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Abstract
The paper deals with free and forced vibrations of a horizontal thin elastic plate submerged in
an infinite layer of fluid of constant depth. In free vibrations, the pressure load on the plate re-
sults from assumed displacements of the plate. In forced vibrations, the fluid pressure is mainly
induced by water waves arriving at the plate. In both cases, we have a coupled problem of hy-
drodynamics in which the plate and fluid motions are coupled through boundary conditions at
the plate surface. At the same time, the pressure load on the plate depends on the gap between
the plate and the fluid bottom. The motion of the plate is accompanied by the fluid motion.
This leads to the so-called co-vibrating mass of fluid, which strongly changes the eigenfre-
quencies of the plate. In formulation of this problem, a linear theory of small deflections of
the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation
is constructed in the doubly connected infinite fluid domain. To this end, this infinite domain
is divided into sub-domains of simple geometry, and the solution of the problem equation is
constructed separately for each of these domains. Numerical experiments are conducted to
illustrate the formulation developed in this paper.

Key words: elastic plate, free vibrations, forced vibrations, eigenfrequencies, co-vibrating
mass of fluid

1. Introduction

In offshore engineering, we frequently deal with the problem of water flow-induced
loads on structures. Hydrodynamic forces depend on fluid flows in the vicinity of
the structure as well as on the structure size, shape, rigidity and foundation. Usually,
such a structure consists of parts of simple geometry such as bars, pipes and plates,
and therefore, in a theoretical description of the structure dynamics, it is reasonable
to investigate a dynamic behaviour of individual elements. Among them, of primary
importance are elastic plates submerged in fluid and loaded with forces induced by
gravitational waves. An example is a horizontal plate foundation of a windmill in-
stalled in a sea coastal zone. Usually, hydrodynamic forces depend not only on the
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waves themselves, but also on the foundation of the plate and its orientation to the di-
rection of wave propagation. For instance, wave forces on a plane plate perpendicular
to the wave propagation direction are different from those for a plate whose surface
is parallel to the wave direction. In general, these forces may also depend on the dis-
tance between the plate and the boundaries of the fluid domain. In cases of horizontal
plates placed at a small distance from the sea bottom, one may expect a certain ampli-
fication of hydrodynamic forces loading these plates. This phenomenon is associated
with changes in the velocities in flows on the upper and bottom surfaces of the plates.
At the same time, a vibration of the plate submerged in fluid leads to the so-called
co-vibrating mass of fluid, which strongly changes the eigenfrequencies of this plate.

With respect to the above, we focus our investigations on the coupled hydro-
dynamic problem of a horizontal plate vibrating in a layer of fluid of constant
depth. In order to simplify our discussion, we confine our attention to a simply
supported elastic band plate, which makes it possible to reduce the description of
a physical three-dimensional problem to a two-dimensional one. In a formal way,
the two-dimensional description model corresponds directly to a simply supported
horizontal beam, submerged in fluid of constant depth. An additional simplification
introduced into the description is that plate deflections are assumed infinitesimally
small. In theoretical investigations, we resort to approximate modeling that can de-
scribe the main features of this phenomenon.

As regards vibrations of plates in contact with fluid, Solecki (1966) discussed
the problem of an infinite plate floating on a water half-space. A similar problem of
the deformation of floating ice plates was investigated by Kerr and Palmer (1972).
As far as a finite fluid body is concerned, Sawicki (1975) discussed the problem of
the dynamics of floating roofs of cylindrical tanks. A detailed discussion on the dy-
namics of an elastic band plate floating on a tank with a rectangular cross section is
given in Sawicki (1976). In particular, general solutions for the problem of free and
forced vibrations of the plate may be found in that paper. The problem discussed in
the present paper corresponds in a sense to that of Sawicki, but it deals with an infinite
fluid domain and a fully submerged plate. Our main goal is to calculate a set of the
lowest eigenfrequencies of the plate, dependent on the width of the gap between the
plate and the bottom, as well as to evaluate deflections of the plate loaded with surface
gravitational waves.

2. Problem Formulation

Let us consider the two-dimensional problem of a thin elastic band plate submerged
in fluid, as shown schematically in Fig. 1.

The motion of the plate is accompanied by the fluid motion, and thus we have
the so-called coupled problem of hydrodynamics. This coupling takes place through
the boundary conditions at the upper and bottom surfaces of the plate. The normal
components of the fluid and plate velocities should be equal to each other. With respect
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Fig. 1. Elastic plate submerged in a layer of fluid

to small deflections of the plate, its motion is governed by the following equation
(Nowacki 1972):

mpl.
∂2w

∂t2 + D∗
∂4w

∂x4 = plow. − pupp., (1)

where mpl. is the mass per unit width and length of the plate, D∗ = Eδ3/12(1 − ν2) is
the flexural rigidity of the plate (δ is the plate thickness, and ν is Poisson’s ratio), plow.
and pupp. denote fluid pressure at the lower and upper surfaces of the plate. It should
be stressed that the ‘density’ of the plate mpl. = (ρpl. − ρ)δ, where ρpl. is the density
of the plate material, and ρ is the fluid density. Assuming a potential velocity of the
fluid motion, the associated fluid pressure is described by the formula

p = −ρ
∂Φ
∂t
, (2)

where Φ(x, z, t) is the velocity potential satisfying Laplace’s equation

∂2Φ
∂x2 +

∂2Φ
∂z2 = ∇

2Φ = 0 (3)

within the fluid domain and appropriate boundary conditions at the fluid boundaries.
In discussing the problem of free vibrations of the plate and, in particular, the

problem of the plate eigenfrequencies when the fluid flow is induced solely by the
motion of the plate, it is justified to assume that the free surface of the fluid is flat
over the entire range of time considered (fluid pressure is constant at z = H). With
this assumption, the plate-fluid system is conservative, i.e. there is no damping of the
plate motion. When vibrations of the plate are forced, for instance by gravitational
waves arriving from infinity, the potential function within the fluid domain is affected
by vibrations of the plate. In the cases of both free and forced vibrations of the plate, it
is necessary to solve the coupled problem of the plate and fluid motion. Before doing
that, however, it is convenient to consider, in the first step, the simplest case of free
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vibrations of the plate in air. For such a case, equation (1) reduces to the following
one:

mpl.
∂2w

∂t2 + D∗
∂4w

∂x4 = 0, (4)

where mpl. = ρpl.δ.
For harmonic vibrations, the following relation holds:

w(x, t) = W (x) exp(iωt). (5)

Substitution of this relation into equation (4) gives

−ω2mpl.W + D∗
∂4W
∂x4 = 0. (6)

The deflection amplitude W (x) is expressed in the form

W (x) =
∑

n
An sin rn(x + b), rn =

nπ
2b
, n = 1, 2, · · ·, (7)

which satisfies boundary conditions at x = ±b. From substitution of this solution into
(6), the following is obtained:∑

n
An

[
−mpl.ω

2 + D∗(rn)4
]
sin rn(x + b) = 0. (8)

It may be seen that the functions sin rn(x + b) (n = 1, 2, · · ·) form the eigenfunction
set of the problem. At the same time, equation (8) leads to the set of eigenfrequencies
of the plate

ωn =

(nπ
2b

)2
√

D∗
mpl.

, n = 1, 2, · · ·. (9)

In order to find an associated set of frequencies for the case of free vibrations of
the plate in fluid, it is necessary to calculate the fluid pressure and to solve equation
(1). The plate deflection for this case is expressed in the form of a series with respect
to eigenfunctions sin rn(x + b), inherent for vibrations in air. To calculate the fluid
pressure, we have to find a solution of Laplace’s equation in the doubly connected
fluid domain, satisfying the following system of boundary conditions:

Φ|x→±∞ = 0, ∂Φ
∂x

∣∣∣
x→±∞ = 0, ∂Φ

∂z

∣∣∣
z=0 = 0,

∂Φ
∂n
'
∂Φ
∂z

∣∣∣∣∣
upp.bot.

=
∂w(x, t)
∂t

= ẇ(x, t),
(10)

where ‘upp.bot.’ means the upper and bottom surfaces of the plate.
For the thin plate considered, the normal velocity components of the fluid at two

sides of the plate (upper and bottom surfaces) are assumed to be equal to the transverse
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velocity of the plate centre. A remark is needed. In addition to the boundary conditions
given above, it is necessary to investigate the potential behaviour at the plate end
points (x = ±b). If the cross section of the plate is rectangular with two right angles
at these ends, the fluid velocity field is singular at these corner points. It may be shown,
however, that this fluid velocity field is an integrable function along an arbitrary path
in the vicinity of the end points.

In order to find a solution of Laplace’s equation in the doubly connected fluid
domain, we divide this domain into four parts: I, II, III and IV (see Fig. 1). In descrip-
tions of the potential functions within these domains, it is convenient to introduce
local Cartesian coordinate systems. Thus, with respect to these coordinate systems,
the general solution of Laplace’s equation read:

Subdomain III (0 ≤ x < ∞, 0 ≤ z ≤ H)

φ(x, z, t) = −
∑
j=1

C j(t)
1
k j

exp(−k j x) cos k jz, k j =
2 j − 1

2H
π, j = 1, 2, · · ·. (11)

Subdomain II (0 ≤ x < ∞, 0 ≤ z ≤ H)

φ(x, z, t) = −
∑
j=1

B j(t)
1
k j

exp(−k j x) cos k jz, k j =
2 j − 1

2H
π, j = 1, 2, · · ·. (12)

Subdomain I (−b ≤ x < +b, 0 ≤ z ≤ h)

φ(x, z, t) = −
∑
n=1

Ȧn(t)
1
rn

1
vn

[
exp(−rnz) − exp rn(z − 2h)

]
sin rn(x + b)+

+
∑
m=1

[
D1

m(t)
cosh(k∗mx)
cosh(k∗mb)

+ D2
m(t)

sinh(k∗mx)
sinh(k∗mb)

]
cos k∗mz, rn =

nπ
2b
,

vn = 1 + exp(−2rnh), n = 1, 2, · · ·, k∗m =
2m − 1

2h
π, m = 1, 2, · · ·,

(13)

where Ȧn(t) = dAn/dt.
Subdomain IV (−b ≤ x ≤ +b, 0 ≤ z ≤ d)

ϕ(x, z, t) =
∑
n=1

Ȧn(t)
1
rn

cosh rnz
sinh rnd

sin rn(x + b)+

+ E0(t) +
∑
m=1

[
E1

m(t)
cosh kmx
cosh kmb

+ E2
m(t)

sinh kmx
sinh kmb

]
cos kmz,

rn =
nπ
2b
, n = 1, 2, · · ·, km =

mπ
d
, m = 1, 2, · · ·.

(14)

One can see that the series in the infinite domains (equations 11 and 12) quickly
decay as x → ∞. In practical calculations, it is justified to neglect the series for x ≥ L,
where L may be specified for a particular fluid motion considered. In this way, the
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solution in the finite fluid domain (0 ≤ x ≤ L) will be practically equal to that valid in
the infinite domain (0 ≤ x ≤ ∞). To save space, hereinafter we omit the time character
t in description of the functions Ȧ(t), · · ·, E(t), i.e. all functions are named constants.
In accordance with the linear problem considered, all constants, B j ,C j , j = 1, 2, · · ·,
D1

m,D2
m, m = 1, 2, · · · and E0, and E1

m, E2
m,m = 1, 2, · · · , may be expressed in terms

of the constants Ȧn, n = 1, 2, · · ·. It means that, for an arbitrary deflection of the plate,
it is possible to find appropriate solutions within the corresponding fluid domains. To
this end, we match the solutions at common boundaries of the subdomains. Thus, let
us assume that, in advance, the solutions corresponding to B j and C j ( j = 1, 2, · · ·)
are known. The potential ϕ(x = b, z) below the plate should be equal to that of the
right-hand side domain, i.e. to φ(x = 0, z) at the common boundary. This condition
gives

E0 +
∑
m=1

(
E1

m + E2
m

)
cos kmz = −

∑
j=1

B j
1
k j

cos k jz. (15)

In a similar way, at the boundary (x = −b, z) we have

E0 +
∑
m=1

(
E1

m − E2
m

)
cos kmz = −

∑
j=1

C j
1
k j

cos k jz. (16)

Multiplication of equation (17) in succession by cos kmz (m = 1, 2, · · ·) and then in-
tegration in the range (0 ≤ z ≤ d) leads to the following formulae:

E0 = −
1
d

∑
j=1

B j
1

(k j)2 sin k jd, k j =
2 j − 1

2H
π, km =

mπ
d
,

E1
m + E2

m = −
2
d

∑
j=1

B j


(−1)m sin k jd
(k j)2 − (km)2 for k j , km

d
2k j

for k j = km

, j,m = 1, 2, · · ·
(17)

Similar results hold for the left boundary:

E0 = −
1
d

∑
j=1

C j
1

(k j)2 sin k jd,

E1
m − E2

m = −
2
d

∑
j=1

C j


(−1)m sin k jd
(k j)2 − (km)2 for k j , km

d
2k j

for k j = km, j,m = 1, 2, · · ·.

(18)

The same procedure is employed for the upper fluid. Simple manipulations give∑
m=1

(
D1

m + D2
m

)
cos k∗mz = −

∑
j

B j
1
k j

cos k j(z + c),∑
m=1

(
D1

m − D2
m

)
cos k∗mz = −

∑
j

C j
1
k j

cos k j(z + c),
(19)
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and, finally

D1
m + D2

m = −
2
h

∑
j=1

B j


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m,

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m,

k∗m =
(2m − 1)

2h
π, j,m = 1, 2, · · ·,

(20)

and

D1
m − D2

m = −
2
h

∑
j=1

C j


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m,

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m,

j,m = 1, 2, · · ·.

(21)

Equations (17–21) result from comparison of the potential functions at common
boundaries. These equations ensure equal pressure at the boundaries formed by neigh-
bouring fluid domains. With the relations derived, the description of the problem
has been reduced to fewer unknown constants, i.e. to B j and C j( j = 1, 2, · · ·). Ob-
viously, the fluid velocities at the common boundaries of matching domains must be
the same. To this end, not only the fluid pressure, but also the normal components of
the velocity field at the common boundaries should be uniquely defined. This condi-
tion makes it possible to express all constants in terms of the constants Ȧn that enter
the description of the plate deflection. Thus, with respect to the above, it is neces-
sary to calculate the horizontal velocity components. For the fluid below the plate
(−b ≤ x ≤ +b, 0 ≤ z ≤ d), one obtains

u =
∂ϕ

∂x
=

∑
n=1

Ȧn
cosh rnz
sinh rnd

cos rn(x + b)+

+
∑
m=1

km

(
E1

m
sinh kmx
cosh kmb

+ E2
m

cosh kmx
sinh kmb

)
cos kmz, rn =

nπ
2b
.

(22)

For the upper fluid domain (−b ≤ x ≤ +b, 0 ≤ z ≤ h), we have a similar relation:

u =
∂φ

∂x
= −

∑
n=1

Ȧn
1
vn

[
exp(−rnz) − exp rn(z − 2h)

]
cos rn(x + b)+

+
∑
m=1

k∗m

(
D1

m
sinh k∗mx
cosh k∗mb

+ D2
m

cosh k∗mx
sinh k∗mb

)
cos kmz.

(23)

It should be stressed that the vertical coordinate z in equation (23) differs from that in
equation (22) (they are local with respect to corresponding fluid domains). With equa-
tions (22) and (23) it is possible to calculate horizontal velocities at the boundaries
x = ±b. For the right boundary (x = +b), equations (22) and (23) give
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0 ≤ z ≤ d

u =
∂ϕ

∂x

∣∣∣∣∣
x=b
=

=
∑
n=1

Ȧn(−1)n cosh rnz
sinh rnd

+
∑
m=1

km

(
E1

m tanh kmb + E2
m

1
tanh kmb

)
cos kmz =

=
∑
j

B j cos k jz ,

(24)

and

c ≤ z ≤ H

u =
∂φ

∂x

∣∣∣∣∣
x=b
= −

∑
n=1

Ȧn(−1)n 1
vn

[
exp−rn(z − c) − exp−rn(z − c − 2h)

]
+

+
∑
m=1

k∗m

(
D1

m tanh k∗mb + D2
m

1
tanh k∗mb

)
cos k∗m(z − c) =

=
∑

j
B j cos k jz .

(25)

In a similar way, for the boundary at (x = −b), the following relations hold:

0 ≤ z ≤ d

u =
∂ϕ

∂x

∣∣∣∣∣
x=b
=∑

n=1
Ȧn

cosh rnz
sinh rnd

+
∑
m=1

km

(
−E1

m tanh kmb + E2
m

1
tanh kmb

)
cos kmz =

= −
∑
j

C j cos k jz ,

(26)

and

c ≤ z ≤ H

u =
∂φ

∂x

∣∣∣∣∣
x=b
= −

∑
n=1

Ȧn
1
vn

[
exp−rn(z − c) − exp−rn(z − c − 2h)

]
+

+
∑
m=1

k∗m

(
−D1

m tanh k∗mb + D2
m

1
tanh k∗mb

)
cos k∗m(z − c) =

= −
∑

j
C j cos k jz .

(27)

The difference (c − d) in the relations equals the plate thickness. Knowing that the
constants E1

m, E2
m, and D1

n,D1
n (m, n = 1, 2, · · ·) in the above relations depend on B j

and C j ( j = 1, 2, · · ·), one can use equations (22–27) to express the latter constants
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in terms of Ȧn (n = 1, 2, · · ·). In order to find the desired relations, equations (24–27)
are multiplied in succession by cos k jz ( j = 1, 2, · · ·) and then integrated within the
range (0 ≤ z ≤ H). Such a procedure leads to two systems of equations:

x = b∑
n=1

Ȧn(−1)n 1
sinh rnd

d∫
0

cosh rnz · cos k jz dz+

+
∑
m=1

km

[
E1

m tanh kmb + E2
m

1
tanh kmb

] d∫
0

cos kmz · cos k jz dz+

−
∑
n=1

Ȧn(−1)n 1
vn

H∫
c

[
e−rn(z−c) − e−rn(z−c−2h)

]
· cos k jz dz+

+
∑
m=1

k∗m

[
D1

m tanh k∗mb + D2
m

1
tanh k∗mb

] H∫
c

cos k∗m(z − c) · cos k jz dz =

= B j
H
2
,

(28)

and

x = −b∑
n=1

Ȧn
1

sinh rnd

d∫
0

cosh rnz · cos k jz dz+

+
∑
m=1

km

[
−E1

m tanh kmb + E2
m

1
tanh kmb

] d∫
0

cos kmz · cos k jz dz+

−
∑
n=1

Ȧn
1
vn

H∫
c

[
e−rn(z−c) − e−rn(z−c−2h)

]
· cos k jz dz+

+
∑
m=1

k∗m

[
−D1

m tanh k∗mb + D2
m

1
tanh k∗mb

] H∫
c

cos k∗m(z − c) · cos k jz dz =

= −C j
H
2
.

(29)

The formulae written above have a complicated structure. In order to make our further
discussion clear and to simplify the description of the problem, we confine our atten-
tion to a finite number of terms in the infinite series entering all the above relations.
Thus, let us assume that na denotes the number of constants Ȧn taken into account.
And, similarly, nd, ne and n j denote the numbers of constants Dm, Em and B j(C j),
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respectively. With respect to these finite numbers of terms in the series, it is convenient
to make the following substitutions:

JAn
j =

2
H

(−1)n

 1
sinh rnd

d∫
0

cosh rnz · cos k jz dz+

−
1
vn

H∫
c

(
e−rn(z−c) − e−rn(z−c−2h)

)
· cos k jz dz

 ,
JDm

j =
2
H

k∗m tanh k∗mb
H∫

c

cos k∗m(z − c) · cos k jz dz,

JEm
j =

2
H

km tanh kmb
d∫

0

cos kmz · cos k jz dz,

(30)

and

KAn
j =

2
H

1
sinh rnd

d∫
0

cosh rnz · cos k jz dz+

−
1
vn

H∫
c

[
e−rn(z−c) − e−rn(z−c−2h)

]
· cos k jz dz,

KDm
j =

2
H

k∗m
1

tanh k∗mb

H∫
c

cos k∗m(z − c) · cos k jz dz,

KEm
j =

2
H

km
1

tanh kmb

d∫
0

cos kmz · cos k jz dz.

(31)

From substitution of (30) and (31) into relations (28) and (29), we obtain

x = b
na∑

n=1
ȦnJAn

j +

ne∑
m=1

(
E1

mJEm
j + E2

mKEm
j

)
+

nd∑
m=1

(
D1

mJDm
j + D2

mKDm
j

)
= B j ,

(32)

and
x = −b
na∑

n=1
ȦnKAn

j +

ne∑
m=1

(
−E1

mJEm
j + E2

mKEm
j

)
+

+

nd∑
m=1

(
−D1

mJDm
j + D2

mKDm
j

)
= −C j .

(33)
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Equations (32) and (33) are written for j = 1, 2, · · ·, n j. The system of equations ob-
tained in this way may be written in a more compact, matrix form:

(B) = [J A]
(
Ȧ
)
+ [JE] (E1) + [KE] (E2) + [J D] (D1) + [K D] (D2),

(C) = −
{
[K A]

(
Ȧ
)
− [JE] (E1) + [KE] (E2) − [J D] (D1) + [K D] (D2)

}
.

(34)

The vector matrices (B) and (C) in these equations have n j elements. The dimensions
of the square matrices correspond to the number of terms taken into account in the
associated series. With the notation presented above, the dimensions of the associated
matrices are

J A, K A→ (n j × na), JE, KE → (n j × ne), J D, K D→ (n j × nd). (35)

In accordance with the finite matrix description, equations (17–21) are also replaced
by a finite system of equations with a finite number of terms. These equations are
written in the following matrix form:

E0 = [EOB] (B + C),
(E1 + E2) = [EB] (B),
(E1 − E2) = [EB] (C),
(D1 + D2) = [DB] (B),
(D1 − D2) = [DB] (C),

(36)

where (1 × n j) matrix EOB reads

EOB =
[
......,−

1
2d

1
(k j)2 sin k jd, ........

]
. (37)

At the same time, equations (18) and (19) lead to the (ne × n j) matrix EB:

EBm, j = −
2
d


(−1)m sin k jd
(k j)2 − (km)2 for k j , km

d
2k j

for k j = km.

(38)

Finally, the (nd × n j) matrix DB is defined by the formula

DBm, j = −
2
h


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m.

(39)

The sum and difference of the two equations (34) lead to the following relations

(X) = (B + C) = [J A − K A] (Ȧ) + 2 [JE] (E1) + 2 [J D] (D1),

(Y) = (B − C) = [J A + K A] (Ȧ) + 2 [KE] (E2) + 2 [K D] (D2).
(40)
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On the other hand, equations (36) give

2(E1) = [EB] (B + C) = [EB] (X),

2(E2) = [EB] (B − C) = [EB] (Y),

2(D1) = [DB] (B + C) = [DB] (X),

2(D2) = [DB] (B − C) = [DB] (Y).

(41)

From substitution of equations (41) into relations (40), the following system of equa-
tions is obtained:

[RA] (X) = [J A − K A]
(
Ȧ
)
,

[RB] (Y) = [J A + K A]
(
Ȧ
)
,

(42)

where
[RA] = [I] − [JE] [EB] − [J D] [DB] ,

[RB] = [I] − [KE] [EB] − [K D] [DB] .
(43)

The matrix [I] in these relations is the (n j × n j) unit diagonal matrix. From equations
(44), the following solutions are obtained:

(X) = [RA]−1 [J A − K A]
(
Ȧ
)
= [X A]

(
Ȧ
)
,

(Y) = [RB]−1 [J A + K A]
(
Ȧ
)
= [Y A]

(
Ȧ
)
.

(44)

Substitution of these relations into equations (36) and (41) gives

E0 = [EOB] [X A]
(
Ȧ
)

(E1) =
1
2

[EB] [X A]
(
Ȧ
)
, (E2) =

1
2

[EB] [Y A]
(
Ȧ
)
,

(D1) =
1
2

[DB] [X A]
(
Ȧ
)
, (D2) =

1
2

[DB] [Y A]
(
Ȧ
)
.

(45)

With these relations, all unknown constants (parameters) of the problem considered
are expressed in terms of independent parameters that correspond to the plate deflec-
tion. It is important to note that none of the matrices in these equations, i.e. [EOB],
[EB], [DB], [X A] or [Y A], depends on time.

3. Free Vibrations of the Plate and Co-vibrating Mass of Fluid

The solution presented in the preceding section corresponds to a general case of stand-
ing waves (the pressure at the surface z = H is zero) and arbitrary motion of the plate.
In order to find a fundamental set of natural frequencies of the band plate submerged
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in a layer of fluid, both the deflection of the plate and potential functions are expressed
in the following forms:

w(x, t) = W (x) exp(iωt),
φ∗(x, z, t) = iωφ(x, z) exp(iωt),
ϕ∗(x, z, t) = iωϕ(x, z) exp(iωt).

(46)

Substitution of these relations into equation (1) gives the fundamental equation for
the free vibrations of the plate submerged in fluid:

−mplω
2
[
W (x) +

ρ

mpl
(ϕ − φ)pl

]
+ D∗

∂4W (x)
∂x4 = 0. (47)

The frequencyω in this relation is different from that corresponding to free vibrations
of the plate in air. The potential functions φ and ϕ in (47) are described by the general
formulae given in the previous section. Vibrations of the plate in fluid are accompa-
nied by the so-called co-vibrating mass of fluid, which leads to the above-mentioned
differences in natural frequencies. This co-vibrating mass of fluid leads to a shift of
the natural frequencies of the coupled vibrations to smaller values as compared to fre-
quencies in air. At the same time, as in the case of vibrations in air, the plate deflection
and its space derivatives are described by the formulae

W (x) =
na∑
1

An sin rn(x + b),

∂4W (x)
∂x4 =

na∑
1

An(rn)4 sin rn(x + b), rn =
nπ
2b
.

(48)

From substitution of these relations into equation (47), one obtains

−mplω
2

NA∑
n=1

An sin rn(x + b)+

+D∗
NA∑
n=1

An(rn)4 sin rn(x + b) − mplω
2 ρ

mpl
(ϕ − φ)pl = 0.

(49)

Multiplication of this equation in succession by sin rn(x + b) (n = 1, 2, · · ·, n j) and
integration of the result within the range (−b ≤ x ≤ +b), leads to the system of equa-
tions:

b
(rn)4 An +

1
(rn)4

ρ

mpl

+b∫
−b

(ϕ − φ)pl sin rn(x + b)dx −
D∗b

mplω2 An = 0,

n = 1, 2, · · ·.

(50)
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The term ρ(ϕ − φ)pl in equation (49) corresponds to the mass of fluid vibrating
together with the plate. From equations (31) and (32), it follows that

(ϕ − φ)pl =

NA∑
n=1

An
1
rn

(
1

tanh rnd
+

1 − e−2rnh

1 + e−2rnh

)
sin rn(x + b)+

+ E0 +

NE∑
m=1

(−1)m
(
E1

m
cosh kmx
cosh kmb

+ E2
m

sinh kmx
sinh kmb

)
+

−

ND∑
m=1

(
D1

m
cosh k∗mx
cosh k∗mb

+ D2
m

sinh k∗mx
sinh k∗mb

)
,

rn =
nπ
2b
, km =

mπ
d
, k∗m =

2m − 1
2h

π.

(51)

Substitution of this equation into (50) gives

b
(rn)4

[
1 +

ρ

mpl

1
rn

(
1

tanh rnd
+

1 − e−2rnh

1 + e−2rnh

)]
An −

D∗b
mplω2 An+

+
ρ

mpl(rn)4

E0

+b∫
−b

sin rn(x + b)dx+

+

NE∑
m=1

(−1)m
+b∫
−b

(
E1

m
cosh kmx
cosh kmb

+ E2
m

sinh kmx
sinh kmb

)
sin rn(x + b)dx+

−

ND∑
m=1

+b∫
−b

(
D1

m
cosh k∗mx
cosh k∗mb

+ D2
m

sinh k∗mx
sinh k∗mb

)
sin rn(x + b)dx

 = 0, n = 1, 2, · · ·

(52)

Obviously, all constants E and D in these equations depend on An (n = 1, 2, · · ·), and
therefore, the final system of equations will uniquely depend on these latter constants.
From these equations it follows that, in the limit ρ→ 0, we arrive at equations cor-
responding to free vibration of the plate in air. The integrals in equations (52) are
expressed in exact form as
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LA0
n =

+b∫
−b

sin rn(x + b)dx =
1
rn

[
1 − (−1)n] ,

LAm
n =

(−1)m

cosh kmb

+b∫
−b

cosh kmx · sin rn(x + b)dx =

=
(−1)mrn

(km)2 + (rn)2
[
1 − (−1)n] ,

LBm
n =

(−1)m

sinh kmb

+b∫
−b

sinh kmx · sin rn(x + b)dx =

−
(−1)mrn

(km)2 + (rn)2
[
1 + (−1)n] ,

KAm
n =

1
cosh k∗mb

+b∫
−b

cosh k∗mx · sin rn(x + b)dx =

rn

(k∗m)2 + (rn)2
[
1 − (−1)n] ,

KBm
n =

1
sinh k∗mb

+b∫
−b

sinh k∗mx · sin rn(x + b)dx =

−
rn

(k∗m)2 + (rn)2
[
1 + (−1)n] .

(53)

With these results, equations (52) may be written in the following form:

b
(rn)4

[
1 +

ρ

mpl

1
rn

(
1

tanh rnd
+

1 − e−2rnh

1 + e−2rnh

)]
An −

D∗b
mplω2 An+

+
ρ

mpl(rn)4

LA0
nE0 +

NE∑
m=1

(
LAm

n E1
m + LBm

n E2
m

)
+

−

ND∑
m=1

(
KAm

n D1
m + KBm

n D2
m

) = 0 , n = 1, 2, · · ·

(54)

Finally, all these equations are written in the matrix form

[AB] (A) + (EO)E0 + [LA] (E1)+
[LB] (E2) − [K A] (D1) − [KB] (E2) − λ [I] (A) = 0,

(55)

where
λ =

bD∗

mplω2 . (56)
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The elements of the diagonal matrix [AB] and vector matrix (E0) are described by
the formulae

ABn
n =

b
(rn)4

[
1 +

ρ

mpl

1
rn

(
1

tanh rnd
+

1 − e−2rnh

1 + e−2rnh

)]
,

EOn=
ρ

mpl(rn)4
1 − (−1)n

rn
.

(57)

Substituting equations (57), (53) and (45) into (55) and making simple manipulations,
one obtains the final system of equations

([AA] − λ [I]) (A) = 0. (58)

The matrix [AA] in this equation is a square matrix. With this matrix, dependent on
the plate parameters and a gap between the plate and the fluid bottom, it is possible
to calculate the associated set of eigenfrequencies of the plate.

Table 1. Steel plate, δ = 4 mm, D = 1207.38 kg· m3 · s−2, H = 0.60 m

Eigenfrequencies of the plate in air
ω1 ω2 ω3 ω4 ω5

61.201 244.803 550.807 979.212 1530.019
c Eigenfrequencies of the plate in water

[cm] ω1 ω2 ω3 ω4 ω5
1 2.510 20.309 66.427 158.082 299.403
2 3.946 32.074 101.374 239.614 440.465
3 4.870 39.564 121.811 285.119 513.626
4 5.567 45.081 135.855 314.741 558.640
5 6.127 49.385 146.166 335.256 588.357
6 6.595 52.849 154.023 349.959 608.760
7 6.995 55.694 160.154 360.725 623.125
8 7.343 58.063 165.021 368.724 633.413
9 7.650 60.056 168.933 374.727 640.876
10 7.924 61.746 172.108 379.263 646.343
11 8.170 63.190 174.706 382.706 650.381
12 8.393 64.430 176.845 385.327 653.383
13 8.596 65.500 178.616 387.325 655.629
14 8.782 66.427 180.090 388.848 657.320
15 8.954 67.235 181.323 390.005 658.600
16 9.114 67.941 182.359 390.882 659.575
17 9.263 68.561 183.232 391.543 660.323
18 9.402 69.107 183.972 392.037 660.899
19 9.532 69.592 184.601 392.401 661.347
20 9.656 70.023 185.140 392.667 661.698

The solution of the problem presented above is illustrated by numerical examples
below. Two plates are considered. The first one is a steel plate of thickness δ = 4 mm,
and the second one of thickness δ = 20 mm is made of reinforced concrete. In order
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to investigate the influence of the gap between the plates and the fluid bottom on the
eigenfrequencies of these plates, a chosen set of the gap widths is taken into account.
Some of the results obtained in numerical calculations are drawn up in tables 1 and 2.

Table 2. Reinforced concrete plate, δ = 2 mm, D = 2.8964 · 104 kg· m3 · s−2, H = 0.60 m

Eigenfrequencies of the plate in air
ω1 ω2 ω3 ω4 ω5

237.546 950.184 2137.915 3800.739 5938.655
c Eigenfrequencies of the plate in water

[cm] ω1 ω2 ω3 ω4 ω5
3 14.838 121.016 387.919 925.757 1722.011
4 20.212 165.480 513.935 1217.468 2207.365
5 23.972 196.111 594.404 1394.321 2484.107
6 26.896 219.299 651.606 1512.898 2660.854
7 29.288 237.646 694.424 1596.309 2780.070
8 31.307 252.544 727.481 1656.660 2863.118
9 33.049 264.851 753.535 1701.131 2922.216
10 34.575 275.147 774.379 1734.308 2964.911
11 35.928 283.841 791.243 1759.273 2996.108
12 37.140 291.240 805.008 1778.167 3019.111
13 38.236 297.575 816.328 1792.520 3036.201
14 39.233 303.031 825.693 1803.443 3048.985
15 40.146 307.752 833.484 1811.758 3058.608
16 40.988 311.857 839.996 1818.079 3065.895
17 41.767 315.441 845.466 1822.870 3071.447
18 42.493 318.585 850.081 1826.484 3075.705
19 43.172 321.357 853.992 1829.190 3078.992
20 43.810 323.812 857.323 1831.196 3081.550

Table 1 contains a set of five lowest eigenfrequencies of the steel plate. Similar
results for the reinforced concrete plate are shown in table 2. In order to obtain a better
insight into the solutions obtained, the lowest eigenfrequencies are illustrated in Fig. 2.
From the data collected in these tables and from the plots in this figure, it may be

Fig. 2. Eigenfrequencies of steel and reinforced plates versus slip width
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seen that the lowest frequencies correspond to the lowest gaps. It is important for
practical reasons that the formulation presented above makes it possible to calculate
the smallest plate eigenfrequency for a given distance between the horizontal plate
and the fluid (sea) bottom.

4. Flow-induced Vibrations of the Plate

Results of the previous sections are employed here to investigate forced vibrations of
the horizontal plate induced by gravitational waves. In the case considered, the plate
is submerged in a semi-infinite layer of fluid, as shown schematically in Fig. 3.

Fig. 3. Simply supported elastic plate BC submerged in a semi-infinite layer of fluid

Water waves are generated by a piston-type generator (rigid vertical wall OA)
placed at the beginning of the layer. The generator motion is described by the formula

xg(t) = xg exp(iωt), (59)

where xg is the generation amplitude.
The potential function for the fluid domain (the fluid domain except for the fluid

below the horizontal plate) consists of two parts, i.e. Φ∗ = Φ(x, z, t) + φ(x, z, t). The
first part corresponds to wave generation, and the second part is associated with vibra-
tions of the plate. With respect to the harmonic generation, both Φ and φ are written
in a form similar to that in equations (46), namely

Φ(x, z, t) = iω Φ(x, z) exp(iωt),
φ(x, z, t) = iω φ(x, z) exp(iωt).

(60)

At the same time, the boundary conditions at the upper fluid surface and the surfaces
of the plate read

−ω2Φ(x, z) + g
∂Φ(x, z)
∂z

+ g
∂φ(x, z)
∂z

∣∣∣∣∣
z=H
= 0,

∂

∂z
[
Φ(x, z) + φ(x, z)

]∣∣∣∣∣
plate
=
∂ϕ(x, z)
∂z

∣∣∣∣∣
plate
= W (x).

(61)
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In order to obtain the first part of the solution, i.e. Φ(x, z), we resort to a discrete
formulation of the problem by means of the finite difference method (FDM). With this
method, however, only a finite fluid domain may be considered. And therefore, instead
of the infinite fluid layer in Fig. 3, a finite part of it, with a boundary at x = L, far off
the generator-plate system, is taken into account. With such an approach, however, it
is necessary to formulate transmitting boundary conditions at this boundary. Thus, for
the steady state, harmonic motion and a sufficiently large distance L from the plate, it
is justified to consider only a progressive wave, for which we have

∂Φ
∂t
+
ω

k0

∂Φ
∂x
= 0, (62)

where
ω2 = gk0 tanh k0h. (63)

Equation (62) describes a local boundary condition at the artificial boundary at
x = L. Since we are dealing with a discrete formulation, it is reasonable to consider
a non-local boundary condition, which is more convenient in the discrete method
applied. One can show that for the FDM formulation, with vertical spacing of nodal
points equal to a, the transmitting boundary condition for the velocity potential reads

Φ|x=L+a = − Φ|x=L−a + 2 Φ|x=L cos k0a. (64)

This relation is employed for the difference analogue of Laplace’s equation, writ-
ten for all nodal points at x = L. In this way, the problem considered is reduced to
unknown nodal values of the potential at points of the finite fluid domain (interior
and boundary points of the fluid domain). A solution of the system of FDM equations
for the discrete values of the potential Φ(xi, zi), where i means the number of a nodal
point, depends not only on the generator amplitude, but also on the unknown poten-
tial φ(x, z). These two potentials are coupled through the boundary conditions at the
free surface and the surface of the plate (equations 61). In order to find a solution to
this problem, a two-step procedure is employed. In the first step, the solution to the
potential Φ(x, z) is expressed in the form of a linear combination of solutions corre-
sponding to unknown parameters An (n = 1, 2, · · ·, na). And then, in the second step,
these parameters are obtained by a solution of the plate equation. This, in turn, makes
it possible to calculate the deflection of the plate, as well as the pressure field and the
amplitude of the free surface elevation.

With respect to the procedure described above, it is necessary to formulate asso-
ciated boundary conditions for the potential Φ∗(x, z). Thus, at the boundary (1–2) in
Fig. 3, one obtains

∂Φ∗

∂x

∣∣∣∣∣
1−2
=
∂Φ
∂x
+
∂φ

∂x

∣∣∣∣∣
1−2
=
∂φ

∂x

∣∣∣∣∣
1−2
=

=
∑
n=1

An
cosh rnz
sinh rnd

+
∑
m=1

km

[
−E1

m tanh kmb + E1
m

1
tanh kmb

]
cos kmz.

(65)
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In a similar way,

∂Φ∗

∂x

∣∣∣∣∣
2−3
=
∂Φ
∂x
+
∂φ

∂x

∣∣∣∣∣
2−3
= 0, →

∂Φ
∂x

∣∣∣∣∣
2−3
=
∂φ

∂x

∣∣∣∣∣
2−3
= 0. (66)

At the right boundary at (5-6-7-8), the following relations hold:

∂Φ∗

∂x

∣∣∣∣∣
8−7
=
∂Φ
∂x
+
∂φ

∂x

∣∣∣∣∣
8−7
=
∂φ

∂x

∣∣∣∣∣
8−7
=

=
∑
n=1

An(−1)n cosh rnz
sinh rnd

+
∑
m=1

km

[
E1

m tanh kmb + E1
m

1
tanh kmb

]
cos kmz

(67)

and
∂Φ∗

∂x

∣∣∣∣∣
7−6
=
∂Φ
∂x
+
∂φ

∂x

∣∣∣∣∣
7−6
= 0, →

∂Φ
∂x

∣∣∣∣∣
7−6
=
∂φ

∂x

∣∣∣∣∣
7−6
= 0. (68)

At the upper surface of the plate (segment 3–6 in Fig. 3), we have

∂Φ∗

∂z

∣∣∣∣∣
3−6
=
∂Φ
∂z
+
∂φ

∂z

∣∣∣∣∣
3−6
=
∂φ

∂z

∣∣∣∣∣
3−6
=

∑
n=1

An sin rn(x + b) cos kmz. (69)

The boundary condition at the free surface of the fluid is described by the first equation
(61), which is rewritten in the form

−ω2Φ(x, z) + g
∂Φ(x, z)
∂z

= −g
∂φ(x, z)
∂z

∣∣∣∣∣
z=H
=

= −g



∑
j=1

C j(−1) j+1 exp(−k j x), at (A − 4), x − local coordinate

2
∑
n=1

An
e−rnh

1 + e−2rnh sin rn(x + b)+

+
∑
m=1

km(−1)m+1
[
D1

m
cosh kmx
cosh kmb

+ D2
m

sinh kmx
sinh kmb

]∣∣∣∣∣∣∣
(4−5)∑

j=1
B j(−1) j+1 exp(−k j x), at (5−E).

(70)

The boundary condition at x = L (D − E) describes equation (64). Obviously, at
the boundaries (0 − 1) and (6 − D), the normal derivative (∂Φ/∂z) is equal to zero.
These boundary conditions depend on the constants (B,C,D, E) that can be expressed
in terms of the parameters An (n = 1, 2, · · ·, na). Following the procedure applied, the
right-hand side of the discrete system of equations for the potential Φ(xi, zi) will de-
pend not only on the generator amplitude, but also on the set of An (n = 1, 2, · · ·, na).
These latter parameters will be obtained from equation (1) describing the plate mo-
tion.
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With the boundary conditions in mind, the final system of FDM equations for the
potential Φ(xi, zi) may be written in the following form:

[AA] (Φ) = (P) , (71)

where (P) depends on the generator amplitude and the potential φ(x, z). Non-zero
components of (P), which correspond to nodal points of the free surface, are

Pr = −
2a2

b∗



∑
j=1

C j(−1) j+1 exp(−k j xr), at (A − 4), xr − local coordinate

2
∑
n=1

An
e−rnh

1 + e−2rnh sin rn(xr + b)+

+
∑
m=1

km(−1)m+1
[
D1

m
cosh kmxr

cosh kmb
+ D2

m
sinh kmxr

sinh kmb

]∣∣∣∣∣∣∣
(4−5)∑

j=1
B j(−1) j+1 exp(−k j xr), at (5−E).

(72)

The parameters a and b∗ in this equation denote the horizontal and vertical spac-
ing of nodal points. It is worth adding here that all the constants (B j ,C j, · ··, E1

m, E2
m)

in this equation are uniquely expressed in terms of An (n = 1, 2, · · ·, na). Finally, in
order to find the parameters An (n = 1, 2, · · ·, na), it is necessary to solve the system
of equations describing the plate motion:

Anb
{[

1 +
ρ

mpl

1
rn

(
1

tanh rnd
+

1 − e−2rnh

1 + e−2rnh

)]
−

D∗(rn)4

mplω2

}
+

+
ρ

mpl

E0

+b∫
−b

sin rn(x + b)dx+

+

NE∑
m=1

(−1)m
+b∫
−b

(
E1

m
cosh kmx
cosh kmb

+ E2
m

sinh kmx
sinh kmb

)
sin rn(x + b)dx

+
−

ρ

mpl

ND∑
m=1

+b∫
−b

(
D1

m
cosh k∗mx
cosh k∗mb

+ D2
m

sinh k∗mx
sinh k∗mb

)
sin rn(x + b)dx

 +
−
ρ

mpl

 · · ·
+b∫
−b

Φ(x, z = H) sin rn(x + b)dx · ··

 = 0, n = 1, 2, · · ·, na

(73)

The integrals entering these equations are defined by equations (53). Simple,
though tedious, manipulations allow us to calculate the set of independent variables
An (n = 1, 2, · · ·, na). This solution is illustrated in subsequent Figures 4 and 5.

Plots in Fig. 4 show amplitudes of the free-surface elevation and deflection of the
plate. Figure 5 shows the distribution of the maximum deflection of the plate versus
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Fig. 4. Free-surface elevation of the fluid and deflection of the steel plate

Fig. 5. Maximum deflection of the steel plate versus the gap width

the width of the gap between the plate and the fluid bottom. It should be stressed that
this deflection depends on the wave length (associated with the generator frequency),
the amplitude of the wave maker, as well as the distance between the plate and the
piston generator. Therefore, in practical applications, one should be aware of a cer-
tain ambiguity in calculating the plate amplitude, which results from the fundamental
assumption of the steady state harmonic motion of the system considered.

5. Concluding Remarks

The formulation developed in this paper makes it possible to calculate the co-vibrating
mass of fluid and a set of eigenfrequencies of a horizontal thin elastic plate submerged
in fluid of constant depth. As compared to vibrations of the plate in air, the most impor-
tant result of these investigations is an assessment of the reduction in the plate eigen-
frequencies due to the co-vibrating mass of fluid. At the same time, the approximate
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theory makes it possible to assess the influence of the gap width on this reduction. It is
important to note that the lowest eigenfrequency of the plate vibrations may fall into
the range inherent for surface gravitational waves. In such a case, one should be aware
of the possibility of a resonance phenomenon that may lead to increased deflection of
the plate. Obviously, under natural conditions, one may expect a certain damping of
the plate vibrations. Nevertheless, the theoretical result of the possible resonance of
waves and plate vibrations is important in the construction of such plates as founda-
tions for offshore structures. At the same time, the numerical experiments conducted
for forced vibrations of the plate reveal that, for a certain gap width, one should expect
a maximum deflection of the plate. From investigations conducted above, it follows
that for a safe operation of such a structure under natural conditions, it may be rea-
sonable to place such a plate foundation at a relatively greater distance from the sea
bottom.
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