. 88: 979-982

    • Crossref
    • Export Citation
  • Singh N. Chaudhary A. Singh H.S. (2013): Identification of two species of Binema Travassos 1925 (Oxyurida: Travassosinematidae) based on morphological and sequence analysis of genomic (18S) and mitochondrial (Cox1) gene markers. J. Nematode Morphol. System.. 16: 173-180

  • Tamura K. Stecher G. Peterson D. Filipski A. Kumar S. (2013): MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol.. 30: 2725-9. DOI: 10.1093/molbev/mst197

    • Crossref
    • Export Citation
  • Thompson J.D. Higgins D.G. Gibson T.J. (1994): Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res.. 22: 4673 - 4680. DOI: 10.1093/nar/22.22.4673

    • Crossref
    • Export Citation
  • Travassos L. (1923): Informações sobre a fauna helminthologica de Mato Grosso. Folha Med.. 4: 29 – 30

  • Van Megen H. Van Den Elsen S. Holterman M. Karssen G. Mooyman P. Bongers T. Holovachov O. Bakker J. Helder J. (2009): A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology. WEDL K. (1861/62): Zur Helminthenfauna Egyptens. Sitzungs beri-11: 927-950. DOI: 10.1163/156854109x456862

    • Crossref
    • Export Citation
  • Vicente J.J. Rodrigues H.O. Gomes D.C. Pinto R.M. (1993). Nematóides do Brasil. Parte III: Nematóides de répteis. Rev. Bras. Zool. 10: 19 – 168

  • Wedl K. (1861/62): Zur Helminthenfauna Egyptens. Sitzungs beri-chte Mathematisch Naturwissenschaftliche Akademie der Wissen-schaften 44: 463 – 482 (In German).

  • Wu H.W. Liu C.K. (1940): Helminthological notes II (Chinese summary). Sinensia 11: 397 – 406

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bae C.H. Szalanski A.L. Robbins R.T. (2008): Molecular Analysis of the Lance Nematode Hoplolaimus spp. Using the First Internal Transcribed Spacer and the D1 - D3 Expansion Segments of 28S Ribosomal DNA. J. Nematol.. 40: 201 - 209

  • Baylis H.A. (1930): A third species of the nematode genus Thubunaea. Ann. mag. nat. hist.. 5: 246 - 249. DOI: 10.1080/00222933008673128

    • Crossref
    • Export Citation
  • Baylis H.A. (1936): Nematoda. I. Ascaridoidea and Strongyloidea. The Fauna of British India including Ceylon and Burma. London UK Taylor and Francis 408 pp.

  • Bhadury P. Austen M.C. (2010): Barcoding marine nematodes: unimproved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia. 641: 245 - 251. DOI: 10.1007/s 10750-009-0088-z

    • Crossref
    • Export Citation
  • Blouin M.S. (2002): Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol.. 32: 527 - 531. DOI: 10.1016/s0020-7519(01)00357-5

    • Crossref
    • Export Citation
  • Blouin M.S. Yowell C.A. Courtney C.H. Dame J.B. (1997): Haemonchus placei and Haemonchus contortus are distinct species based on mtDNAevidence. Int. J. Parasitol.. 27:1383 – 1387. DOI: 10.1016/s0020-7519(97)00125-2

    • Crossref
    • Export Citation
  • Bursey C.R. Goldberg S.R. (2005): Two new species of Pharyn-godonidae (Nematoda: Oxyuroidea) and other nematodes in Ag-ama caudospina (Squamata: Agamidae) from Kenya Africa. J. Parasitol.. 91: 591-599

  • Chabaud A.G. Brygoo E.R. (1960): Nématodes parasites de caméléons malgaches. Memoires de I’’ Institut Scientifique de Madagascar Séries A. 14:125 - 159

  • Chatterji R.C. (1933): On a new nematode Parapharyngodon maplestoni gen. nov. sp. nov. from a Burmese lizards. Ann. Trop. Med. Parasitol.. 27:131-134

    • Crossref
    • Export Citation
  • Chaudhary A. Kansal G. Singh N. Singh H.S. (2014): New molecular data for parasites Hammerschmidtiella indicus and Thelandros scleratus (Nematoda: Oxyurida) to infer phylogenetic position. Turk. J. Zool.. 38. DOI: 10.3906/zoo-1311-18

  • Denver D.R. Morris K. Lynch M. Vassilieva L. Thomas W.K. (2000): High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science. 289: 2342-2344. DOI: 10.1126/science.289.5488.2342

    • Crossref
    • Export Citation
  • Deshmukh P.G. (1969): Physalopteroides versicoloris n. sp. from garden lizard Calotes versicolor. Riv. Parassitol.. 30:125-128

  • Floyd R.M. Rogers A.D. Lambshead P.J.D. Smith C.R. (2005): Nematode specific PCR primers for the 18S small subunit rRNA gene. Mol. Ecol. Notes. 5: 611 - 612. DOI: 10.1111/j. 1471-8286.2005.01009.x

    • Crossref
    • Export Citation
  • Folmer O. Black M. Hoeh W. Lutz R. Vrijenhoek R. (1994): DNA primers for amplification of mitochondrial cytochrome c oxi-dase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol.. 3: 294 - 299

  • Gasser R.B. (2001): Identification of parasitic nematodes and study of genetic variability using PCR approaches. In: KENEDDY M.W. HARNETT W. (Eds) Parasitic nematodes: Molecular biology biochemistry and immunology. London UK: CAB International pp. 53-82

  • Hebert P.D.N. Ratnasingham S. Dewaard J.R. (2003): Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. 270: S96 - S99. DOI: 10.1098/rsbl.2003.0025

    • Crossref
    • Export Citation
  • Hoberg E.P. Monsen K.J. Kutz S. Blouin M.S. (1999): Structure biodiversity and historical biogeography of nematode faunas in holarctic ruminants: morphological and molecular diagnoses for Teladorsagia boreoarcticus sp. n. (Nematoda: Ostertagiinae) a dimorphic cryptic species in muskoxen (Ovibos moschatus). J. Parasitol.. 85: 910-934. DOI: 10.2307/3285831

    • Crossref
    • Export Citation
  • Jones R. Brown D.S. Harris E. Jones J. Symondson W.O.C. Bruford M.W. Cable J. (2012): First record of Neoxysomatium brevicaudatum through the non-native invasive sampling of Anguis fragilis complementary morphological and molecular detection. J. Helminthol.. 86: 125 - 129. DOI: 10.1017/s0022149x11000174

    • Crossref
    • Export Citation
  • Karve J.N. (1938): Some nematode parasites of lizards. Libro Ju-bilar Travassos Rió de Janeiro. 251 - 258

  • Keddie E.M. Higazi T. Unnasch T.R. (1998): The mitochondrial genome of Onchocerca volvulus sequence structure and phy-logenetic analysis. Mol. Biochem. Parasitol.. 95: 111 - 127. DOI: 10.1016/s0166-6851(98)00102-9

    • Crossref
    • Export Citation
  • Khera S. (1951): Thubunaea quadridentata n. sp. (subfamily Phy-salopterinae Railliet 1893: Family Physalopteridae Leiper 1908: Nematoda) from wall lizard Hemidactylus flaviviridis. Indian J. Helminthol.. 3:111 - 116

  • Kumari S. Chaudhary A. Malti Singh H.S. (2011): Further observation of Thelandros scleratus Travassos 1923 based on 28s rDNA. J. Nematode Morphol. System.. 14: 63 - 66

  • Kumazawa Y. Nishida M. (1993): Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol.. 37: 380-398. DOI: 10.1007/bf00178868

  • Lavrov D.V. Brown W.M. (2001): Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has gene arrangement relat-able to those of coelomate metazoans. Genetics. 157: 621 - 637

  • Liu G.H. Shao R. Li J.Y. Zhou D.H. Li H. Zhu X.Q. (2013): The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genomics. 14: 414.DOI: 10.1186/1471-2164-14-414

    • Crossref
    • Export Citation
  • MaŠOvÁ S. BaruŠ V. HodovÁ I. MatĚJusovÁ I. Koubek P. (2008): Morphometric and molecular characterization of Parapharyngo-don echinatus (Nematoda Pharyngodonidae) from the Senegal gecko (Tarentola parvicarinata). Acta Parasitol.. 53: 274 - 283. DOI: DOI: 10.2478/s 11686-008-0039-2

  • Milne I. Lindner D. Bayer M. Husmeier D. Mcguire G. Marshall D.F. Wright F. (2009): TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics. 25: 126 - 127. DOI: 10.1093/bioinformatics/btn575

    • Crossref
    • Export Citation
  • Pekmezci G.Z. (2014): Occurrence ofAnisakis simplex sensu stric-to in imported Atlantic mackerel (Scomber scombrus) represents a risk for Turkish consumers. Int. J. Food Microbiol.. 185: 64 - 68. DOI: 10.1016/j.ijfoodmicro.2014.05.018

    • Crossref
    • Export Citation
  • Perera A. Maia J.P.M.C. Jorge F. Harris D.J. (2013): Molecular screening of nematodes in lacertid lizards from the Iberian Peninsula and Balearic Islands using 18S rRNA sequences. J. Helminthol.. 87: 189-194. DOI: 10.1017/s0022149x12000181

    • Crossref
    • Export Citation
  • Prosser S.W.J. Velarde-Aguilar M.G. LeÓLeÓN-RÈGagnon V. Hebert P.D.N. (2013). Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Mol. Ecol. Resour.. 13:1108 - 1115

  • Railliet A. (1893): Traité de zool. Méd. Et agricole. 2nd ed (fasc. 1). Paris 736 pp.

  • Ramallo G. Bursey C.R. Goldberg S.R. (2002). Parapharyngo-don riojensis n. sp. (Nematoda: Pharyngodonidae) from the lizard Phymaturus punae (Squamata: Iguania: Liolaemidae) from Northwestern Argentina. J. Parasitol.. 88: 979-982

    • Crossref
    • Export Citation
  • Singh N. Chaudhary A. Singh H.S. (2013): Identification of two species of Binema Travassos 1925 (Oxyurida: Travassosinematidae) based on morphological and sequence analysis of genomic (18S) and mitochondrial (Cox1) gene markers. J. Nematode Morphol. System.. 16: 173-180

  • Tamura K. Stecher G. Peterson D. Filipski A. Kumar S. (2013): MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol.. 30: 2725-9. DOI: 10.1093/molbev/mst197

    • Crossref
    • Export Citation
  • Thompson J.D. Higgins D.G. Gibson T.J. (1994): Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res.. 22: 4673 - 4680. DOI: 10.1093/nar/22.22.4673

    • Crossref
    • Export Citation
  • Travassos L. (1923): Informações sobre a fauna helminthologica de Mato Grosso. Folha Med.. 4: 29 – 30

  • Van Megen H. Van Den Elsen S. Holterman M. Karssen G. Mooyman P. Bongers T. Holovachov O. Bakker J. Helder J. (2009): A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology. WEDL K. (1861/62): Zur Helminthenfauna Egyptens. Sitzungs beri-11: 927-950. DOI: 10.1163/156854109x456862

    • Crossref
    • Export Citation
  • Vicente J.J. Rodrigues H.O. Gomes D.C. Pinto R.M. (1993). Nematóides do Brasil. Parte III: Nematóides de répteis. Rev. Bras. Zool. 10: 19 – 168

  • Wedl K. (1861/62): Zur Helminthenfauna Egyptens. Sitzungs beri-chte Mathematisch Naturwissenschaftliche Akademie der Wissen-schaften 44: 463 – 482 (In German).

  • Wu H.W. Liu C.K. (1940): Helminthological notes II (Chinese summary). Sinensia 11: 397 – 406

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Figures
  • View in gallery

    The SEM photographs of females of T. scleratus (A – F) andP. dactyluris (G-K). A and B, SEM photograph of anterior portion of T. scleratus. Cand D, Enlarged view of mouth and lips. E and F, Tail at greater magnification. G, Anterior part of body. H, Posterior part of body. I – K, Lower to higher magnification of head region.

  • View in gallery

    Phylogenetic trees generated by maximum likelihood (ML) and Bayesian Inference (BI) analyses. Numbers at nodes indicated bootstrap values (ML) and posterior probabilities (BI). Phylogenetic tree A and B shows, respectively, 18s and Cox 1 results for T. scleratus and C shows 18s results for P. dactyluris. Oxyuris equi, Enterobius vermicularis and Ascarophis arctica were used as outgroups

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 331 24
PDF Downloads 92 55 1