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Abstract

The paper deals with free vibrations of a horizontal thin elastic circular plate submerged in
an infinite layer of fluid of constant depth. The motion of the plate is accompanied by the fluid
motion, and thus, the pressure load on this plate results from displacements of the plate in time.
The plate and fluid motions depend on boundary conditions, and, in particular, the pressure
load depends on the gap between the plate and the fluid bottom. In theoretical description of this
phenomenon, we deal with a coupled problem of hydrodynamics in which the plate and fluid
motions are coupled through boundary conditions at the plate surfaces. This coupling leads to
the so-called co-vibrating (added) mass of fluid, which significantly changes the fundamental
frequencies (eigenfrequencies) of the plate. In formulation of the problem, a linear theory of
small deflections of the plate is employed. At the same time, one assumes the potential fluid
motion with the potential function satisfying Laplace’s equation within the fluid domain and
appropriate boundary conditions at fluid boundaries. In order to solve the problem, the infinite
fluid domain is divided into sub-domains of simple geometry, and the solution of problem
equations is constructed separately for each of these domains. Numerical experiments have
been conducted to illustrate the formulation developed in this paper.
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1. Introduction

In offshore engineering, we frequently deal with the problem of water wave-induced
loads on structures. These loads depend on fluid flows in the vicinity of the structure,
as well as on the its size, shape, rigidity and foundation. An example of such a struc-
ture is a horizontal circular plate foundation of a windmill installed in the sea coastal
zone. Usually, hydrodynamic forces depend not only on water waves themselves, but
also on the foundation of the plate and its orientation relative to the directions of wave
propagation. In the present case of horizontal plate, placed at a small distance from
the sea bottom, these forces depend also on the distance between the plate and the
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fluid bottom. In general, a motion of the plate is accompanied by motion of the fluid
and therefore, in analyzing vibrations of the plate submerged in fluid one can speak
on certain amount of fluid vibrating together with this plate. As compared to vibra-
tions of the plate in air, this added (co-vibrating) mass of fluid changes fundamental
frequencies of the plate significantly.

With respect to the above, we focus our investigations on the coupled hydrody-
namic problem of a horizontal circular plate, vibrating in a layer of fluid of constant
depth. In order to simplify our discussion, we confine our attention to small deflections
of a simply supported plate and a potential motion of the incompressible non-viscous
fluid. In theoretical investigations, we resort to approximate modeling that can de-
scribe the main features of this phenomenon. As regards vibrations of plates in contact
with fluid, Solecki (1966) discussed the problem of an infinite plate floating on a water
half-space. A similar problem of deformation of floating ice plates was investigated
by Kerr and Palmer (1972). As far as a finite fluid body is concerned, Sawicki (1975)
discussed the problem of dynamics of floating roofs of cylindrical tanks. The problem
discussed in the present paper corresponds in a sense to that of Sawicki’s problem,
but it deals with an infinite fluid domain and fully submerged plate. Our main goal is
to calculate a set of lowest eigenfrequencies of the plate, dependent on the width of
the gap between the plate and the sea bottom.

2. Problem Formulation

Let us consider the three-dimensional problem of a thin elastic circular plate sub-
merged in fluid, as shown schematically in Fig. 1. The plate is assumed to be of small
thickness and its deflections are so small that in the description of the plate motion
a linear theory may be applied. The motion of the plate is accompanied by the fluid
motion, and thus we have the coupled problem of hydrodynamics. This coupling takes
place through boundary conditions at the upper and bottom surfaces of the plate. In the
present problem of plate vibrations, transverse deflections of the plate (displacements
of its central plane) are governed by the following equation (e.g. Nowacki 1972):

∇2∇2w +
mpl.

D∗
∂2w

∂t2 =
q

D∗
, (1)

where w is the plate deflection, q is the external load continuously distributed over
the plate surface, D∗ = Eδ3/12(1 − ν2) is the flexural rigidity of the plate (δ is the
plate thickness and ν is Poisson’s ratio), and ∇2∇2 is the bi-harmonic operator. In the
case of vibrations of the plate submerged in fluid, the external load q in this equation
equals the fluid pressure. In order to calculate this pressure, it is necessary to solve
the coupled problem of the plate-fluid motion. To this aim, it is assumed that the
fluid is non-viscous and incompressible, and its motion is potential, with the potential
function Φ(x, y, z, t) = Φ(r, ϕ, z, t) satisfying the harmonic (Laplace’s) equation

∇2Φ = 0 (2)
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Fig. 1. Simply supported elastic circular plate submerged in an infinite layer of fluid

within the fluid domain and appropriate boundary conditions at fluid boundaries.
With respect to small vibrations of the plate, placed at a sufficiently large distance

from the free fluid surface, it is reasonable to assume that the free surface is flat over
the entire range of time considered (fluid pressure is constant at z = H), and thus

Φ|z=H = 0 . (3)

With this assumption applied, the plate-fluid system is a conservative system, i.e. its
total energy remains constant during free vibrations. It means that, as in the case
of free vibrations of the plate in air, it is possible to calculate a set of fundamental
frequencies (eigenfrequencies) of the plate immersed in fluid. In addition to condition
(3), the remaining boundary conditions for the potential function read:

∂Φ
∂z

∣∣∣∣∣
z=0
= 0, Φ|r→∞ = 0,

∂Φ
∂r

∣∣∣∣∣
r→∞
= 0,

±
∂Φ
∂n

�
∂Φ
∂z

∣∣∣∣∣ upper and
lower plate
surfaces

=
∂w

∂t
. (4)
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For a harmonic motion of the plate-fluid system in time, these boundary conditions
should satisfy the Sommerfeld condition that no wave comes from infinity (r → ∞)
(no generation sources of the fluid motion exist at infinity). The index n in equations
(4) denotes the outward unit vector normal to the fluid boundary at the plate surface.
At end points of the plate (at r = a), the fluid velocity field has removable singularity.
The fluid pressure is described by the formula

p = −ρ
∂Φ
∂t
+ ρg(z − H) . (5)

Substitution of this relation into equation (1) gives

∇2∇2w +
m∗

D∗

[
∂2w

∂t2 +
ρ

m∗

(
∂Φ
∂t

∣∣∣∣∣
low.
−
∂Φ
∂t

∣∣∣∣∣
upp.

)]
= 0, (6)

where ρ is the fluid density, g is the gravitational acceleration, and m∗ = (ρplate −

ρfluid) · δ.
In order to construct a solution to the aforementioned problem, it is reasonable to

consider, in the first step, a simpler case of free vibrations of the plate in air.

3. Free Vibrations of the Plate in Air

In accordance with the above, let us consider now the plate vibrating in air. The plate
is simply supported at its perimeter. For free vibrations, q = 0 in equation (1), and the
problem equation is reduced to the following one:

∇2∇2w + c2∂
2w

∂t2 = 0, (7)

where
c2 =

ρplateδ

D∗
. (8)

For a harmonic motion in time, the following substitution is made

w(r, ϕ, t) = W (r, ϕ) exp(iωt), (9)

where ω is the vibration frequency, and i is an imaginary unit. From substitution of
this description into equation (7), one obtains

∇2∇2W − λ4W =
(
∇2 + λ2

) (
∇2 − λ2

)
W (r, ϕ) = 0, (10)

where
λ4 = (ω · c)2 . (11)

With respect to the polar system of coordinates shown in Fig. 1, the harmonic operator
in equation (10) reads

∇2 =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂ϕ2 . (12)
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Knowing that λ2 > 0, a solution of equation (10) is reduced to solutions of the fol-
lowing two equations:

∂2W
∂r2 +

1
r
∂W
∂r
+

1
r2
∂2W
∂ϕ2 + λ

2W = 0 (13)

and
∂2W
∂r2 +

1
r
∂W
∂r
+

1
r2
∂2W
∂ϕ2 − λ

2W = 0. (14)

In order to find solutions of these equations, we resort to the Fourier method of sep-
arations of variables, i.e.

W (r, ϕ) = R(r) · Θ(ϕ) . (15)

Substitution of this equation into equation (13) and simple manipulations give

∂2Θ
∂ϕ2 + m2Θ = 0,

∂2R
∂r2 +

1
r
∂R
∂r
+

(
λ2 −

m2

r2

)
R = 0.

(16)

It should be stressed that for the circular plate considered, the solution must be pe-
riodic in ϕ, and therefore m is an integer greater than zero. The case m = 0 is also
admissible. Separation of variables in equation (14) leads to the same equation for
Θ(ϕ) (first equation in 16), but now, instead of the second equation of (16), we have
the following one:

∂2R
∂r2 +

1
r
∂R
∂r
−

(
λ2 +

m2

r2

)
R = 0. (17)

The second equation of (16) and equation (17) are Bessel equations for R(r) (McLach-
lan 1964). The general solution of the second equation of (16) reads

R(r) = A · Jm(λr) + B · Ym(λr). (18)

where A and B are constants, and Jm and Ym are Bessel functions of the first and sec-
ond kind of order m, respectively. At the same time, the solution of equation (17)
assumes the form

R(r) = C · Im(λr) + D · Km(λr), (19)

where C and D are constants, and Im and Km are modified Bessel functions of the first
and second kind of order m. The solution of the first equation of (16) is represented
by trigonometric functions

Θ(ϕ) = E · cos(mϕ) + F · sin(mϕ), (20)

where E and F are constants.
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Without loss of generality, we may confine our attention to a single term in the
above solution, say cos(mϕ), which is an even function in ϕ. And thus, the general
solution of equation (10) may be written in the following form:

W (r, ϕ) =
∑

m=0,1,...
cos(mϕ)

[
AmJm(λr) + BmYm(λr) +CmIm(λr) + DmKm(λr)

]
, (21)

where Am, ...,Dm are constants of this solution. Bessel functions of the second kind in
this equation are going to infinity when radius goes to zero, and therefore, these func-
tions should be cancelled out. Finally, the general solution of the problem considered
is reduced to the following one:

W (r, ϕ) =
∑

m=0,1,...
cos(mϕ)

[
AmJm(λr) + Bm Im(λr)

Im(λa)

]
. (22)

This solution should satisfy boundary conditions at the support of the plate at
r = a (see Fig. 1). For the simply supported plate, its deflection W at this support
and the associated bending moment Mrr should be equal to zeros. Accordingly, the
following conditions hold (Nowacki 1972):

W |r=a,ϕ = 0,

Mrr |r=a,ϕ = −D∗
[
∂2W
∂r2 + ν

(
1
r
∂W
∂r
+

1
r2
∂2W
∂ϕ2

)]∣∣∣∣∣∣
r=a,ϕ

= 0, (23)

where ν is Poisson’s ratio. From the first condition in these relations and equation
(22), it follows that

Bm = −AmJm(λa) . (24)

Substituting equations (22) and (24) into the second condition of (23) and making
simple manipulation, we arrive at the homogeneous equation

Am
{

d2Jm(z)
dz2 +

ν

z
dJm(z)

dz
−

Jm(z)
Im(z)

[
d2Im(z)

dz2 +
ν

z
dIm(z)

dz

]}∣∣∣∣∣∣
r=a
= 0, (25)

where z = λr. In order to obtain nontrivial solutions of the problem considered, it is
necessary to find roots of this equation, i.e. a set of values of z = zk(k = 1, 2, ...) for
which the multiplier of Am in this equation equals zero. Knowing that ( McLachlan
1964)

dJ0(z)
dz

= −J1(z),
dJm(z)

dz
=

1
2

[Jm−1(z) − Jm+1(z)] , m = 1, 2, ... ,
J−m(z) = (−1)mJm(z),
and
dI0(z)

dz
= I1(z),

dIm(z)
dz

=
1
2

[Im−1(z) + Im+1(z)] , m = 1, 2, ... ,
I−m(z) = Im(z),

(26)
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the problem of nontrivial solutions of (25) is reduced to zeros of the following func-
tions:

Rm(z) = z (Jm−2(z) − 2Jm(z) + Jm+2(z)) + 2ν (Jm−1(z) − Jm+1(z))+

−
Jm(z)
Im(z)

[z (Im−2(z) + 2Im(z) + Im+2(z)) + 2ν (Im−1(z) + Im+1(z))] ,

m = 0, 1, ...

(27)

In order to find a set of roots (zeros) of this equation, we resort to discrete numerical
calculations. Numerical calculations are made for an assumed range of the indepen-
dent variable z in this equation (0 < z < zmax). Poisson’s ratio in this equation is as-
sumed equal to 0.3. Some of the results obtained in computations are shown in Fig. 2,
where the plots illustrate distributions of the functions Rm(z) for chosen numbers
m = 0, 1, .... The set of roots zm

i (zeros of the functions Rm(z)) is set down in Table 1.
It is important to note that the roots of (27) depend only on Poisson’s ratio, which is
assumed to be constant for all cases considered. In this way, the eigenfrequencies ωm

i
of a specified plate of given thickness δ and radius a are obtained directly by means of
the general eigenfrequencies – zeros zm

i = λ
m
i a of the fundamental relation (27). The

plate eigenfrequencies are described by the formula (compare with equations 8 and
11)

ωm
i =

(zm
i
a

)2
√

D∗
(ρ · δ)plate

= (λm
i )2

√
D∗

(ρ · δ)plate
. (28)

Fig. 2. Distributions of functions Rm(z) for chosen values of m
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Table 1. Roots zm
i of equation (27)

m
i 0 1 2 3 4
1 2.2215 3.7280 5.0609 6.3211 7.5393
2 5.4515 6.9626 8.3735 9.7236 11.0318
3 8.6113 10.1377 11.5886 12.9874 14.3475
4 11.7602 13.2966 14.7716 16.2013 17.5956
5 14.9068 16.4488 17.9399 19.3910 20.8098
6 18.0512 19.5976 21.1001 22.5669 24.0042
7 21.1948 22.7444 24.2554 25.7343 27.1860
8 24.3378 25.8899 27.4076 28.8960 30.3593
9 27.4805 29.0346 30.5576 32.0538 33.5265
10 30.6230 32.1786 33.7060 35.2086 36.6893

For known values of λm
i = zm

i

/
a, equation (22) and the first condition in (23) lead

to the following set of eigenfunctions of the plate vibrating in air:

Fm
i (r, ϕ) = cos(mϕ)

Jm
(
λir

)
−

Jm
(
λia

)
Im

(
λia

) Im
(
λir

) , λi=
zm

i
a
,

m = 0, 1, ..., i = 1, 2, ... .
(29)

It is important to note here that m and i are independent numbers. It is a simple matter
to prove that for different values of λm

i and λn
j (with i , j), the functions Fm

i (r, ϕ) are
orthogonal within the plate domain, i.e. for arbitrary numbers i , j, the following
relation holds: ∫∫

S

Fm
i Fn

j dS =
2π∫

0

a∫
0

Fm
i (r, ϕ) · Fn

j (r, ϕ) · r drdϕ = 0. (30)

This important property will be exploited in the further part of this research, when
vibrations of the plate submerged in fluid are considered. The solution obtained is
illustrated in Fig. 3, where the plots show the distribution of Fm

i (r, ϕ = const.) within
the range 0 ≤ r ≤ a.

4. Free Vibrations of the Plate Submerged in Fluid

With respect to equation (6), it is necessary to find the potential Φ(r, ϕ, z, t) satisfying
the harmonic equation and appropriate boundary conditions. As in the previous case
of vibrations in air, the steady harmonic problem is considered in which the time
factor may be eliminated from equations describing the plate-fluid motion. Thus, the
following substitutions are made:

w(r, ϕ, t) = W (r, ϕ) · exp(iωt),
Φ(r, ϕ, z, t) = iω · φ(r, ϕ, z) · exp(iωt). (31)
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Fig. 3. Eigenfunctions of the plate vibrating in air
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These equations allow us to reduce the description of the phenomenon to two space
functions: W (r, ϕ) and φ(r, ϕ, z). At the same time, the boundary condition at the upper
and lower plate surfaces reads

∂w

∂t
=
∂Φ
∂z

∣∣∣∣∣
at plate surface

= W (r, ϕ). (32)

In the further discussion, it is convenient to divide the fluid domain into three
parts: the finite cylindrical domain below the plate, the finite domain above the plate
and the infinite layer of fluid except for these finite cylindrical domains and the plate.
In description of the problem within these parts, it is convenient to employ separate
vertical coordinates (z variable in the potential functions). In accordance with results
of the previous section, the unknown deflection W (r, ϕ) of the plate is expressed in
terms of the eigenfunctions Fm

i (r, ϕ) obtained for the plate vibrating in air. Thus, in
place of equation (22), we have

W (r, ϕ) =
∑

i=1,2,...

∑
m=0,1,...

Am
i · F

m
i (r, ϕ) . (33)

In the further discussion, however, another description of this deflection will also be
employed, which corresponds directly to equation (22):

W (r, ϕ) =
∑

i=1,2,...

∑
m=0,1,...

cos(mϕ) ·
[
Am

i Jm(λir) + Bm
i

Im(λir)
Im(λia)

]
. (34)

This formula is more convenient in describing boundary conditions at the plate. In
order to save space and make our discussion clear, we omit the summation with respect
to ‘i’ in our further description of the problem considered. Thus, keeping in mind this
summation, and with respect to boundary conditions at the fluid sub-domains, the
associated potential functions are expressed in the following forms:
– lower fluid domain

φ(r, ϕ, z) = E0 +
∑

m=0,1,...
cos mϕ ·

[
Am cosh λz

λ sinh λd
· Jm(λr)+

−Bm cos λz
λ sin λd

Im(λr)
Im(λa)

+
∑

n=1,2,...
Em

n cos knz ·
Im(knr)
Im(kna)

 , kn =
nπ
d
, n = 1, 2 . . .

(35)

where E0 and Em
n are constants;

– upper fluid domain

φ(r, ϕ, z) =
∑

m=0,1,... cos mϕ ·
[
−Am 1

λw∗
(
exp(−λz) − exp λ(z − 2h)

)
· Jm(λr)+

+Bm 1
λ

(sin λz − sin λh) Im(λr)
Im(λa)

+
∑

n=1,2,...
Dm

n cos k∗nz ·
Im(k∗nr)
Im(k∗na)

 ,
w∗= 1 + exp(−2λh), k∗n =

(2n − 1)π
2h

, n = 1, 2 . . .,

(36)
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where Dm
n are constants;

– infinite layer of fluid

φ(r, ϕ, z) =
∑

m=0,1,...
cos mϕ

∑
j=1,2,...

Cm
j · Km(k jr) cos k jz, k j =

(2 j − 1)π
2H

,

j = 1, 2 . . . ,
(37)

where Cm
j are constants.

One can check that equations (36) and (37) satisfy boundary condition (32). A re-
mark is needed. The multiplier of Bm in equation (35) contains the denominator
λ · sin λd · Im(λa). It may happen that λd = s · π, where s is an integer, and thus, the de-
nominator goes to zero. This case corresponds to the trivial solution W (r, ϕ) = 0, and
therefore, the associated components with Am and Bm in the potential function (35)
should be cancelled out. It means that only cases with λd , s · π are taken into account
in equation (35). Obviously, solutions (35), (36) and (37) must satisfy boundary con-
ditions at the common boundaries of the fluid sub-domains at r = a. These conditions
mean that the fluid pressure and the fluid velocity at these boundaries must be uniquely
defined by the solutions mentioned. Accordingly, the constants E0, Em

n ,Dm
n and Cm

j in
equations (35), (36) and (37) are not independent. In order to find relations between
them, let us consider, in the first step, the pressure condition at the common boundaries
of the lower and infinite fluid domains. At r = a, the following relation holds:

E0+

+
∑

m=0,1,...
cos mϕ ·

[
Am cosh λz

λ sinh λd
· Jm(λa) −Bm cos λz

λ sin λd
+

∑
n=1,2,...

Em
n cos knz

=
=

∑
m=0,1,...

cos mϕ ·
∑

j=1,2,...
Cm

j · Km(k ja) cos k jz,

kn =
nπ
d
, k j =

2 j − 1
2H

π, n, j = 1, 2, . . .

(38)

In order to find the desired relations between constants of the solution, equation (38) is
multiplied in succession by 1, cos k1z, . . . , cos knz, . . . and then integrated in the range
0 ≤ z ≤ d, 0 ≤ ϕ ≤ 2π. The respective integrals of this procedure read

JAn =

d∫
0

cosh λz
λ sinh λd

cos knz dz =
(−1)n

λ2 + (kn)2 , kn =
nπ
d
, n = 0, 1, 2, . . . , (39)

JBn =

d∫
0

cos λz
λ sin λd

cos knz dz =


(−1)n

λ2 − (kn)2 , λ , kn ,

λ = kn excluded from solution ,
(40)
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JCn
j =

d∫
0

cos k jz · cos knz dz =


(−1)nk j

(k j)2 − (kn)2 sin k jd for k j , kn ,

d
2

for k j=kn .

(41)

These formulae hold for arbitrary λ = λ1, λ2, . . .. For m = 0 and kn = 0, the above
procedure gives

E0 =
1
d

 1
λ2

[
−A0J0(λa) + B0

]
+

∑
j=1,2...

C0
j · K0(k ja)

sin k jd
k j

 . (42)

In a similar way, for n = 1, 2, . . ., m = 0, 1, . . ., the following relation is obtained:

Em
n =

2
d

−AmJm(λa) · JAn + Bm · JBn +
∑

j=1,2,...
Cm

j · Km(k ja) · JCn
j

 . (43)

Equations (42) and (43) enable us to express all the constants E0, Em
n (n = 1, 2, . . .,

m = 0, 1, . . .) in terms of the remaining constants, i.e. in terms of Am, Bm and Cm
j . It

should be stressed that all these relations depend on λ. For the upper fluid domains,
the associated boundary conditions at the common boundaries lead to the following
relation:

φ(r = a) =
∑

m=0,1,...
cos mϕ ·

[
−Am 1

λw∗
(
exp(−λz) − exp λ(z − 2h)

)
· Jm(λa)+

+Bm 1
λ

(sin λz − sin λh) +
∑

n=1,2,...
Dm

n cos k∗nz

=
=

∑
m=0,1,...

cos mϕ ·
∑

j=1,2,...
Cm

j · Km(k ja) · cos k j(z + c),

w∗= 1 + exp(−2λh), k∗n =
(2n − 1)π

2h
, n = 1, 2 . . . ,

k j =
(2 j − 1)π

2H
, j = 1, 2, . . .

(44)

A consecutive multiplication of terms in this equation by cos k∗1z, cos k∗2z, ... and in-
tegration of results in the range 0 ≤ z ≤ h , gives the following set of integrals:

KAn =

h∫
0

[
exp(−λz) − exp λ(z − 2h)

]
λw∗

cos k∗nz dz =
1

λ2 + (k∗n)2 ,

k∗n =
(2n − 1)π

2h
, n = 1, 2, . . .,

(45)
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KBn =

h∫
0

(sin λz − sin λh)
λ

cos k∗nz dz =

=


1

λ2 − (k∗n)2

[
1 +

(−1)nλ sin λh
k∗n

]
for λ , k∗n,

−
1
2
λ2 for λ =k∗n ,

(46)

KCn
j =

h∫
0

cos k j(z + c) cos k∗nz dz =

=


k j sin k jc

(k∗n)2 − (k j)2 for k∗n , k j ,

1
2k j

(
k jh · cos k jc − sin k jc

)
for k j = k∗n.

(47)

With respect to these formulae and the procedure applied, equation (44) gives

Dm
n =

2
h

AmJm(λa) · KAn − Bm · KBn +
∑

j=1,2,...
Cm

j · Km(k ja) · KCn
j

 . (48)

Equations (43) and (48) allow us to eliminate two sets of constants from the equa-
tions of the problem considered. In order to eliminate the set of constants Cm

j , the
remaining boundary condition is applied that the velocity component normal to the
fluid boundary between the finite (cylindrical) and infinite fluid domains (infinite layer
of fluid) must be the same. To write this condition, it is necessary to calculate the nor-
mal fluid velocities. Following the potential functions described by equations (35),
(36) and (37), the radial fluid velocities are:

– lower fluid domain

∂φ

∂r

∣∣∣∣∣
r=a
=

∑
m=0,1,...

cos mϕ ·
[
Am cosh λz

sinh λd
·

dJm(u)
du

+ Bm cos λz
sin λd

dIm(u)
du

1
Im(λa)

+

+
∑

n=1,2,...
Em

n kn cos knz ·
dIm(un)

dun

∣∣∣∣∣
un=kna

1
Im(kna)

 ,
u = λr, un=knr, kn =

nπ
d
, n = 1, 2 . . .

(49)
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– upper fluid domain

∂φ

∂r

∣∣∣∣∣
r=a
=

∑
m=0,1,...

cos mϕ ·
[
−Am 1

w∗
(
exp(−λz) − exp λ(z − 2h)

)
·

dJm(u)
du

+

+ Bm (sin λz − sin λh) dIm(u)
du

1
Im(λa)

+

+
∑

n=1,2,...
Dm

n k∗n cos k∗nz ·
dIm(un)

dun

∣∣∣∣∣
un=k∗na

1
Im(k∗na)

 ,
u = λr, un = k∗nr, w∗= 1 + exp(−2λh), k∗n =

(2n − 1)π
2h

, n = 1, 2 . . . ;

(50)

– infinite layer of fluid

∂φ

∂r

∣∣∣∣∣
r=a
=

∑
m=0,1,...

cos mϕ
∑

j=1,2,...
Cm

j · k j
dKm(u j)

du j

∣∣∣∣∣∣
u j=k ja

cos k jz,

u j = k jr, k j =
(2 j − 1)π

2H
, j = 1, 2 . . .

(51)

Equation (51) describes the fluid velocity at the boundary of the infinite fluid do-
main at r = a, 0 ≤ z ≤ H . In a similar way, equation (49) describes this velocity at the
same boundary of the lower cylindrical finite domain at r = a, 0 ≤ z ≤ d, and finally,
equation (50) expresses the fluid velocity at this boundary of the upper cylindrical
fluid domain at r = a, 0 ≤ z ≤ h. In the above equations, the independent variable
z is taken as a local coordinate. From these equations, it follows that, in matching
solutions at r = a, one may neglect the series with respect to m in the above relations
and write the boundary condition for arbitrary m = const as

∑
j=1,2,...

Cm
j · k j · K ′m(k ja) cos k jz

∣∣∣∣∣∣∣∣
0≤z≤H

=

=

[
Am cosh λz

sinh λd
J ′m(z∗) − Bm cos λz

sin λd
I ′m(z∗)
Im(z∗)

+

+
∑

n=1,2...
Em

n kn cos knz
I ′m(kna)
Im(kna)


∣∣∣∣∣∣∣
0≤z≤d

+

+


−Am 1

w∗
[
exp(−λz) − exp λ(z − 2h)

]
J ′m(z∗)+

Bm (sin λz − sin λh)
I ′m(z∗)
Im(z∗)

+
∑

n=1,2...
Dm

n k∗n cos k∗nz
I ′m(k∗na)
Im(k∗na)


∣∣∣∣∣∣∣∣∣∣∣
0≤z≤∼h

.

(52)

In this relation, prime denotes derivatives of Bessel functions with respect to their
argument and z∗ = λa. In order to express the constants Cn

j in terms of the remaining
constants, equation (52) is multiplied in succession by the functions cos k1z, cos k2z, . . .,
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cos k jz, . . . with k j = (2 j − 1)π/(2H) and then integrated in the range 0 ≤ z ≤ H . To
carry out the above procedure, we need the following integrals:

RA j =

d∫
0

cosh λz
sinh λd

cos k jz dz+

−

H∫
c

1
w∗

[
exp−λ(z − c) − exp λ(z − c − 2h)

]
cos k jz dz =

=
1

λ2 + (k j)2

[
λ
(
cos k jd − cos k jc

)
+

+k j

(
sin k jd

cosh λd
sinh λd

+ sin k jc
sinh λh

cosh λhd

)]
,

(53)

RB j = −

d∫
0

cos λz
sin λd

cos k jz dz +
H∫

c

[sin λ(z − c) − sin λh] cos k jz dz =

=



1
λ2 − (k j)2

[
k j

cos λd
sin λd

sin k jd − λ cos k jd+

+λ cos k jc + (−1) j · k j · sin λh
]
+

+
sin λh

k j

[
sin k jc + (−1) j

]
for sin λd , 0, λ , k j ,

−
1
4λ

1
sinλd

(2λd + sin 2λd) +
sin λh
λ

(sin λc − sin λH) −
h
2

sin λc+

+
1
4λ

(sin λh · sin λH + cos λc) for sin λd , 0, λ = k j ,

(54)

RCn
j =

d∫
0

kn cos knz · cos k jz dz =

=


(−1)nknk j

(k j)2 − (kn)2 sin k jd for kn , k j ,

knd
2

for kn = k j , kn =
nπ
d
, n = 1, 2 . . . ,

(55)

RDn
j =

H∫
c

k∗n cos k∗n(z − c) · cos k jz dz =

=


−

k jk∗n
(k j)2 − (k∗n)2 sin k jc for k j , k∗n,

1
2

(
(k jh) · cos k jc − sin k jc

)
for k j = k∗n,

k j =
2 j − 1

2H
π, k∗n =

2n − 1
2h

π, j, n = 1, 2, . . . .

(56)
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In accordance with these formulae and equation (52), one obtains

Cm
j =

2
k jH

1
K ′m(k ja)

{
AmJ ′m(λa)RA j + Bm I ′m(λa)

Im(λa)
RB j+

+
∑

n=1,2...
Em

n
I ′m(kna)
Im(kna)

RCn
j +

∑
n=1,2...

Dm
n

I ′m(k∗na)
Im(k∗na)

RDn
j

 .
(57)

Substitution of this relation into equation (43) gives

AmJm(λa) · JAn − Bm · JBn +
d
2

Em
n =

∑
j=1,2,...

Cm
j · K

m(k ja) · JCn
j =

=
∑

j=1,2,...

2
k jH

Km(k ja)
K ′m(k ja)

{
AmJ ′m(λa)RA j + Bm I ′m(λa)

Im(λa)
RB j+

+
∑

n=1,2...
Em

n
I ′m(kna)
Im(kna)

RCn
j +

∑
n=1,2...

Dm
n

I ′m(k∗na)
Im(k∗na)

RDn
j

 JCn
j ,

m = 0, 1, 2, . . . , n = 1, 2, . . . .

(58)

At the same time, from substitution of equation (57) into equation (48), the following
is obtained:

−AmJm(λa) · KAn + Bm · KBn +
h
2

Dm
n =

∑
j=1,2,...

Cm
j · K

m(k ja) · KCn
j =

=
∑

j=1,2,...

2
k jH

Km(k ja)
K ′m(k ja)

{
AmJ ′m(λa)RA j + Bm I ′m(λa)

Im(λa)
RB j+

+
∑

n=1,2...
Em

n
I ′m(kna)
Im(kna)

RCn
j +

∑
n=1,2...

Dm
n

I ′m(k∗na)
Im(k∗na)

RDn
j

 KCn
j ,

m = 0, 1, 2, . . . , n = 1, 2, . . . .

(59)

Formally, equations (58) and (59) allow us to express all the constants Em
n ,Dm

n in
terms of the constants Am and Bm. It should be stressed, however, that these coupled
equations correspond to an infinite number of these constants (n = 1, 2, ...,∞), and
therefore, in order to find the desired relations, it is necessary to resort to a finite
number of terms in the infinite series entering these equations and to solve the result-
ing system of algebraic equations by means of a numerical procedure. It is perhaps
important to add here that, in calculating quotients of the Bessel functions entering
equations (58) and (59), for a relatively large arguments, it is necessary to resort to
asymptotic expansions of these functions (for details see Antoniewicz 1969). Thus, in
order to make our further discussion clear, let us denote by ne, nd and n j the numbers
of terms taken into account in the series corresponding to Em

n , Dm
n and Cm

j , respec-
tively. For such a finite system, it is reasonable to resort to a matrix notation, which is
more convenient in description of the phenomenon. Thus, the finite set of constants
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Cm
j is described as the matrix vector (Cm) of n j components. Accordingly, equation

(57) is written in the following form:

(Cm) =
[
Gm]
·
{
AmJ ′m(z) (RA) + Bm I ′m(z)

Im(z)
(RB)+

+ [RC] · [BT A] · (Em) + [RD] · [BTB] · (Dm)} ,
(60)

where Gm is a square diagonal matrix with the elements

Gm
j =

2
k jH

1
K ′m(k ja)

, j = 1, 2, ..., n j (61)

and BT A and BTB are also square diagonal matrices with the elements

BT Am
n =

I ′m(kna)
Im(kna)

, n = 1, 2, . . . , ne, BT Bm
n =

I ′m(k∗na)
Im(k∗na)

, n = 1, 2, . . . , nd. (62)

The matrices RC and RD in equation (60) are the rectangular matrices (n j × ne)
and (n j × nd) with elements defined by equations (55) and (56), respectively.

Denoting by GA a square diagonal matrix with the elements

GAm
j =

2
k jH

Km(k ja)
K ′m(k ja)

, j = 1, 2, . . . , n j (63)

and substituting the above formulae into equation (58), we arrive at the following
matrix relation:

AmJm(z) (J A) − Bm (JB) +
d
2

(Em) =

= [JC] ·
[
GAm]

·

{
AmJ ′m(z) (RA) + Bm I ′m(z)

Im(z)
(RB)+

+ [RC] · [BT A] · (Em) + [RD] · [BTB] · (Dm)} ,

(64)

where J A and JB are vector matrices defined by equations (39) and (40), and JC is
a square matrix with elements described by equation (41).

In a similar way, equation (59) leads to the matrix equation

−AmJm(z) (K A) + Bm (KB) +
h
2

(Dm) =

= [KC] ·
[
GAm]

·

{
AmJ ′m(z) (RA) + Bm I ′m(z)

Im(z)
(RB)+

+ [RC] · [BT A] · (Em) + [RD] · [BTB] · (Dm)} ,

(65)

where K A and KB are vector matrices and KC is a square matrix, with elements
described by equations (45), (46) and (47), respectively. At the same time, matrix
equation (64) consists of ne equations corresponding to Em

n unknown parameters, and
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equation (65) corresponds to nd equations inherent for Dm
n constants. In order to sim-

plify our further discussion, it is convenient to introduce the following substitutions:

(W1) = J ′m(z) ·
[
GAm]

· (RA) , (66)

(W2) =
I ′m(z)
Im(z)

·
[
GAm]

· (RB) , (67)

[W3] =
[
GAm]

· [RC] · [BT A] , (68)

[W4] =
[
GAm]

· [RD] · [BTB] . (69)

In view of these relations, equations (64) and (65) are reduced to the following forms:{
d
2

[I] − [JC] · [W3]
}
· (Em) − [JC] · [W4] · (Dm) =

= Am {[JC] · (W1) − Jm(z) (J A)} + Bm {[JC] · (W2) + (JB)}
(70)

and
− [KC] · [W3] · (Em) +

{
h
2

[I] − [KC] · [W4]
}
· (Dm) =

= Am {[KC] · (W1) + Jm(z) (K A)} + Bm {[KC] · (W2) − (KB)}.
(71)

For known values of d, h,m and λ and for a finite number of constants taken into
account in the description of the phenomenon, this system of algebraic equations may
be solved numerically. The final result of computations may be expressed in the fol-
lowing form:

(Em) = Am (R1) + Bm (R2) ,
(Dm) = Am (R3) + Bm (R4) . (72)

From substitution of these solutions into equation (60), we obtain

(Cm) =
[
Gm]
·

{
AmJ ′m(z) (RA) + Bm I ′m(z)

Im(z)
(RB)+

+ [RC] · [BT A] · [Am (R1) + Bm (R2)]+
+ [RD] · [BTB] · [Am (R3) + Bm (R4)]} =

= Am (R5) + Bm (R6) .

(73)

In order to complete the solution, it is necessary to find the constant E0. For m > 0,
this constant equals zero. For m = 0, equation (42) gives

E0 =
1
d

{
1
λ2

(
−A0J0(λa) + B0

)
+

(
KS0

)T
·
(
A0(R5) + B0(R6)

)}
=

= ε1A0 + ε2B0,

(74)

where (
KS0

)T
=

[
· · · ,K0(k ja)

sin k jd
k j

, · · ·

]
(75)
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is a row matrix of n j elements. Knowing the constants (Cm), (Dm), (Em) and E0, it
is a simple task to express the velocity potential functions in the finite and infinite
domains in terms of Am and Bm, which are the independent parameters (variables)
of the problem description presented above. This description can be easily reduced to
one parameter – in our case, Am. With the results obtained, one may solve the problem
of free vibrations of the plate submerged in fluid.

5. Added Mass of Fluid and Fundamental Frequencies of the Plate
Vibrating in Fluid

Free vibrations of an elastic plate immersed in fluid are described by equations (6) and
(31). The boundary condition at the common boundary between the plate and fluid
means that the plate velocities, normal to the plate surface, are equal to fluid velocities.
This boundary condition leads to equation (32), which defines the boundary condition
in space variables (time factor does not enter this equation). Substitution of relations
(31) into equation (6) gives

∇2∇2W +
m∗

D∗
[
−ω2W +

ρ

m∗
(
−ω2φ

∣∣∣
low. + ω

2φ
∣∣∣
upp.

)]
= 0, (76)

where m∗ = (ρplate − ρfluid) · δ and ρ = ρfluid . This equation is written in the following
form:

∇2∇2W − α4
[
W +

ρ

m∗
(
φ|low. − φ|upp.

)]
= 0, (77)

where α4 = (ωc)2 and c2 = m∗/D∗.
Compared with equation (10), it contains additional terms corresponding to values

of the potential functions at the lower and upper surfaces of the plate. These terms are
responsible for the mass of the fluid vibrating together with the plate. The unknown
displacement W (r, ϕ) (amplitude of vibrations) is described by a linear combination
of eigenfunctions of the plate vibrating in air, i.e.

W (r, ϕ) =
∑

m=0,1,2...

∑
i=1,2,...

cos(mϕ)
[
Am

i Jm(λir) + Bm
i

Im(λir)
Im(λia)

]
=

=
∑

m=0,1,2...

∑
i=1,2,...

Am
i cos(mϕ)

[
Jm(λir) −

Jm(λia)
Im(λia)

Im(λir)
]
=

=
∑

m=0,1,2...

∑
i=1,2,...

Am
i Fm

i (r, ϕ),

(78)

where Fm
i (r, ϕ) are defined by equation (29).

Obviously, each of these functions satisfies equation (10), and thus, the following
relation holds:

∇2∇2Fm
i = (λm

i )4Fm
i . (79)
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Substitution of equations (78) and (79) into (77) gives∑
m

∑
i

Am
i
(
λm

i
)4 Fm

i (r, ϕ) − α4
∑

m

∑
i

Am
i Fm

i (r, ϕ) +
ρ

m∗
(
φ|low. − φ|upp.

) = 0. (80)

The solution procedure displayed above is based on the set of eigenfunctions
Fm

i (r, ϕ) of the plate vibrating in air. These functions are unique within multiplica-
tion by a real number. Since the present problem is linear, the potential functions
entering this equation may be obtained by a linear combination of potential functions
corresponding to each of these eigenfunctions. On the other hand, the plate deflection
is governed by a bi-harmonic partial differential equation, while the potential function
should satisfy the harmonic equation. With respect to that and because of boundary
conditions at the common plate-fluid boundary, it is impossible to employ directly
the plate functions Fm

i (r, ϕ) in the description of the potential functions. And thus,
the term with the potentials in equation (84) is written in the following form:

φ|low.− φ|upp.= E0 +
∑

m=0,1,...
cos mϕ ·

[
Am

(
cosh λd
λ sinh λd

+
sinh λh
λ cosh λh

)
Jm(λr) +

− Bm
(

cos λd
λ sin λd

−
sin λh
λ

)
Im(λr)
Im(λa)

+

ne∑
n=1

Em
n (−1)n Im(knr)

Im(kna)
−

nd∑
n=1

Dm
n

Im(k∗nr)
Im(k∗na)

, (81)

where Bm = −AmJm(λa).
From substitution of equation (81) into equation (80), one obtains∑
m

∑
i

Am
i Fm

i (λm
i )4 − α4

〈∑
m

∑
i

Am
i Fm

i +

+
ρ

m∗

∑
i

E0
i +

∑
m

∑
i

cos mϕ
[
Am

i

( cosh λm
i d

λm
i sinh λm

i d
+

sinh λm
i h

λm
i cosh λm

i h

)
×

× Jm(λm
i r) + +Bm

i

( cos λm
i d

λm
i sin λm

i d
−

sin λm
i h

λm
i

) Im(λm
i r)

Im(λm
i a)
+

+

ne∑
n=1

Em
n (−1)n Im(knr)

Im(kna)
−

nd∑
n=1

Dm
n

Im(k∗nr)
Im(k∗na)



〉
= 0.

(82)

Each constant E0
i in this equation depends solely on A0

i and B0
i . The constants Em

n
and Dm

n also depend on i. The expression in the curly brackets describes the added
(co-vibrating) mass of fluid. Equation (82) is our fundamental equation for the prob-
lem of free vibrations of the plate in fluid. In order to find a standard set of alge-
braic equations for the eigenvalue problem considered, equation (82) is multiplied
in succession by Fm

i (r, ϕ) and then integrated in the range (0 ≤ r ≤ a, 0 ≤ ϕ ≤ 2π).
Obviously, these functions are orthogonal within the range of this integration. Since



Added Mass of Fluid and Fundamental Frequencies of a Horizontal . . . 183

all constants in this equation, corresponding to chosen m, depend solely on m, the final
system of equations of the problem may be decoupled into a set of matrix equations,
each of which corresponds solely to m. In this way, instead of a relatively large system
of equations, we can consider a set of individual subsets containing a smaller number
of equations. This feature of equations (82) simplifies numerical computations. With
respect to the above, for the assumed m = const, the fundamental equation of the
problem is reduced to the following one:∑

i
Am

i Fm
i (λm

i )4 − α4
〈∑

i
Am

i Fm
i +

+
ρ

m∗

∑
i

E0
i +

∑
i

cos mϕ
[
Am

i

( cosh λm
i d

λm
i sinh λm

i d
+

sinh λm
i h

λm
i cosh λm

i h

)
Jm(λm

i r) +

+ Bm
i

( cos λm
i d

λm
i sin λm

i d
−

sin λm
i h

λm
i

) Im(λm
i r)

Im(λm
i a)
+

+

ne∑
n=1

Em
n (−1)n Im(knr)

Im(kna)
−

nd∑
n=1

Dm
n

Im(k∗nr)
Im(k∗na)



〉
= 0.

(83)

For the case m > 0, the term with the constants E0
i in this equation should be cancelled

out. As mentioned above, in deriving algebraic equations, it is necessary to perform
integrations of the products of the functions Fm

i (r, ϕ) with functions entering equation
(83), i.e. we have to calculate the following integrals:

a∫
0

f (r) · Fm
i (r, ϕ = 0) · r dr, (84)

where f (r) denotes functions, mainly Bessel functions, of the following form:

f (r) =
=

[
Fm(r)

i , 1, J0(λ1r), . . . , J0(λ3r), I0(λ1r), . . . , I0(λ3r), I0(knr), . . . , I0(k∗nr)
]
.

(85)

The system of equations obtained in this way contains all the constants entering
equation (83) for i = 1, 2, . . . , imax. Since the constants E0, Em

n ,Dm
n and Bm depend on

Am, the final system of equations of the problem corresponds solely to the constants
Am

i (i = 1, 2, . . . , imax). Each equation of this system is then multiplied by

γm
i =

1
(λm

i )4 ·
1∥∥∥Fm
i

∥∥∥ , where
∥∥∥Fm

i

∥∥∥ = a∫
0

(Fm
i )2 · r dr. (86)

By the manipulations described above, the following homogeneous system of equa-
tions is obtained:

[AM] · (A) = 0, (87)
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where (A) is the vector of constants A1, A2, . . . , Aimax , and [AM] is the fundamental
matrix of the problem.

Accordingly, with this equation, the problem considered is reduced to the eigen-
values problem of the matrix [AM]. For example, for imax = 3, the fundamental matrix
may be expressed in the following form:

[AM] =



∥∥∥Fm
1

∥∥∥ + ρ

m∗
(. . .)

ρ

m∗
(. . .)

ρ

m∗
(. . .)

ρ

m∗
(. . .)

∥∥∥Fm
2

∥∥∥ + ρ

m∗
(. . .)

ρ

m∗
(. . .)

ρ

m∗
(. . .)

ρ

m∗
(. . .)

∥∥∥Fm
3

∥∥∥ + ρ

m∗
(. . .)


×

×

 γ
m
1
γm

2
γm

3

 .
(88)

The eigenvalues βi of this matrix relate to αi in equation (81) through the formula

(αi)4 =
1
βi
. (89)

6. Numerical Examples

The solution of the problem presented above is illustrated by numerical examples. Two
steel plates of radii a = 0.5 m and a = 1.0 m, and thickness δ = 4 mm are considered.
These plates are installed in a layer of fluid of depth H = 0.6 m at a certain distance
from the fluid bottom. Since the fluid pressure load on the plate depends on the width
of the gap between the plate and the fluid bottom, a set of gap widths is considered.
For each assumed gap, a set of the fundamental frequencies of the plate submerged
in fluid is calculated. For comparison, a set of eigenfrequencies of the plate vibrating
in air is also calculated. Some of the results obtained in calculations are drawn up in
Table 2. The changes in eigenfrequencies associated with changing gap widths are
illustrated in Fig. 4, where the plots show the distribution of fundamental frequencies
versus the gap width. From the data collected in this table and from the plots in this
figure, it may be seen that the maximum reduction in the eigenfrequency takes place
for the lowest eigenfrequencies of the plate. From the practical point of view, the most
important is the reduction of these lowest frequencies.

7. Concluding Remarks

The formulation developed in this paper makes it possible to calculate the co-vibrating
mass of fluid and the set of eigenfrequencies of a circular horizontal thin elastic plate
submerged in fluid of constant depth. As compared to vibrations of the plate in air,
the most important result of these investigations is an assessment of the reduction in
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Table 2. Eigenfrequencies ωm
i of the plate vibrating in air and water

Plate radius [cm]
a = 50 a = 100

m i 1 2 3 1 2 3
0 124.406 749.192 1869.356 31.101 187.298 467.338

ai
r 1 350.348 1222.077 2590.755 87.586 305.519 647.688

2 645.671 1767.539 3385.436 161.417 441.884 846.359
0 2.461 89.541 174.188 1.291 17.431 66.673

d
=

1

1 2.638 99.967 386.231 5.440 35.421 107.368
2 6.487 196.218 547.888 13.668 61.155 158.814
0 3.334 110.536 188.620 1.808 23.887 89.594

d
=

2

1 3.709 132.594 392.238 7.560 48.244 143.397
2 9.079 252.568 558.060 18.835 82.568 210.21
0 3.924 120.008 201.709 2.192 28.375 104.581

d
=

3

1 4.516 153.074 395.734 9.100 56.972 166.407
2 11.016 284.581 565.951 22.487 96.737 242.074
0 4.366 125.177 212.265 2.504 31.807 115.394

d
=

4

1 5.186 167.336 398.277 10.329 63.507 182.615
2 12.611 304.983 572.305 25.322 107.059 263.901
0 4.715 128.423 220.447 2.771 34.551 123.570

d
=

5

1 5.768 177.792 400.243 11.353 68.622 194.574

w
at

er
ga

p
w

id
th

[c
m

]

2 13.988 318.784 577.423 27.624 114.928 279.579
0 5.001 130.667 226.696 3.003 36.804 129.928

d
=

6

1 6.285 185.709 401.803 12.230 72.733 203.644
2 15.208 328.478 581.543 29.541 121.088 291.159
0 5.242 132.319 231.425 3.210 38.688 134.965

d
=

7

1 6.754 191.840 403.061 12.993 76.093 210.646
2 16.310 335.463 584.869 31.165 125.996 299.870
0 5.448 133.591 234.969 3.397 40.284 139.009

d
=

8

1 7.184 196.671 404.092 13.666 78.875 216.122
2 17.317 340.584 587.574 32.558 129.957 306.507
0 5.629 134.600 237.581 3.566 41.650 142.290

d
=

9

1 7.582 200.531 404.953 14.264 81.200 220.444
2 18.247 344.383 589.800 33.765 133.182 311.610
0 5.789 135.418 239.456 3.722 42.828 42.828

d
=

10

1 7.953 203.651 405.688 14.801 83.156 223.879
2 19.111 347.220 591.664 34.817 135.828 315.560

the plate eigenfrequencies due to the co-vibrating mass of fluid. At the same time, the
theory developed here makes it possible to assess the influence of the gap width on this
reduction. The maximum reduction in the eigenfrequency of the plate takes place for
the smallest gap width. With growing gap width, the corresponding eigenfrequencies
go asymptotically to a constant value.
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Fig. 4. Distribution of the fundamental frequencies versus the gap width
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