In vitro investigations on the biological control of Xiphinema index with Trichoderma species

Open access

Abstract

The application of Trichoderma spp. for the suppression of plant-parasitic nematode populations is a promising tool in biological control. Sixteen strains of six Trichoderma species (T. atroviride, T. harzianum, T. rossicum, T. tomentosum, T. virens and T. asperellum) were tested in vitro in order to identify the most appropriate strains to control the dagger nematode Xiphinema index. Mortality assays revealed that the strains of the widely investigated T. harzianum species have caused significant reduction of X. index populations, although T. harzianum strains were not the most efficient among all the tested fungi. Certain T. virens and T. atroviride strains and T. rossicum have triggered faster and higher mortality. Generally, our data indicate that Trichoderma species have innate ability to decrease X. index population. Furthermore, as we had difficulties with maintaining X. index in vitro, we successfully used a newly developed method to keep X. index specimens viable during the experiments.

[1] Affokpon, A., Coyne, D. L., Htay, C. C., Agbédé, R. D., Lawouin, L., Coosemans, J. (2011): Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem., 43: 600–608. DOI: 10.1016/j.soilbio.2010.11.029 http://dx.doi.org/10.1016/j.soilbio.2010.11.029

[2] Atreya, K. (2008): Health costs from short-term exposure to pesticides in Nepal. Soc. Sci. Med., 67: 511–519. DOI: 10.1016/j.socscimed.2008.04.005. http://dx.doi.org/10.1016/j.socscimed.2008.04.005

[3] Bell, D. K., Wells, H. D., Markham, C. R. (1982): In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72: 379–382 http://dx.doi.org/10.1094/Phyto-72-379

[4] Brown, D. J. F., Boag, B. (1988): An examination of methods used to extract virus-vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematol. Mediterr., 16: 93–99

[5] Brun, G. L., Macdonald, R. M, Verge, J., Aubé, J. (2008): Long-term atmospheric deposition of current-use and banned pesticides in Atlantic Canada; 1980–2000. Chemosphere, 71: 314–327. DOI: 10.1016/j.chemosphere.2007.09.003 http://dx.doi.org/10.1016/j.chemosphere.2007.09.003

[6] Copping, L. G., Menn, J. J. (2000): Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci., 56: 651–676. DOI: 10.1002/1526-4998(200008)56:8〈651::AID-PS201〉3.0.CO;2-U http://dx.doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U

[7] Dodd, S. L., Lieckfeldt, E., Samuels, G. J. (2003): Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95: 27–40 http://dx.doi.org/10.2307/3761959

[8] Dong, L. Q., Zhang, K. Q. (2006): Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil, 288: 31–45. DOI: 10.1007/s11104-006-9009-3 http://dx.doi.org/10.1007/s11104-006-9009-3

[9] Flegg, J. J. M. (1967): Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb’s decanting and sieving technique. Ann. Appl. Biol., 60: 429–437 http://dx.doi.org/10.1111/j.1744-7348.1967.tb04497.x

[10] Howell, C. R. (2003): Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis., 87: 4–10 http://dx.doi.org/10.1094/PDIS.2003.87.1.4

[11] Kredics, L., Láday, M., Körmöczi, P., Manczinger, L., Rákhely, G., Vágvölgyi, C., Szekeres, A. (2011): Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Pannonian Plain. Acta Biol. Szeged. (in press)

[12] Khan, M. R., Hague, Z. (2011): Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyine incognita, on tobacco. Phytopathol. Mediterr., 50: 257–266

[13] Kullnig, C. M., Szakacs, G., Kubicek, C. P. (2000): Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol. Res., 104: 1117–1125. DOI: 10.1017/S0953756200002604 http://dx.doi.org/10.1017/S0953756200002604

[14] Kullnig, C. M., Krupica, T., Woo, S. L., Mach, R. L., Rey, M., Benítez, T., Lorito, M., Kubicek, C. P. (2001): Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol. Res., 105: 770–772. DOI: 10.1017/S0953756201229967. http://dx.doi.org/10.1017/S0953756201229967

[15] Parvatha, R. P., Rao, M. S., Nagesh, M. (1996): Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematologia Mediterrannea, 24: 265–267

[16] Perry, R. N., Moens, M. (2006): Plant Nematology. Wallingford, UK, CABI Publishing, pp. 4–166 http://dx.doi.org/10.1079/9781845930561.0000

[17] R DEVELOPMENT CORE TEAM (2011): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.

[18] Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M. (2012): Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl. Soil Ecol., 56: 58–62. DOI: 10.1016/j.apsoil.2012.02.008 http://dx.doi.org/10.1016/j.apsoil.2012.02.008

[19] Rao, M. S., Reddy, P. P., Nagesh, M. (1997): Management of root-knot nematode, Meloidogyne incognita on tomato by integration of Trichoderma harzianum with neem cake. Z. Pflanzenkr. Pflanzenschutz, 104: 423–425

[20] Rao, M. S., Reddy, P. P., Nagesh, M. (1998): Evaluation of plant based formulations of Trichoderma harzianum for management of Meloidogyne incognita on egg plant. Nematol. Mediterr., 26: 59–62

[21] Sahebani, N., Hadavi, N. (2008): Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem., 40: 2016–2020. DOI: 10.1016/j.soilbio.2008.03.011 http://dx.doi.org/10.1016/j.soilbio.2008.03.011

[22] Sasser, J. N., Freckman, D. W. (1987): A world perspective on nematology: the role of the society. In: Veech, J. A., Dickson, D. W. (Eds) Vistas on Nematology: Society of Nematologists, Inc. Hyattsville, Maryland., USA, pp. 7–14

[23] Schubert, M., Fink, S., Schwarze, F. W. M. R. (2008): In vitro screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. Journal, 31: 227–248. DOI: 10.1080/03071375.2008.9747541 http://dx.doi.org/10.1080/03071375.2008.9747541

[24] Seifullah, P., Thomas, B. J. (1996): Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian J. Nematol., 6: 117–122

[25] Sharma, P., Pandey, R. (2009): Biological control of root-knot nematode; Meloidogyne incognita in the medicinal plant; Withania somnifera and the effect of biocontrol agents on plant growth. Afr. J. Agric. Res., 4: 564–567

[26] Sharon, E., Bar Eyal, M., Chet, I., Herrera Estrella, A., Kleifeld, O., Spiegel, Y. (2001): Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91: 687–693. DOI: 10.1094/PHYTO.2001.91.7.687 http://dx.doi.org/10.1094/PHYTO.2001.91.7.687

[27] Spiegel, Y., Sharon, E., Bar-Eyal, M., Van Assche, A., Van Kerckhove, S., Vanachter, A., Viterbo, A., Chet, I. (2007): Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. In Proceedings of IOBC/WPRS Meeting, Spa, Belgium, IOBC/WPRS Bulletin, 30: 129–133

[28] Szabó, M., Csepregi, K., Gálber, M., Virányi, F., Fekete, Cs. (2012): Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode eggparasitism. Biol. Control, 63: 121–128. DOI: 10.1016/j.biocontrol.2012.06.013 http://dx.doi.org/10.1016/j.biocontrol.2012.06.013

[29] Webster, M. J. (1972): Economic Nematology. London, UK, Academic Press, pp. 339–376

[30] Windham, G. L., Windham, M. T., Williams, W. P. (1986): Effect of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis. Report., 73: 493–494 http://dx.doi.org/10.1094/PD-73-0493

[31] Wuczkowski, M., Druzhinina, I., Gherbawy, Y., Klug, B., Prillinger, H., Kubicek, C. P. (2003): Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol. Res., 158: 125–133. DOI: 10.1078/0944-5013-00193 http://dx.doi.org/10.1078/0944-5013-00193

[32] Yang, Z. S., Li, G. H., Zhao, P. J., Zheng, X., Luo, S. L., Li, L., Niu, X. M., Zhang, K. Q. (2010): Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol., 26: 2297–2302. DOI: 10.1007/s11274-010-0410-y http://dx.doi.org/10.1007/s11274-010-0410-y

Journal Information


IMPACT FACTOR 2017: 0.417
5-year IMPACT FACTOR: 0.619

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2015: 0.316
Source Normalized Impact per Paper (SNIP) 2015: 0.678

Target Group researchers in the field of human, veterinary medicine and natural science

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 8
PDF Downloads 39 39 4