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Abstract
The paper deals with the problem of sea-ice pack motion and deformation under the action
of wind and water drag forces. Differential equations describing the behaviour of ice, with its
very distinct material responses in converging and diverging flows, express the mass and linear
momentum balances on a horizontal plane (the free surface of the ocean). The thermodynamic
effects (ice melting and lead water freezing) are accounted for by adding source terms to the
equations describing the evolution of the ice thickness and area fraction (concentration). These
thermodynamic source terms are described by means of a single function that idealizes typical
ice growth-rates observed in winter in the Arctic. The equations governing the problem are
solved by a fully Lagrangian method of the smoothed particle hydrodynamics (SPH). Assum-
ing that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed
SPH model was used to simulate the flow of a sea-ice pack driven by wind drag stresses and
varying seasonal temperatures. The results of numerical simulations illustrate the evolution of
an ice pack, including distributions of ice thickness and ice area fraction in space and time for
assumed temperature distributions.

Key words: sea-ice thermodynamics, Lagrangian description, smoothed particle hydrody-
namics, moving boundary problem

List of symbols

a – reference particle label,
A, A0 – ice concentration (ice area fraction),
A f – critical ice concentration,
b – neighbouring particle label,
Ca, Cw – dimensionless wind and water drag coefficients,
d – initial inter-particle spacing,
D – strain-rate tensor,
f (A) – ice – ice contact length function,
G(h) – ice growth-rate function,
h, h0 – ice thickness,
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H(·) – Heaviside unit step function,
I – unit tensor,
k – upward vertical unit vector,
K – ice strength-compactness parameter,
m – mass,
N – depth-integrated horizontal stress tensor,
p – pressure,
R – smoothing kernel support radius,
SA, Sh – ice area fraction and thickness growth-rates,
t – time,
T, Tm – temperature, melting temperature,
ua, uw – wind and water current velocity vectors,
u – ice velocity vector,
W – SPH smoothing kernel function,
xi (i = 1, 2) – spatial Cartesian co-ordinates,
x – position vector,
α(A) – ice ridging function,
γ – shear-rate invariant,
ζ – ice bulk viscosity,
η – ice horizontal dilatation-rate,
µ – ice shear viscosity,
ρ – ice density,
ρa, ρw – air and water densities,
σ – Cauchy stress tensor,
τa, τw – wind stress and water drag surface tractions,
φ1, φ2 – material viscous response functions.

1. Introduction

A typical large sea-ice pack is a complex thermodynamic system comprising a mul-
titude of floes of different size and geometry, driven by wind and water drag stresses,
and subject to surface and basal freezing and melting in response to current local
mechanical and thermal forcing. As individual floes move about and interact, in ei-
ther ductile or (much more often) brittle manner, they break, merge and raft on one
another, giving rise to large variations in the local ice thickness and ice area fraction
(concentration). Since a broken ice cover cannot carry tensile stresses, the mechanical
behaviour of an ice pack in converging flow is remarkably different from that in di-
verging flow. One consequence of this is the development and subsequent propagation
of interfaces that separate converging and diverging regions in sea ice, often leading
to the fragmentation of an initially coherent pack domain. An important feature of ice
is also a significant change in the planar geometry of a domain occupied by the pack,
associated with large displacements of boundaries between the coherent ice and the
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open sea. All these physical mechanisms, which are difficult to treat both mathemati-
cally and numerically, significantly increase the complexity of numerical algorithms
and the cost of calculations.

Theoretical descriptions of the behaviour of sea ice are usually based on the as-
sumption that the ice cover can be treated as a two-dimensional continuum moving and
deforming on the ocean surface (Hibler 1979, Gray and Morland 1994). Hence, the
equations governing the thermodynamic behaviour of sea ice are derived by applying
the methods of continuum mechanics. These equations are conventionally solved by
applying standard numerical approaches, such as finite-difference or finite-element
methods, which use computational grids or meshes on which discrete variables are
defined (Hibler 1979, Parkinson and Washington 1979, Flato and Hibler 1992, Hunke
and Dukowicz 1997, Schulkes et al 1998, Morland and Staroszczyk 1998). In these
discrete techniques, the sea ice dynamics equations are typically solved in the spa-
tial (Eulerian) coordinates. The numerical difficulties associated with the presence of
convective terms in the momentum equations, as well as the need to accurately track
the position of moving boundaries between the ice and the open sea, make the ap-
plication of the standard mesh-based methods computationally expensive. It is more
natural to solve problems involving large deformations and displacements of bound-
aries by employing a Lagrangian approach, in which all equations are formulated in
the material coordinates. One of such fully Lagrangian approaches is the Smoothed
Particle Hydrodynamics (SPH) method, which belongs to the class of meshless dis-
crete techniques. Although the SPH method has already been successfully employed
to solve a wide variety of problems encountered in physics and engineering (Mon-
aghan 2005, 2012), its application to the problems involving sea ice is surprisingly
very rare (Gutfraind and Savage 1997a, 1997b, 1998), despite the fast development
and growing popularity of this method over the past two decades.

The SPH model presented in this work is an extension of a model developed earlier
(Staroszczyk 2017) for simulating the behaviour of sea ice without any thermody-
namic effects involved. The model is used to simulate the evolution of an ice pack
driven by wind stresses and subject to the mechanism of ice growth/decay due to the
phase changes (freezing of water and melting of ice). The thermodynamic processes
causing the changes in ice mass are modelled here in a simplified manner, expressing
ice growth-rates by a single function of only one argument (current ice thickness).
This function approximates sea-ice behaviour observed under real Arctic conditions
on seasonal time scales (Hibler 1979, Thorndike et al 1975). In this way, some com-
plex (and important) phenomena, such as the effect of brine content and its evolution
in sea ice (Bitz and Lipscomb 199l), are ignored. The main objective of this first
thermodynamic SPH model, however, is to test how well it performs in simple flow
configurations and for simple temperature scenarios, before attempting to construct
a fully developed model for more realistic weather-driven ice pack flow simulations.
Also for simplicity, the rheological model implemented for describing the ice response
to stress is that of a Reiner-Rivlin viscous fluid. In spite of this simplification, the
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model captures the major feature of sea-ice behaviour, namely the occurrence of zero
tensile stresses in diverging ice flows, as will be seen in the next section.

The paper is structured as follows. First, sea-ice thermodynamics equations, which
include the ice mass conservation, the heat energy conservation and the linear momen-
tum balances, are formulated in Section 2. Then, in Section 3, constitutive relations
describing the non-linearly viscous behaviour of ice are presented. This is followed
by Section 4 in which the discrete SPH model is formulated. The results of numerical
simulations by the SPH model are discussed in Section 5. Finally, some conclusions
are drawn in the last Section 6.

2. Sea-ice Thermodynamics Equations

A typical sea-ice pack consists of a multitude of individual ice floes, varying in hor-
izontal size and thickness, and of interspersed leads of water, see Fig 3. It can be
assumed that the thickness of ice is small compared to a characteristic floe diameter,
and that the latter is much smaller than the planar size of the whole pack. Therefore,
an ice pack can be regarded as a continuum on macroscopic horizontal scales of tens,
hundreds or more kilometres, with the local properties defined by the ice thickness
and the ice area fraction, both treated as continuous functions. Hence, the equations
governing the thermodynamics of ice can be derived by applying standard methods
of continuum mechanics. An example of such an approach is the theory proposed by
(Gray and Morland 1994), in which a two-dimensional horizontal formulation for sea
ice is developed using the methods and results known from the theory of mixtures.
The theoretical results obtained by (Gray and Morland 1994) are used in the present
work to construct a discrete SPH model for a sea-ice pack.

Fig. 1. Horizontal view of a sea-ice pack

Ice pack behaviour is analysed in rectangular Cartesian coordinates, with origin
O and the two coordinate axes, x1 and x2, placed on a horizontal plane defined by
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the mean sea level; for simplicity, the curvature of Earth’s surface is neglected. Let
t denote time, then the current position of an ice particle on the horizontal plane
is defined by the position vector x(t), with components xi(t) , i = 1, 2. The motion
of the ice pack on the horizontal plane is described by the velocity vector u(t), with
components v1 and v2. It is assumed that lead water (the water in open spaces between
floes) moves horizontally with the same velocity as the local ice field. The pack has
a local thickness defined by the function h(x, t). The latter is supposed to be a smooth
function of x, which is achieved by continuous extension of adjacent ice floe top and
bottom surfaces at locations where there is lead water, as illustrated in Figure 2. In
general, ice floes occupy only a certain fraction of the total surface of the ice–water
system. This ice area fraction, denoted by the function A(x, t), is referred to as the ice
concentration; obviously, this function has the property 0 ≤ A ≤ 1.

Fig. 2. Vertical cross-section through a sea-ice pack layer

2.1. Mass and Energy Conservation Equations

The mass conservation balance for the ice pack is expressed in terms of two equations,
describing the evolution of the local ice thickness h and the local ice concentration
A. These two equations are adopted in the following forms (Gray and Morland 1994,
Morland and Staroszczyk l998):

DA
Dt

+ Aη
[
1 − α(A)H(−η)

]
=

k
ρ
, (1)

Dh
Dt

+ hηα(A)H(−η) = qa + qw. (2)

In the above equations, D/Dt denotes the material (convected) time derivative, and ρ
is the intrinsic ice density, with a value of ρ = 917 kg m−3. The quantity η(x, t) is the
horizontal dilatation-rate, defined as the divergence of the horizontal velocity field of
the ice pack:

η = ∇ · u =
∂v1
∂x1

+
∂v2
∂x2

, (3)

with the properties

η

{
< 0 in converging flow,
> 0 in diverging flow. (4)
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In equation (3), ∇ denotes the nabla differential operator. The function H(·) in equa-
tions (1) and (2) denotes the Heaviside unit step function. By definition,

H(−η) =

{
1 for η < 0, i.e. in converging flow,
0 for η > 0, i.e. in diverging flow. (5)

The Heaviside function is used to describe a very distinct sea-ice pack behaviour,
depending on whether the ice is in diverging (η > 0), or in converging (η < 0) flow.
In the former case, of η > 0, interactions between individual floes are rare, or com-
pletely absent, so stresses between neighbouring floes are small or zero, whereas in
the latter case, of η < 0, interactions between floes are frequent or constant, and the
corresponding interaction stresses are significant.

Important physical processes that occur in a converging flow of ice, when indi-
vidual ice floes collide, are the mechanisms of ice rafting and ridging (Babko et al
2002). In the case of ice rafting, colliding floes override one another, whereas the
other mechanism is due to ice crushing and the subsequent piling up of ice rubble on
the surfaces of colliding floes. Both mechanisms result in an increase in the local ice
thickness and can be regarded as irreversible phenomena. To incorporate these two,
in a way similar, processes into a formal description of ice pack behaviour, a single
ridging function, denoted here by α(A), is introduced (Hibler 1979). Gray and Mor-
land (1994) postulated that a properly constructed ridging function should necessarily
satisfy the conditions

η ≥ 0 : α = 0; η < 0 : 0 ≤ α ≤ 1; α → 1 as A→ 1. (6)

The following form of this function (Staroszczyk 2017) is adopted in the present work:

α(A) =

 −2
(
A − A f

1 − A f

)3

+ 3
(
A − A f

1 − A f

)2

, for 0 < A f < A ≤ 1,

0, for 0 ≤ A ≤ A f .

(7)

The above cubic form slightly improves on a piecewise linear function proposed by
Morland and Staroszczyk (l998). In (7), A f denotes a critical ice concentration level,
below which no ice ridging occurs (despite the converging flow regime), and above
which α(A) increases continuously to approach the unit limit as A approaches unity.
Two particular values of A f = 0.5 and A f = 0.75 were used in previous numerical
simulations carried out by Gray and Morland (1994) and Morland and Staroszczyk
(l998).

The right-hand side terms k, qa and qw in equations (1) and (2) represent thermo-
dynamic effects on the ice mass balance. The quantity k denotes the mass transfer per
unit pack volume per unit time into the ice due to water freezing at vertical floe edges.
The terms qa and qw, in turn, are the volume fluxes of ice per unit horizontal section
into the top ice floe surface (qa < 0 if melting) and out of the bottom surface (qw < 0
if freezing).
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The values of the above three mass transfer parameters, k, qa and qw, can be de-
termined from an energy balance. In contrast to the purely mechanical behaviour of
ice which can be analysed by treating all relevant fields as two-dimensional in the
horizontal plane, the energy balance requires the inclusion of vertical temperature
gradients through the ice pack thickness. Hence, a three-dimensional temperature
field, T (x1, x2, x3, t), must be considered, with x3 being an upward vertical coordi-
nate axis. Since, under typical ice pack conditions, temperature gradient components
in the lateral x1- and x2-directions are smaller by several orders of magnitude than
those in the vertical x3-direction, the former gradients can be ignored in a full energy
balance (Gray and Morland 1994), which yields a reduced energy balance equation
(Morland and Staroszczyk l998) expressed by:

DT
Dt

=
κ

ρC
∂2T
∂x2

3
+

kL
2ρAC

+
ra

ρC
. (8)

In this equation, κ is the thermal conductivity of ice, C is the specific heat capacity of
ice, L is the latent heat of ice melting, and ra is the radiation deposit per unit volume
per unit time.

A full analysis of sea-ice pack behaviour would require a solution of equations
(1), (2) and (8) at any given time and location, depending on current thermodynamic
conditions which can change very quickly in time and considerably in space. Further,
a theoretical description of all thermodynamic phenomena contributing to the local
heat budget, and hence to mass fluxes across ice floe surfaces, can be complicated and
computationally costly. For these reasons, a simplified approach is followed here, in
which the mass transfer terms k, qa and qw, all being functions of the spatial horizontal
coordinates, time and temperature, are replaced in the mass balance equations (1) and
(2) by source terms, SA and Sh, in a way resembling the approach by Hibler (1979).
Hence, the mass balance equations are now re-written in the following forms:

DA
Dt

+ Aη
[
1 − α(A)H(−η)

]
= SA, (9)

Dh
Dt

+ hηα(A)H(−η) = Sh. (10)

The thermodynamic source terms are defined by the relations adapted from Hibler
(1979) and expressed as follows:

Sh = AG
(
h
A

)
+ (1 − A) G(0), (11)

SA =

 (1 − A)
G(0)
h0

for G(0) > 0,

0 for G(0) < 0.
(12)
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The term Sh accounts for the effects of the ice growth or melt on the local ice thickness
h. As seen in (11), Sh is expressed as a weighted value of the ice growth-rate over the
fraction of the area covered by the ice and the growth-rate of the ice over the area
of lead water. The term SA, in turn, describes how the local mean ice area fraction
A changes due to the changes in the local ice thickness. The two separate relations
in (12) distinguish between the cases of the ice growth (G(0) > 0) and the ice melt
(G(0) < 0).

A key role in a quantitative description of the source terms Sh and SA is played by
the function G(h), defining the ice growth-rates depending on the current ice thickness
h. An exemplary ice growth-rate curve for typical winter conditions in the Arctic
Ocean, based on calculations performed by Thorndike et al 1975), was presented by
Hibler (1979) in Fig. 3 in his paper. In the present work, two simple analytic forms of
the function G(h) are tried to approximate the curve in Hibler’s paper for temperatures
T < Tm (G(h) > 0), where Tm is the ice melting temperature. The case of T > Tm (ice
melting, G(h) < 0) is not considered here. These two analytic forms are:

G1(h) = Gmax exp
[
−c1

(
h
h0

)]
, with c1 = ln

(
Gmax

G0

)
, (13)

and
G2(h) = Gmax

c2h0

h + c2h0
, with c2 =

G0

Gmax −G0
. (14)

Fig. 3. Ice growth-rate functions G(h) used in simulations. G0 is the growth-rate at the
reference ice thickness h0, and Gmax is the maximum rate at the limit h→ 0. The curves G1

and G2 are defined by relations (13) and (14) respectively, and G3 = (G1 + G2)/2

In the above expressions, the parameter Gmax represents the maximum ice growth-rate
as the ice thickness h→ 0 (that is, when the ice just starts to grow on the lead water),
and G0 is the reference growth-rate occurring at the reference ice thickness h0; hence,
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Gmax = G(0) and G0 = G(h0). The quantities h0, G0 and Gmax can be treated as free
parameters of the proposed thermodynamic SPH model. Following Hibler (1979),
a value of h0 = 0.5 m was adopted, for which (see the plot in Fig. 3 in that paper)
G0 ≈ 2.5 cm day−1, and Gmax ≈ 12 cm day−1. The plots of the two forms (13) and (14),
calculated with these parameters, are presented in Fig. 3. A comparison of the plots of
the functions G1 and G2 with the growth-rate curve used by Hibler (1979) reveals that
the approximation G1 predicts a too rapid decay of the growth-rate to zero values for
large ice thicknesses h, whereas the approximation G2 gives too large rates for thick
ice. For this reason, the mean value of these two functions, that is G3 = (G1 + G2)/2,
was adopted for numerical simulations as the best fit to the ice growth-rate curve
proposed by Hibler (1979).

The ice growth-rate curve presented by Hibler (1979) was obtained for a typical
winter temperature in the Arctic – let us denote it by T0. Hence, the approximations
to this curve, given by equations (13) and (14), can also be used only for the charac-
teristic temperature T0. In order to generalize these approximations to cases (years)
in which the average temperature T , T0, a temperature-dependent factor GT (T ) was
introduced to scale the ice growth-rate function. The argument T of this function is
a dimensionless temperature defined by

T =
Tm − T
Tm − T0

. (15)

By construction, GT (T ) = 1 for T = T0 , and GT (T ) is a decreasing function of tem-
perature T ; that is, the ice growth-rates decrease with increasing temperature T (less
ice is produced at higher, but negative, Celsius temperatures). Due to the lack of em-
pirical data, it was arbitrarily assumed in the SPH model calculations that GT (T ) = T
(the scaling factor depends linearly on the seasonal average temperature T , which can
be considered as a crude approximation). Hence, the ice growth-rate function used in
the simulations had the form

G(h,T ) =
1
2

[G1(h) + G2(h)] T , (16)

with G1 and G2 prescribed by (13) and (14), and T defined by (15).

2.2. Linear Momentum Equation

As already stated, it is assumed that the motion of a sea-ice pack is restricted to the
horizontal plane Ox1x2; that is, the possible motion of ice in the vertical x3-direction
is neglected. The horizontal linear momentum balance equation for the ice pack is de-
rived (Gray and Morland 1994) by integrating full three-dimensional balances through
the ice thickness, to yield the expression:

ρh
Du
Dt

= ∇ · N + f a + f w + f c . (17)
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In the above equation, N, with components N11, N12 and N22, is the depth-integrated
horizontal stress tensor (with the physical unit Pa · m), f a and f w denote external
tractions exerted on the top and the bottom surfaces of the ice cover by wind and water
drag stress, respectively, and the term f c represents the Coriolis force effect. On the
moderate spatial scales (up to a few hundred kilometres) that will be considered in
the further part of this work, the Coriolis effect can be neglected and, therefore, the
term f c will be omitted in all ensuing equations.

The two-dimensional stress N is a mean stress acting on a unit area of the ag-
gregate consisting of ice floes and lead water. By analogy to the theory of two-phase
media, it can be interpreted as the so-called partial stress, which is the product of the
intrinsic stress in ice, σ, and the ice area fraction, A. Accordingly, N is expressed by

N = Ar(h) f (A)σ. (18)
The stress σ represents the mean value of stress per unit thickness of ice, and it acts
when there is full contact between adjacent floes along their edges — such a situation
occurs when the ice concentration A is equal to unity (which means that there is no
lead water at the interface between adjacent floes). The stress σ will be expressed in
terms of the horizontal deformation-rates of the ice pack by a constitutive equation
formulated in Section 3.

The definition (18) of the depth-integrated stress includes two proportionality fac-
tors, r(h) and f (A). The first factor accounts for the effect of the increasing ice thick-
ness h on the stress N, whereas the second factor, f (A), is the measure of a floe–floe
contact length, assumed to increase with increasing ice concentration A. Two common
forms (Gray and Morland 1994) of the factor r(h) are a linear dependence on h, and
a quadratic function of h. Hence,

r(h) = h, or r(h) =
h2

h∗
, (19)

where h∗ is a typical ice thickness scale. Only the simpler, linear form r(h) = h will
be used in numerical simulations. The dimensionless contact length function f (A),
necessarily with the properties f (0) = 0 and f (1) = 1, is adopted in the form

f (A) =
exp[−K(1 − A)] − exp(−K)

1 − exp(−K)
, K � 1. (20)

It is a slight modification of an earlier formula proposed by Hibler (1979), according
to whom the empirical parameter K should have a value of about 20.

The terms f a and f w in the motion equation (17) represent tangential tractions
acting on the top surface and the base of the ice cover. Similarly to the stress N, these
tractions also have the meaning of partial quantities. Hence, they are expressed as
products of the intrinsic tractions exerted by wind drag and water currents, denoted
by τa and τb respectively, and of the ice area fraction A. Accordingly, they are defined
by the relations

f a = Aτa , f w = Aτw . (21)
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A number of relations expressing the intrinsic surface tractions in terms of the ice,
wind and ocean current velocities are known in the literature, including the forms
which are linear or quadratic in the velocities. Linear relations were used, among oth-
ers, by Hibler (1979), Flato and Hibler (1992), Gray nad Morland (1994) and Morland
and Staroszczyk (1998). In this work quadratic formulae are adopted, which are ex-
pressed in the following forms (Sanderson 1988):

τa = Caρa(ua − u)|ua − u|, τw = Cwρw(uw − u)|uw − u|. (22)

In these relations, ρa and ρw are, respectively, the air and water densities (with ρw =

1028 kg m−3 for sea water and ρa = 1.3 kg m−3), and ua and uw are, respectively,
the wind and ocean current velocity vectors. The parameters Ca and Cw in formulae
(22) denote the dimensionless wind stress and water drag coefficients. The particular
values of Ca = 2 × 10−3 and Cw = 4 × 10−3 will be used in numerical simulations
presented in Section 5.

On account of the definitions (18), (19) and (21), the momentum equation (17)
becomes

ρh
Du
Dt

= Ah f (A)∇ · σ + A (τa + τw) , (23)

with the ice surface traction terms τa and τw given by relations (22).

3. Constitutive Description of Sea Ice

In the present work, the mechanical behaviour of sea ice is modelled by applying
a non-linearly viscous flow law, based on the Reiner-Rivlin constitutive equation
(Chadwick 1999). In general, the Reiner-Rivlin flow law expresses the Cauchy stress
in terms of a quadratic function of the strain-rate tensor and its three independent
invariants. Here a simpler, linear function of the strain-rate tensor is applied:

σ =
[
φ1(η, γ)I + φ2(η, γ)D

]
H(−η), (24)

where I is the two-dimensional unit tensor, D is the two-dimensional strain-rate ten-
sor, and φ1 and φ2 are the material viscous response functions. The Heaviside function
term H(−η) in (24) is used to set the stress to zero in the diverging flow of the sea-ice
pack (so that no tensile stress in the ice is admitted). The strain-rate tensor D has the
components

Di j =
1
2

(
∂vi
∂x j

+
∂v j

∂xi

)
(i, j = 1, 2), (25)

and η and γ, the strain-rate invariants of D, are given by

η = tr D, γ2 =
1
2

tr D̂2
. (26)
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In the above definition, tr(·) denotes the trace of a tensor, and D̂ is the deviatoric
strain-rate tensor given by

D̂ = D −
1
2
ηI. (27)

Obviously, the above definition of η is equivalent to that given earlier by relation
(3). In strain-rate components, the above two invariants, the dilatation-rate η and the
shear-rate invariant γ, are expressed by

η = D11 + D22, γ2 = D2
12 +

1
4

(D11 − D22)2. (28)

Similarly to (27), the stress tensor σ is also decomposed into its axial and deviatoric
parts as follows:

σ̂ = σ + pI, p = −
1
2

trσ, (29)

where p is the mean pressure in ice.
The two functions φ1 and φ2 entering the general flow law (24) define the viscous

response of the medium to strain-rates applied. These two functions can be expressed
(Morland and Staroszczyk 1998, Staroszczyk 2005) in terms of conventionally used
bulk and shear viscosities, ζ and µ respectively, as follows:

p = −ζη, σ̂ = 2µD̂. (30)

In view of the latter definitions, the response functions φ1 and φ2 are expressed by

φ1 = (ζ − µ)η, φ2 = 2µ, (31)

so the viscous flow law (24) becomes

σ =
[
(ζ − µ)ηI + 2µD

]
H(−η). (32)

A reduced version of the above constitutive law, obtained by setting ζ = µ, implying
φ1 = 0, was used by Schulkes et al (1998). Note that (32) is, in general, a non-linear
law, since the viscosities ζ and µ are the functions of the strain-rate invariants η and
γ.

The viscous properties of ice are known to be very sensitive to its temperature.
A standard approach in ice mechanics is to describe the temperature-dependence of
the ice viscosity by means of an Arrhenius-type law, by which the viscosity increases
exponentially with decreasing absolute temperature of ice. However, at temperatures
close to the melting point, this approach is inappropriate, as indicated by experimental
data (Mellor 1980), and therefore a different type of relation is needed. Here a rela-
tion proposed by Smith and Morland (1981) is applied, derived by correlation with
empirical data. This relation expresses the temperature-dependence of ice viscosity
by a scaling factor given by

a
(
T̂
)

= 0.68 exp
(
12T̂

)
+ 0.32 exp

(
3T̂

)
, (33)
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where the dimensionless temperature T̂ is defined by

T̂ =
(T − Tm)

∆T
, ∆T = 20K. (34)

The function a(T ), with the properties a(Tm) = 1 and a(T ) < 1 for T < Tm, is a good
approximation for temperatures of up to 60 K below the melting point Tm. The rate
factor a(T ) scales the ice viscosities by

µ(T ) =
µ(Tm)
a(T )

, ζ(T ) =
ζ(Tm)
a(T )

, (35)

where µ(Tm) and ζ(Tm) are near-melting point ice viscosities.

4. Smoothed Particle Hydrodynamics Formulation

The major idea of the SPH approach consists in representing a continuum by a collec-
tion of discrete material particles, each of which carries, in a fully Lagrangian sense,
all information on the local physical properties (mass, velocity, temperature, etc.) of
the body under consideration. Since no predefined connections between discrete par-
ticles are required in the SPH approach (unlike, for instance, in finite-difference and
finite-element methods), this method has a great flexibility in dealing with large defor-
mations, material fragmentation, propagation of discontinuity fronts, etc. In order to
approximate field variables in terms of their values given at discrete particles, special
interpolating functions, often referred to as smoothing kernels, are applied. Typically,
a smoothing kernel has non-zero values only in a small domain, called the kernel
support (it usually has the shape of a circle in two-dimensional problems). Detailed
descriptions of the SPH method can be found in the literature, for instance in papers
by Monaghan (1992, 2005, 2012), the co-inventor of this method, or in the book by
Li and Liu (2004).

The values of field variables at any (material or spatial) point x of a continuum
are calculated by summations over all particles located within the kernel support cen-
tred at that point. Similarly, the spatial derivatives of field functions are evaluated by
summation formulae involving spatial derivatives of the smoothing kernel functions.
Accordingly, the value of a function f at position xa is approximated using a kernel
function, W , by the formula

fa = f (xa) =

N∑
b=1

Vb fb W (rab) . (36)

In (36), a and b denote particle labels, fa = f (xa) is a discrete value of f at particle
a, N is the number of discrete particles currently located within the kernel support
domain of particle a, Vb is the volume of particle b, and rab = |xab| = |xa − xb| is the
distance between particles a and b.



290 R. Staroszczyk

In order to express differential equations in their discrete SPH forms, one needs
approximations of differential operators. In the problem considered in this work, only
the approximations of the divergence operators for vector and tensor fields are needed.
These approximations are adopted in the forms recommended by Monaghan (1992)
and Gray et al (2001):

(∇ · f )a = −
1
ρa

N∑
b=1

mb fab ·∇aWab (37)

and

(∇ · A)a = ρa

N∑
b=1

mb

 Aa

ρ2
a

+
Ab

ρ2
b

·∇aWab . (38)

In the above two expressions, f and A denote, respectively, a vector and a two-di-
mensional tensor fields, ρa is the density of particle a, mb is the mass of particle b,
and fab = fa − fb. ∇aWab denotes the gradient of the kernel function W centred at
particle a and calculated at particle b. This gradient is defined by

∇aWab =
xab

rab

∂W (rab)
∂rab

. (39)

Application of the divergence operator approximations (37) and (38) in the mass
conservation balances (9) and (10) and the momentum equation (23) yields

dAa

dt
= (SA)a − Aaηa

[
1 − α(Aa)H(−ηa)

]
, (40)

dha

dt
= (Sh)a − haηaα(Aa)H(−ηa), (41)

dua

dt
=
ρa

ρ
Aa f (Aa)

N∑
b=1

mb

σa

ρ2
a

+
σb

ρ2
b

·∇aWab +
Aa

ρha
(τa + τw)a , (42)

with the thermodynamic terms (Sh)a and (SA)a defined by equations (11) and (12).
Recall that the stress σ is prescribed by the constitutive viscous flow law (32). The
horizontal dilatation-rate η, when approximated at particle a, is given by

ηa = (∇ · u)a = −
1
ρa

N∑
b=1

mb uab ·∇aWab , (43)

where uab = ua − ub. In addition to relations (40)–(42), in order to track the motion
of ice on the sea surface, a trajectory equation also has to be solved for each discrete
particle:

dxa

dt
= ua . (44)
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It should be noted at this point that there is an important qualitative difference between
the intrinsic density of ice, ρ, which is constant in time, and the densities ρa and ρb of
discrete material particles, which vary in time. The latter densities connect discrete
particle masses ma (which, in general, change in time due to the mass fluxes described
by the terms SA and Sh) with discrete particle volumes Va (which change in time due
to ice pack deformation) through the equation

ma = ρaVa . (45)

The particle density ρa, in turn, is related to the local ice concentration Aa and the
local ice thickness ha by the formula

ρa = ρAaha . (46)

Thus, the particle density ρa expresses the mass of ice per unit surface of the sea, so
that it has the meaning of a partial density and the physical unit kg m−2.

The system of equations (40)–(42) and (44) for particle a is equivalent to six scalar
relations for six unknown field functions: A, h, two components of the velocity vector
u, and two components of the position vector x. This system of six equations was inte-
grated in the time domain by a predictor-corrector method (Staroszczyk 2010, 2011).
In the calculations, the kernel function W was adopted in the form of a quintic spline
function proposed by Morris (1996). As in an earlier paper by Staroszczyk (2017),
the standard smoothing kernels W were modified by following an approach proposed
by Belytschko et al (1998). This approach makes it possible to better approximate the
field variables at discrete particles located close to the open sea boundaries, so that
the current positions of these moving boundaries are traced more accurately.

5. Numerical Simulations

In the previous paper (Staroszczyk 2017) the proposed SPH model was applied to
simulate the purely mechanical behaviour of an sea-ice pack; that is, the mass conser-
vation equations (9) and (10) were solved without the thermodynamic source terms.
In the present paper we first investigate the evolution of the ice thickness and ice
concentration in a motionless pack (wind and water drag stresses are zero), in which
the ice is subjected only to the action of a temperature field. Hence, in fact, only the
mass balance equations are solved at this first stage, before a fully thermodynamic
problem for a wind-driven ice pack is solved at the second stage of simulations.

The SPH simulations were carried for a simple, initially rectangular ice pack con-
figuration depicted in Fig. 4, in which the ice is constrained by three solid boundaries,
and has only one ice–open sea boundary. The ice pack had the initial horizontal di-
mensions of 600 km × 600 km. The corresponding SPH model, with the initial grid of
particles shown in Fig. 4, consisted of 60 × 60 = 3600 particles uniformly distributed
along both coordinate axes, with an inter-particle spacing of 10 km (the colours of the
particles have no physical meaning and are used entirely for illustration purposes). The
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Time = 0.0 days
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Fig. 4. Simple ice pack flow configurations used in numerical simulations and the initial grid
of discrete particles

initial ice thickness and concentration distributions were assumed to vary in a linear
manner along one (x or y) coordinate axis. Also, the simple air temperature fields
T (x, y, t) were adopted, with T being either uniform in space or linearly varying along
one of the two coordinate axes, and remaining constant in time throughout the simula-
tions. In all the simulations, the ice growth-rate function parameters (see Fig. 3) were
as follows: Gmax = 12 cm day−1, G0 = 2.5 cm day−1, h0 = 0.5 m, and the reference
temperature was T0 = −40◦.

The following Figures 5, 6 and 7 show the evolution of the ice concentration A and
ice thickness h for three one-dimensional cases involving different combinations of
the initial distributions of A and h. In all three cases the air temperature was assumed
as T = −20◦. In the first case, illustrated by the plots in Fig. 5, the ice had initially the
thickness h = 1 m and the ice concentration varied between A = 0.8 at the coast y = 0
to A = 0.4 at the open sea edge at y = 600 km. The plots show how the distributions of
A and h change due to the freezing of lead water and ice during a period of 20 days.
It is seen that the largest increase in both ice concentration and ice thickness takes
place in regions in which the initial ice concentration was smallest (that is, in regions
where the area fraction occupied by lead water is largest, and hence the growth of ice
due to water freezing is most intense).

In the case illustrated in Fig. 6, the initial ice concentration was assumed constant
and equal to A = 0.6, while the ice thickness varied linearly from h = 1 m at the coast
y = 0 to h = 0.2 m at the ice pack edge at y = 600 km. One can see that in this case the
ice concentration remains uniform throughout the ice pack at all times, irrespective of
the current local ice thickness. Obviously, this feature is a consequence of the adopted
form of the mass balance, expressed by the first term in equation (12), in which the
thermodynamic term SA does not depend on h and Sh.
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Fig. 5. Evolution of ice concentration and ice thickness profiles along the y-axis for the ice
pack configuration shown in Fig. 4a, for an initially uniform ice thickness of 1 m and a linearly
varying ice concentration (air temperature T = −20◦). The same labelling applies to both plots

Fig. 6. Evolution of ice concentration and ice thickness profiles along the y-axis for the ice
pack configuration shown in Fig. 4a, for an initially uniform ice concentration of 0.6 and

a linearly varying ice thickness (air temperature T = −20◦). The same labelling applies to both
plots
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Fig. 7. Evolution of ice concentration and ice thickness profiles along the y-axis for the ice
pack configuration shown in Fig. 4a, for initially linearly varying ice concentration of 0.6 and
ice thickness distributions (air temperature T = −20◦). The same labelling applies to both plots

The plots in Fig. 7 illustrate a case in which both the initial ice concentration and
ice thickness vary linearly with the distance y from the coastline. There is no much
difference between the results in this figure and the corresponding plots in Fig. 5a and
Fig. 6b is observed.

In order to investigate a more realistic problem in which a sea-ice pack is both
deformed in the horizontal plane due to wind drag stresses and undergoes ice mass
changes due to thermodynamic effects (that is, full thermodynamic equations (9) and
(10) are solved), a flow configuration depicted in Fig. 8 was considered. In this flow
configuration, the ice pack initially occupies a rectangular domain L1 × L2, with three
sides (Γ1, Γ2 and Γ3) of the ice pack domain being constrained by solid boundaries,
and the fourth side (Γ4) being an open sea boundary. It is assumed that the ice is
driven by a vortex geostrophic wind field, with the vortex centre, marked by the cross
in the figure, located at the open sea at a certain distance from the initial line of the ice
pack edge Γ4. This configuration was chosen for simulations, since it generates both
converging and diverging ice flows in the pack domain. Detailed equations describing
the wind velocities in the vortex field can be found in papers by Flato (1993), Morland
and Staroszczyk (1998) and Staroszczyk (2017). Here we only note that the wind
speed is zero at the vortex centre, increases linearly from zero to its maximum value
u0 at some distance R0 from the vortex centre, and then decreases monotonically to
zero with the distance increasing to infinity.
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Fig. 8. Rectangular ice pack with three solid boundaries (Γ1, Γ2 and Γ3) and one open water
boundary (Γ4) driven by a vortex wind field, with the vortex centre at the open sea (indicated

by the cross)

The numerical simulations were run for an ice pack with dimensions L1 = 600 km
and L2 = 300 km and the wind vortex centre situated 50 km off the initial position of
the ice pack edge Γ4. Uniform initial ice thickness and ice concentration were adopted,
with h = 1 m and A = 0.6 at the start of ice pack deformation. The magnitudes of
viscosities were ζ = 2 × 109 Pa· s and µ = 1 × 109 Pa· s. A uniform air temperature
field T = −20◦ was adopted in the calculations. The SPH model consisted of 60 ×
30 = 1800 discrete particles, and was integrated with a time step length of 0.01 hr.
Free-slip conditions were assumed along the coastlines Γ1, Γ2 and Γ3.

The results of SPH simulations presented below were obtained for a maximum
vortex wind speed u0 = 5 m s−1 acting at a distance R0 = 40 km from the vortex cen-
tre. The plots in Fig. 9 show the evolution of the ice concentration field A(x, y, t) over
a period of 20 days. Compared are the results predicted by the SPH model for the
purely mechanical behaviour of ice (the plots on the left) and the full thermodynam-
ical model (the plots on the right). It can be observed that, for the set of parameters
used in the simulations, the changes in the ice concentration A are dominated by the
thermodynamic effects associated with the freezing of lead water, with A continu-
ously increasing throughout the pack so that the minimum values of A exceed 0.9
everywhere. In contrast, the ice concentrations obtained for a purely mechanical de-
formation of the pack range from about 0.4 (the decrease from the initial value of 0.6
is due to ice divergence) to about 0.7 (the increase is due to the ice ridging process in
converging flow).

The plots in Fig. 10 illustrate changes in the ice thickness h resulting from the
horizontal deformation of ice and its growth due to freezing. It is seen that the final
ice thickness varies between about 1.3 m and about 1.4 m. On the contrary, changes
in the thickness of ice caused solely by its deformation due to the wind action are
insignificant (therefore they are not illustrated), since the maximum final values of
h do not exceed 1.05 m (a mere 5 cm increase in the ice thickness compared to the
initial value of 1 m).
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Fig. 9. Evolution of an initially rectangular ice pack shown in Fig. 8 with free-slip conditions
along the coastlines. Comparison of ice concentration distributions for the purely mechanical
behaviour of ice (plots on the left) and a fully thermodynamic behaviour (plots on the right).

The initial concentration was A = 0.6
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Fig. 10. Evolution of an initially rectangular ice pack shown in Fig. 8 with free-slip conditions
along the coastlines. Ice thickness distributions after 5, 10, 15 and 20 days of thermodynamic

ice flow. The initial ice thickness was h = 1.0 m

6. Conclusions

In this paper, a smoothed particle hydrodynamics model was developed for the pur-
pose of simulating the thermodynamic behaviour of sea ice on geophysical scales.
The mechanisms of the growth or decay of the sea-ice cover due to ice melting or
lead water freezing were incorporated into the model by adopting a simple approach
in which the growth rates of the thickness and concentration of ice depend on a single
function that idealizes the observed macroscopic behaviour of ice in the Arctic.

The SPH model was used to simulate the evolution of an ice pack driven by wind
and water drag stresses in a prescribed temperature field. The results obtained demon-
strate that the SPH approach yields smooth and stable solutions even for relatively
long simulation times without the need to introduce artificial dissipation terms in the
momentum balance equations (which is often the case in large-scale climate models
using conventional mesh methods).
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It has been shown (at least for the parameters used in the simulations) that, under
typical winter conditions in the Arctic, the evolution of the thickness and concentra-
tion of ice is dominated by its thermodynamics, with the effects of its mechanical
deformation on the ocean surface playing a minor role.
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