The effects of flubendazole and its metabolites on the larval development of Haemonchus contortus (Nematoda: Trichostrongylidae): an in vitro study

Open access

Abstract

The anthelmintic effects of flubendazole (FLU), its two main metabolites reduced flubendazole (FLU-R) and hydrolyzed flubendazole (FLU-H), and thiabendazole (TBZ) were compared using an in vitro larval development test in two isolates of Haemonchus contortus, a fully susceptible isolate (HCS) and a multi-resistant isolate (HCR). Results were quantified as 50 % lethal concentration (LC50), 99 % lethal concentration (LC99), efficacy factor (EF), and resistance factor (RF). For HCS, both LC50 and LC99 of FLU were lower than those of the reference TBZ. The anthelmintic activity of FLU-R in HCS and HCR was 13 and 6 times lower than the activity of FLU, respectively. The anthelmintic activity of FLU-H was negligible (approximately 363–853 times lower) compared to that of FLU. Although a marked resistance of the HCR isolate to TBZ was confirmed, only a low tolerance to FLU-R and slightly higher tolerance to FLU were found.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Álvarez-Sánchez M. A. Pérez-García J. Cruzrojo M. A. Rojo-Vázquez F. A. (2005): Real time PCR for the diagnosis of benzimidazole resistance in trichostrongylids of sheep. Vet. Parasitol. 129: 291–298 http://dx.doi.org/10.1016/j.vetpar.2005.02.004

  • [2] Coles G. Bauer C. Borgsteede F. H. M. Geerts S. Klei T. R. Taylor M. A. Waller P. J. (1992): World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 44: 35–44 http://dx.doi.org/10.1016/0304-4017(92)90141-U

  • [3] Cvilink V. Kubíček V. Nobilis M. Křížová V. Szotáková B. Lamka J. Várady M. Kuběnová M. Novotná R. Gavelová M. Skálová L. (2008): Biotransformation of flubendazole and selected model xenobiotics in Haemonchus contortus. Vet. Parasitol. 151: 242–248 http://dx.doi.org/10.1016/j.vetpar.2007.10.010

  • [4] Dayan A. D. (2003): Albendazole mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Tropica 86: 141–159 http://dx.doi.org/10.1016/S0001-706X(03)00031-7

  • [5] Dobson R. J. Griffiths D. A. Donald A. D. Waller P. J. (1987): A genetic model describing the evolution of levamisole resistance in Trichostrongylus colubriformis a nematode parasite of sheep. IMA J. Appl. Math. 4: 279–293 http://dx.doi.org/10.1093/imammb/4.4.279

  • [6] Hubert J. Kerboeuf D. (1992): A microlarval development assay for the detection of anthelmintic resistance in sheep nematodes. Vet. Rec. 130: 442–446 http://dx.doi.org/10.1136/vr.130.20.442

  • [7] Křížová V. Nobilis M. Prušková L. Chládek J. Szotáková B. Cvilink V. Skálová L. Lamka J. (2009): Pharmacokinetics of flubendazole and its metabolites in lambs and adult sheep (Ovis aries). J. Vet. Pharmacol. Ther. 32: 606–612 http://dx.doi.org/10.1111/j.1365-2885.2009.01082.x

  • [8] Meuldermans W. E. Hurkmans R. M. Lauwers W. F. Heykants J. J. (1976): The in vitro metabolism of mebendazole by pig rat and dog liver fractions. Eur. J. Drug Metab. Pharmacokinet. 1: 35–40 http://dx.doi.org/10.1007/BF03192277

  • [9] Moreno L. Alvarez L. Mottier L. Virkel G. Sanches Bruni S. Lanusse C. (2004): Integrated pharmacological assessment of flubendazole potencial for use in sheep: disposition kinetics liver metabolism and parasite diffusion. J. Vet. Pharmacol. Ther. 27: 299–308 http://dx.doi.org/10.1111/j.1365-2885.2004.00616.x

  • [10] Roos M. H. Otsen M. Hoekstra R. Veenstra J. G. Lenstra J. A. (2004): Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 34: 109–115 http://dx.doi.org/10.1016/j.ijpara.2003.10.002

  • [11] van Wyk J. A. Malan F. S. (1988): Resistance of field strains of Haemonchus contortus to ivermectin closantel rafoxanide and the benzimidazoles in South Africa. Vet. Rec. 123: 226–228 http://dx.doi.org/10.1136/vr.123.9.226

  • [12] Várady M. Bjørn H. Nansen P. (1996): In vitro characterization of anthelmintic susceptibility of field isolates of the pig nodular worm Oesophagostomum sp. susceptible or resistant to various anthelmintics. Int. J. Parasitol. 26: 733–740 http://dx.doi.org/10.1016/0020-7519(96)00051-3

  • [13] Várady M. Čudeková P. Čorba J. (2007): In vitro detection of benzimidazole resistance in Haemonchus contortus: Egg hatch test versus larval development test. Vet. Parasitol. 149: 104–110 http://dx.doi.org/10.1016/j.vetpar.2007.07.011

  • [14] Von Samson-himmelstjerna G. Walsh T. K. Donnan A. A. Carriére S. Jackson F. Skuce P. J. Rohn K. Woltenholme A. J. (2009): Molecular detection of benzimidazoleresistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology 136: 349–358 http://dx.doi.org/10.1017/S003118200800543X

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 128 16
PDF Downloads 87 70 7