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Abstract
A transformation of gravitational waves in fluid of constant depth with a crushed ice layer
floating on the free fluid surface is considered. The propagating waves undergo a slight damp-
ing along their path of propagation. The main goal of the study is to construct an approximate
descriptive model of this phenomenon. With regard to small displacements of the free surface,
a viscous type model of damping is considered, which corresponds to a continuous distribution
of dash-pots at the free surface of the fluid. A constant parameter of the dampers is assumed
in advance as known parameter of damping. This parameter may be obtained by means of
experiments in a laboratory flume.
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1. Introduction

Under natural winter conditions, crushed ice layers may emerge in some costal sea
zones. The sea surface in such zones is covered with floating nubbles of ice. Water
waves arriving from the open sea undergo changes associated with these nubbles.
These changes result from a small dissipation of the wave energy due to collisions
between individual nubbles and to differences in the velocities of the ice nubbles and
fluid. With respect to the size, shape and space distributions of the nubbles, where all
these parameters are random, it is impossible to follow individual elements in a de-
scription of the phenomenon. Therefore, for practical reasons, we resort to a macro-
scopic description of this phenomenon, in which the wave damping is modelled by
means of viscous dampers continuously distributed over the sea surface. An unknown
parameter of the dampers may be obtained from laboratory experiments in a flume
or by measurements of the sea elevation carried out under natural conditions. It may
be changed in a certain range, dependent on local conditions, inherent for the coastal
zone under consideration. Such a solution of the problem is similar to the one used
by Lysmer & Kuhlemeyer (1969) in constructing absorbing boundary conditions for
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a finite dynamic model, used in description of waves propagating in infinite media.
With respect to the above, in what follows we focus our attention on a continuous
distribution of simple, one-parameter viscous dampers on the free surface of the fluid.

2. Formulation of the Problem

In order to describe a transformation of gravitational waves propagating in water with
a crushed ice layer floating on its free surface, a time-dependent problem is considered
in which the fluid, initially at rest, starts to move at a certain moment in time. To
this end, an initial generation of gravitational waves in a semi-infinite layer of fluid
by a piston – type generator is considered. The generator – fluid system is shown
schematically in Fig. 1.

Fig. 1. Semi-infinite fluid domain with a layer of crushed ice

The problem considered here is similar to a well-known classical problem of
forced vibrations of a damped system with one degree of freedom. In the case of
a steady harmonic forcing of such a system, the oscillations amplitude is largest in the
vicinity of a resonance frequency (eigenfrequency) of the same system when damping
is neglected. Outside this range, when the difference between the forcing frequency
and eigenfrequency of the system is relatively big, the damping of the system ampli-
tude is rather small. It means that in order to asses the influence of damping on the
system response, it would be necessary to force a system oscillation with a frequency
that is closed to the resonance frequency of the system. In the case of a system with
an infinite number of degrees of freedom, the associated resonance frequencies of the
system are not known in advance, and therefore, in investigation of such a damped
system, it is better to examine the associated impulse response function of the system
at hand. With respect to this, for the initial value problem discussed in this paper, we
confine our attention to a solution describing the free-surface elevation induced by
an unit impulse of the generator motion (unit impulse of its velocity). The impulse
response function of the generator – fluid system contains all information important
in describing the behaviour of the system for arbitrary generations.
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Thus, let us assume that, until the starting point t = 0, the generator – fluid system
is at rest, i.e. the displacement, velocity, and acceleration of the generator plate and
fluid are all equal to zero. In formulating this problem, it is assumed that the incom-
pressible, non-viscous fluid motion is a potential motion with the potential function
φ(x, z, t) satisfying Laplace’s equation

∇2φ =
∂2φ

∂x2 +
∂2φ

∂z2 = 0, (1)

and appropriate boundary and initial conditions.
For the potential motion, the fluid pressure is obtained by linearization of the

Bernoulli equation

p(x, z, t) = ρ
[
g(h − z) −

∂φ

∂t

]
, (2)

where ρ is the fluid density, and g is the gravitational acceleration.
The initial conditions for the velocity potential read:

∂φ

∂t
=
∂φ

∂x
=
∂φ

∂z
= 0 for 0 ≤ x ≤ ∞, 0 ≤ z ≤ h. (3)

At the same time, for the fluid domain considered, the following boundary conditions
hold:

∂φ

∂x

∣∣∣∣∣
x=0
=
∂xg(t)
∂t

,
∂φ

∂z

∣∣∣∣∣
z=0
= 0,

∂φ

∂z

∣∣∣∣∣
z=h
�
∂η

∂t
,(

∂φ

∂t
,
∂φ

∂x
,
∂φ

∂z

)
→ 0 as x → ∞,

(4)

where ∂xg/∂t denotes the horizontal velocity of the generator face (rigid wall OA in
the figure).

Relations (4) are supplemented by the Bernoulli equation, written for points of
the free surface, i.e.

∂φ

∂t
+

1
ρ

pice + gz
∣∣∣∣∣
z=η(x,t)

= 0, (5)

where pice means the additional pressure at the surface, and η(x, t) denotes its eleva-
tion.

In accordance with the above assumption of viscous damping, the second term in
this relation is assumed in the following form:

pice = 2ρgµ
∂φ

∂z

∣∣∣∣∣
z=h

, (6)

where µ is a parameter of the damping.
With respect to this formula, the damping parameter is measured in seconds.
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By differentiating equations (5) and (6) with respect to time, and employing the
third relation in (4), we arrive at the boundary condition for the free surface

∂2φ

∂t2 + 2µg
∂2φ

∂z∂t
+ g

∂φ

∂z

∣∣∣∣∣∣
z=h
= 0. (7)

In constructing a general solution to Laplace’s equation that satisfies the pre-
scribed conditions, we resort to Fourier cosine transforms (Nowacki 1972)

φ∗(s, z, t) =
√

2
π

∞∫
0

φ(x, z, t) cos sx dx,

φ(x, z, t) =
√

2
π

∞∫
0

φ∗(s, z, t) cos sx ds.

(8)

To solve the boundary value problem, we multiply equation (1) by cos sx and
integrate with respect to x over the range (0,∞). This procedure leads to the following
result:

∂2φ∗

∂z2 − s2φ∗ =

√
2
π

∂

∂t
xg(t). (9)

In a similar way, the Fourier transform of equation (7) gives

∂2φ∗

∂t2 + 2µg
∂2φ∗

∂z∂t
+ g

∂φ∗

∂z

∣∣∣∣∣∣
z=h
= 0. (10)

Knowing that ∂φ∗/∂z|z=0 = 0, it is a simple task to find the solution of the Fourier
transform of Laplace’s equation (non-homogeneous linear differential equation 9)

φ∗(s, z, t) = A(s, t) cosh sz −
√

2
π

1
s2
∂xg
∂t

. (11)

From substitution of this solution into equation (10), the following relation is ob-
tained:

∂2A
∂t2 + 2µgs tanh sh

∂A
∂t
+ gs tanh sh · A =

√
2
π

1
s2 cosh sh

∂3

∂t3 xg(t) = F(s, t). (12)

In turn, substitution of
r2 = gs tanh sh (13)

into equation (12) leads to the result

∂2A
∂t2 + 2µr2∂A

∂t
+ r2A = F(s, t). (14)
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To solve this equation, the standard Lagrange method of variation of parameters
is employed, which gives the following general solution:

A(s, t) = C1(s) exp(w1t) +C2(s) exp(w2t)+

+
1

(w2 − w1)

t∫
0

F(s, ξ)
[
expw2(t − ξ) − expw1(t − ξ)

]
dξ,

(15)

where C1 and C2 are constants of the solution, and

w1 = −µr2 − r
√

(µr)2 − 1 = −µr2 − rβ,

w2 = −µr2 + r
√

(µr)2 − 1 = −µr2 + rβ.
(16)

From the initial conditions (3), i.e. at t = 0, it follows that both C1 and C2 are equal
to zero, and thus, equation (15) is reduced to the following one:

A(s, t) =
1

2rβ

t∫
0

F(s, ξ)
[
expw2(t − ξ) − expw1(t − ξ)

]
dξ. (17)

From substitution of this solution into equation (11), one obtains

φ∗(s, z, t) =

=
cosh sz

2rβ

t∫
0

F(s, ξ)
[
expw2(t − ξ) − expw1(t − ξ)

]
dξ −

√
2
π

1
s2
∂xg
∂t

,
(18)

and, finally

φ∗(s, z, t) =
√

2
π

{
1
s2

cosh sz
cosh sh

1
2rβ
×

×

t∫
0

∂2xg
∂ξ2

[
w2 expw2(t − ξ) − w1 expw1(t − ξ)

]
dξ −

1
s2
∂xg
∂t

 .
(19)

The inverse transform of this equation gives the potential function

φ(s, z, t) =
2
π

∞∫
0

cos sx
s2

{
1

2rβ
cosh sz
cosh sh

×

×

t∫
0

∂2xg
∂ξ2

[
w2 expw2(t − ξ) − w1 expw1(t − ξ)

]
dξ −

∂xg
∂t

}
ds.

(20)



92 K. Szmidt

Knowing the velocity potential, it is a simple task to calculate the free-surface
elevation. From substitution of equation (20) into the dynamic boundary condition at
the free surface, one obtains

η(x, t) = −
1
g

(
∂φ

∂t
+ 2µg

∂φ

∂z

)∣∣∣∣∣∣
z=h
=

2
π

∞∫
0

tanh sh
s

cos sx ×

×

t∫
0

∂xg(t − ξ)
∂ξ

exp(−µr2ξ)
[
cosh rβξ − µr

sinh rβξ
β

]
dξds.

(21)

This free-surface elevation depends on the damping parameter µ. With respect to
the range of this parameter, different shapes of the elevation may be obtained. For our
further needs, it is convenient to write this equation in the following form:

η(x, t) =
t∫

0

∂xg(t − ξ)
∂ξ

h(x, ξ)dξ, (22)

where h(x, t) is the impulse response function of the problem considered. This func-
tion denotes the free-surface elevation at point x > 0, induced by the unit impulse of
the generator velocity. With respect to equation (21), the impulse response function
reads

h(x, t) =
2
π

∞∫
0

tanh sh
s

cos sx · exp(−µr2t)
[
cosh rβt − µr

sinh rβt
β

]
ds. (23)

From the solution of the problem, described by equation (22), it follows that all in-
formation about the model description is contained in the impulse response function.
Knowing this function, one may calculate the free-surface elevation for an assumed
generator motion. It is worth adding here that, for the forced periodic generation of
fluid motion, a change in the free-surface elevation due to a crushed ice layer floating
on the surface is a very small quantity. In contrast, the damping of the fluid flow,
due to the crushed ice, is important in the description of time-dependent free fluid
motion. As described above, representative of the latter case is the fluid motion in-
duced by the impulse generation described by the impulse response function. For this
case, the magnitude of the damping parameter (µ > 0) is expected to be important in
the description of the phenomenon. Therefore, in our further investigations we will
concentrate mainly on the examination of the response function properties. To this
end, for an assumed set of space points (x > 0) and damping parameters (µ ≥ 0), dis-
tributions of this function with respect to an assumed range of time (0 ≤ t ≤ tmax) will
be calculated.
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Thus, in the first step, let us consider the case µ = 0, which corresponds to the
free-fluid surface without an ice layer on it. For this case, β = i (imaginary unit), and
the solution is reduced to the following one:

h(x, t) =
2
π

∞∫
0

tanh sh
s

cos sx · cos rt ds. (24)

With respect to the nomenclature of classical mechanics, in analysing vibrations
of a damped system with one degree of freedom, three characteristic cases, depen-
dent on the values of roots of the associated characteristic equation of the system
are distinguished, i.e. under-damped, critically damped and over-damped. Periodic
motion of the system may exist only for weak damping (the under-damped case). In
the over-damped and critically damped cases, the motion is said to be aperiodic.

In the present problem of water waves, we have a system with an infinite number
of degrees of freedom. In this case, in accordance with equations (16), there are also
three formal cases dependent on values of the product µr in these equations. Since µ
and r are non-negative numbers, these cases uniquely correspond to the ranges µr > 1,
µr = 1 and µr < 1. It may be seen that for the first two cases the corresponding roots
w1 and w2 are real numbers, and thus, the solutions of the problem are similar in their
essential character. The third case (µr < 1) leads to complex roots w1 and w2. It may
be important to note here that these cases do not depend on the damping parameter µ
itself, but on the product of this parameter with r. It is easy to see that r corresponds
directly to the wave frequency (wave length), which, in the Fourier method of solving
the problem, belongs to the range (0 ≤ r ≤ ∞). It means that the solution presented
above depends on the continuous distribution of wave lengths varying from zero to
infinity. In other words, in calculating the improper integrals all three cases neces-
sarily occur. The final result of integration will obviously depend on the frequency
of wave generation, and thus, for a given parameter µ > 0, one should expect a type
of solution inherent for this damping parameter, i.e. over-damped or under-damped
waves. In order to illustrate the solution presented above, numerical examples are
attached below for a chosen set of generation frequencies.

3. Numerical Experiments

In accordance with the solution presented in the preceding section, it is reasonable to
consider three separate cases corresponding to the range of the damping parameter,
i.e. µ = 0 (fluid surface is free of damping), 0 < µ � 0.01 s (weak damping) and µ >
0.1 s ( a relatively strong damping). Thus, let us consider the first case, in which no
damping occurs. In order to calculate the free-surface elevation, it is convenient to
write equation (24) in the form

h(x, t) = J1(x, t) + J2(x, t), (25)
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where:

J1(x, t) =
1
π

∞∫
0

tanh sh
s

cos(sx − rt)ds,

J2(x, t) =
1
π

∞∫
0

tanh sh
s

cos(sx + rt)ds.

(26)

Careful examination of the second formula in (26) shows that J2(x, t) ≈ 0 for t >
1 s (Achenbach 1973, Szmidt 1999). In such a case, equation (25) gives

h(x, t > 1) ≈
1
π

∞∫
0

tanh sh
s

cos(sx − rt)ds. (27)

Improper integrals in equations (26) and (27) may be estimated by discrete nu-
merical integration. For the case of viscous damping, the range of integration in (23)
is divided into two intervals dependent on the value of β =

√
(µr)2 − 1. A common

point of the intervals, say s0, is defined by the formula

gs0 tanh s0h =
1
µ2 . (28)

For weak damping, this formula gives

s0 ≈
1
gµ2 . (29)

The integrand of improper integral (23) at this isolated point has a finite value,
and thus, the impulse response function is written in the following form:

h(x, t) =
2
π


s0∫

0

tanh sh · cos sx
s

exp(−µr2t)
(
cos rβ∗t − µr

sin rβ∗t
β∗

)
ds +

+

∞∫
s0

tanh sh · cos sx
s

exp(−µr2t)
(
cosh rβt − µr

sinh rβt
β

)
ds

,
(30)

where
β∗ =

√
1 − (µr)2. (31)

For weak damping (0 < µ << 0.01 s), equation (29) gives s0 > 1000 s, and the impulse
response function may be described by the formula

h(x, t) ≈
2
π


s0∫

0

tanh sh · cos sx
s

exp(−µr2t)
(
cos rβ∗t − µr

sin rβ∗t
β∗

)  ds. (32)
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Solutions (30) and (32) are illustrated in the subsequent figures (2–5), in which the
plots show the distribution of the impulse response functions in time for chosen set
of the damping parameter (µ = 0, 0.01 s, 0.02 s, 0.1 s).

Fig. 2. Impulse response function at chosen points in space for µ = 0
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Fig. 3. Impulse response function at chosen points in space for µ = 0.01
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Fig. 4. Impulse response function at chosen points in space for µ = 0.02
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Fig. 5. Impulse response function at chosen points in space for µ = 0.1
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4. Concluding Remarks

The formulation developed in this paper makes it possible to calculate the free-surface
elevation induced by the impulse motion of a piston-type generator placed at the be-
ginning of a semi-infinite layer of fluid covered with crushed ice. The solution ob-
tained is based on the assumption that the damping of surface waves caused by this
ice layer may be properly described by one-parameter dash-pots distributed over the
free surface of the fluid (µ in our formulation). With respect to natural conditions,
in which sea waves are periodic in time, it would be desirable to develop a solution
corresponding to a steady harmonic motion of the fluid. It should be stressed, however,
that in such a case we deal with the problem of forced fluid motion with a continuous
supply of energy, which is partially dissipated by the floating ice cover. In that case, it
would be difficult to evaluate the share of the ice cover in the phenomenon of energy
dissipation. Nevertheless, following the impulse response function, we may develop
a solution for periodic motion by means of the convolution integral, as described by
equation (22). In order to find a solution for periodic fluid motion, it is reasonable to
consider the generator motion (vertical wall OA in Fig. 1)

xg(t) = C [A(τ) cosωt + D(τ) sinωt] , (33)

where xg(t) describes the generator displacement, C is a constant, and

A(τ) =
τ3

3!
exp(−τ),

D(τ) = 1 −
(
1 + τ +

τ2

2!
+
τ3

3!

)
exp(−τ), τ = ηt.

(34)

One can check that in the limiting case t → ∞ the generation approaches harmonic
generation. In practice, for a time exceeding one or two periods of generation (T =
2π/ω) one may assume that we have a problem of harmonic generation with a constant
amplitude. From equations (22) and plots in Fig. 5, it follows that for a relatively
strong damping (µ ≥ 0.1 s) the range of integration in the convolution integral may
be reduced to a few seconds (tmax < 10 s).
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