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Abstract

The paper deals with free and forced vibrations of a horizontal thin elastic plate submerged in
an infinite layer of fluid of constant depth. In free vibrations, the pressure load on the plate re-
sults from assumed displacements of the plate. In forced vibrations, the fluid pressure is mainly
induced by water waves arriving at the plate. In both cases, we have a coupled problem of hy-
drodynamics in which the plate and fluid motions are coupled through boundary conditions at
the plate surface. At the same time, the pressure load on the plate depends on the gap between
the plate and the fluid bottom. The motion of the plate is accompanied by the fluid motion.
This leads to the so-called co-vibrating mass of fluid, which strongly changes the eigenfre-
quencies of the plate. In formulation of this problem, a linear theory of small deflections of
the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s equation
is constructed in the doubly connected infinite fluid domain. To this end, this infinite domain
is divided into sub-domains of simple geometry, and the solution of the problem equation is
constructed separately for each of these domains. Numerical experiments are conducted to
illustrate the formulation developed in this paper.

Key words: elastic plate, free vibrations, forced vibrations, eigenfrequencies, co-vibrating
mass of fluid

1. Introduction

In offshore engineering, we frequently deal with the problem of water flow-induced
loads on structures. Hydrodynamic forces depend on fluid flows in the vicinity of
the structure as well as on the structure size, shape, rigidity and foundation. Usually,
such a structure consists of parts of simple geometry such as bars, pipes and plates,
and therefore, in a theoretical description of the structure dynamics, it is reasonable
to investigate a dynamic behaviour of individual elements. Among them, of primary
importance are elastic plates submerged in fluid and loaded with forces induced by
gravitational waves. An example is a horizontal plate foundation of a windmill in-
stalled in a sea coastal zone. Usually, hydrodynamic forces depend not only on the
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waves themselves, but also on the foundation of the plate and its orientation to the di-
rection of wave propagation. For instance, wave forces on a plane plate perpendicular
to the wave propagation direction are different from those for a plate whose surface
is parallel to the wave direction. In general, these forces may also depend on the dis-
tance between the plate and the boundaries of the fluid domain. In cases of horizontal
plates placed at a small distance from the sea bottom, one may expect a certain ampli-
fication of hydrodynamic forces loading these plates. This phenomenon is associated
with changes in the velocities in flows on the upper and bottom surfaces of the plates.
At the same time, a vibration of the plate submerged in fluid leads to the so-called
co-vibrating mass of fluid, which strongly changes the eigenfrequencies of this plate.

With respect to the above, we focus our investigations on the coupled hydro-
dynamic problem of a horizontal plate vibrating in a layer of fluid of constant
depth. In order to simplify our discussion, we confine our attention to a simply
supported elastic band plate, which makes it possible to reduce the description of
a physical three-dimensional problem to a two-dimensional one. In a formal way,
the two-dimensional description model corresponds directly to a simply supported
horizontal beam, submerged in fluid of constant depth. An additional simplification
introduced into the description is that plate deflections are assumed infinitesimally
small. In theoretical investigations, we resort to approximate modeling that can de-
scribe the main features of this phenomenon.

As regards vibrations of plates in contact with fluid, Solecki (1966) discussed
the problem of an infinite plate floating on a water half-space. A similar problem of
the deformation of floating ice plates was investigated by Kerr and Palmer (1972).
As far as a finite fluid body is concerned, Sawicki (1975) discussed the problem of
the dynamics of floating roofs of cylindrical tanks. A detailed discussion on the dy-
namics of an elastic band plate floating on a tank with a rectangular cross section is
given in Sawicki (1976). In particular, general solutions for the problem of free and
forced vibrations of the plate may be found in that paper. The problem discussed in
the present paper corresponds in a sense to that of Sawicki, but it deals with an infinite
fluid domain and a fully submerged plate. Our main goal is to calculate a set of the
lowest eigenfrequencies of the plate, dependent on the width of the gap between the
plate and the bottom, as well as to evaluate deflections of the plate loaded with surface
gravitational waves.

2. Problem Formulation

Let us consider the two-dimensional problem of a thin elastic band plate submerged
in fluid, as shown schematically in Fig. 1.

The motion of the plate is accompanied by the fluid motion, and thus we have
the so-called coupled problem of hydrodynamics. This coupling takes place through
the boundary conditions at the upper and bottom surfaces of the plate. The normal
components of the fluid and plate velocities should be equal to each other. With respect
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Fig. 1. Elastic plate submerged in a layer of fluid

to small deflections of the plate, its motion is governed by the following equation
(Nowacki 1972):

m OO0 pde 1

pl. 8t2 (9)64 = Plow. = Pupp.» ( )

where m,,;_ is the mass per unit width and length of the plate, D* = ES&3/12(1 —v?) is
the flexural rigidity of the plate (9 is the plate thickness, and v is Poisson’s ratio), pjou.
and p,,,. denote fluid pressure at the lower and upper surfaces of the plate. It should
be stressed that the ‘density” of the plate m,; = (p,;. — p)d, where p,, is the density
of the plate material, and p is the fluid density. Assuming a potential velocity of the
fluid motion, the associated fluid pressure is described by the formula

OP
= —p— 2
P==Ppr (2)

where ®(x, z, t) is the velocity potential satisfying Laplace’s equation

’e e,
ax2+aZ2—V<I>—O 3)
within the fluid domain and appropriate boundary conditions at the fluid boundaries.
In discussing the problem of free vibrations of the plate and, in particular, the
problem of the plate eigenfrequencies when the fluid flow is induced solely by the
motion of the plate, it is justified to assume that the free surface of the fluid is flat
over the entire range of time considered (fluid pressure is constant at z = H). With
this assumption, the plate-fluid system is conservative, i.e. there is no damping of the
plate motion. When vibrations of the plate are forced, for instance by gravitational
waves arriving from infinity, the potential function within the fluid domain is affected
by vibrations of the plate. In the cases of both free and forced vibrations of the plate, it
is necessary to solve the coupled problem of the plate and fluid motion. Before doing
that, however, it is convenient to consider, in the first step, the simplest case of free
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vibrations of the plate in air. For such a case, equation (1) reduces to the following
one:
0w L0Mw

TP gm0 @

mp;.

where m,; = pp 0.
For harmonic vibrations, the following relation holds:

w(x, 1) = W(x)exp(iwt). 5
Substitution of this relation into equation (4) gives

LO'W
~w*mu W + D =0 (6)

The deflection amplitude W(x) is expressed in the form

nm

N7 :1a2a"'> 7
T (7

W(x) = Z A, sinr,(x +b), 7, =

which satisfies boundary conditions at x = +b. From substitution of this solution into
(6), the following is obtained:

Z A, [—mpl,wz + D*(rn)4] sinr,(x + b) = 0. (®)

It may be seen that the functions sinr,(x + b) (n = 1,2, - -) form the eigenfunction
set of the problem. At the same time, equation (8) leads to the set of eigenfrequencies

of the plate
nm\* | D*
v = (5 ) A|=—— n=1,2,--, 9
@ (Zb) \/m,,l, ! ®

In order to find an associated set of frequencies for the case of free vibrations of
the plate in fluid, it is necessary to calculate the fluid pressure and to solve equation
(1). The plate deflection for this case is expressed in the form of a series with respect
to eigenfunctions sinr,(x + b), inherent for vibrations in air. To calculate the fluid
pressure, we have to find a solution of Laplace’s equation in the doubly connected
fluid domain, satisfying the following system of boundary conditions:

_ P _ 0P —
(I)Ix_&‘x’ =0, 0x lx—+00 0, Bz 1z=0 — 0,
0ob 09 ow(x, 1) 1) (10)
_~ — = = w(x,1),
on 0z upp.bot. ot

where ‘upp.bot.” means the upper and bottom surfaces of the plate.
For the thin plate considered, the normal velocity components of the fluid at two
sides of the plate (upper and bottom surfaces) are assumed to be equal to the transverse



Vibrations of a Horizontal Elastic Band Plate Submerged in Fluid of Constant Depth 195

velocity of the plate centre. A remark is needed. In addition to the boundary conditions
given above, it is necessary to investigate the potential behaviour at the plate end
points (x = +b). If the cross section of the plate is rectangular with two right angles
at these ends, the fluid velocity field is singular at these corner points. It may be shown,
however, that this fluid velocity field is an integrable function along an arbitrary path
in the vicinity of the end points.

In order to find a solution of Laplace’s equation in the doubly connected fluid
domain, we divide this domain into four parts: I, 11, IIl and IV (see Fig. 1). In descrip-
tions of the potential functions within these domains, it is convenient to introduce
local Cartesian coordinate systems. Thus, with respect to these coordinate systems,
the general solution of Laplace’s equation read:

Subdomain /11 (0 < x < o0, 0 <z < H)

1 2j -1
¢(x,z,t):—ZCj(t)FeXp(—ij)coska, kj:JZ—Hn, j=1,2,--- (1)
J=1 !
Subdomain I7 (0 < x < 00, 0<z < H)
_2j-1
b(x,2,1) = — ZB(t) exp(~kx)coskiz, ky= o, j=1.20 (12)

Jj=1

Subdomain/ (-b < x < +b, 0<z<h)

d(x,7,t) = Z A,,(t)—l [exp(—rnz) — expry(z — 2h)] sinr,(x + b)+

cosh( X) , . sinh(k;, x) nm
; + D2 (D) | skt = 13)
Z[ cosnt by H PO Ginngie by |0kt T = 3 (
2m—1
vp = 1 +exp(=2rph), n=1,2,--, k= mzh A om=1,2,--,

where A, (1) = dA,/dt.
Subdomain IV (-b < x < +b, 0<z<d)

P(x,2,1) = ZAn( )lCOS = sinr, (x + b)+

sinh 7,
cosh & x sinh k,,x
E E - n - (14)
+ 0(0+Z[ Doyt B g | <08 ke
ni mit
=—, n=1,2,---, ky=—, m=1,2,---
T, 2b n d m

One can see that the series in the infinite domains (equations 11 and 12) quickly
decay as x — oo. In practical calculations, it is justified to neglect the series for x > L,
where L may be specified for a particular fluid motion considered. In this way, the
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solution in the finite fluid domain (0 < x < L) will be practically equal to that valid in
the infinite domain (0 < x < o0). To save space, hereinafter we omit the time character
t in description of the functions A(?), - - -, E(¢), i.e. all functions are named constants.
In accordance with the linear problem considered, all constants, B;,C;, j=1,2,---,
D,L,D,zn, m=1,2,---and E°, and E,ln, Ei’ m=1,2,.--,may be expressed in terms
of the constants A,, n = 1,2, - -. It means that, for an arbitrary deflection of the plate,
it is possible to find appropriate solutions within the corresponding fluid domains. To
this end, we match the solutions at common boundaries of the subdomains. Thus, let
us assume that, in advance, the solutions corresponding to B; and C; (j = 1,2,-- )
are known. The potential ¢(x = b, z) below the plate should be equal to that of the
right-hand side domain, i.e. to ¢(x = 0, z) at the common boundary. This condition
gives

EO+Z +E2 coskmz— ZB coskz (15)

In a similar way, at the boundary (x = —b, z) we have
EO+Z E1 —Ez)coskmz— Zcfk cosk;z. (16)
m=1 J=

Multiplication of equation (17) in succession by cos k,,z (m = 1,2, ) and then in-
tegration in the range (0 < z < d) leads to the following formulae:

1 | _2j-1 _mn
Ey = - ;Bj_(kj)Z sink;d, kj= T ki = VR
(=1)"sink;d for ki %k (17)
TRV ) _ ) or j m
+E2_ ZB (k) (km) , j,m:l,z,---
— for k; =k,

2k
Similar results hold for the left boundary:

1 |
Eo = _E JZ::‘ Cj(kj_)z sSin kjd,
(=D)"sink;d
kj)? — (km)?
Z o ( )2 = (k)
E for ijkm, j,m=1,2,---.
The same procedure is employed for the upper fluid. Simple manipulations give
Z}(Dl +D2)cosk*z— ZB cosk(z+c)
! [ (19)
Z:(D1 Dz)cosk*z— ZC cosk(z+c),

m=1

for k; # ky, (18)
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and, finally
sink;c for kit k'
————— for k; o
plapt - 25 | G-y Y
m m = J 1
h J=1 W (kJ]’L - COS ij - Sil’lij) for kj = k;, (20)
J
2m— 1
kfn:%ﬂ, j’mzl’z""’
and
sinkjc f k + k*
Lo, 2 U =Gy T
Pn=Pn="3 2,61 1 1)
j=1 2(k e (k h - cosk;c— smkjc) for k; =k,
=1,2,---

Equations (17-21) result from comparison of the potential functions at common
boundaries. These equations ensure equal pressure at the boundaries formed by neigh-
bouring fluid domains. With the relations derived, the description of the problem
has been reduced to fewer unknown constants, i.e. to B; and C;(j = 1,2,---). Ob-
viously, the fluid velocities at the common boundaries of matching domains must be
the same. To this end, not only the fluid pressure, but also the normal components of
the velocity field at the common boundaries should be uniquely defined. This condi-
tion makes it possible to express all constants in terms of the constants A, that enter
the description of the plate deflection. Thus, with respect to the above, it is neces-
sary to calculate the horizontal velocity components. For the fluid below the plate
(-b < x < +b, 0 <z <d), one obtains

coshryz
Z oS T cos ro(x + b)+
s1nh

sinh k,,,x cosh k,,x nm
+ ) ky|EL "+ E2 n knz, In= —.
Z ( meoshknb ™ sinh kmb)cos L

(22)

For the upper fluid domain (—b < x £ +b, 0 <z < h), we have a similar relation:
0
u= ¢ Z A,— exp( rnz) — exp ru(z — 2h)] cos r,(x + b)+

ox
n=l (23)

N Z D! smhk X cosh k; x X
meoshk:b T Msinhkib ) <O

It should be stressed that the vertical coordinate z in equation (23) differs from that in
equation (22) (they are local with respect to corresponding fluid domains). With equa-
tions (22) and (23) it is possible to calculate horizontal velocities at the boundaries
x = xb. For the right boundary (x = +b), equations (22) and (23) give
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0<z<d
_ el _
=5 =
: coshr,z | , 1 (24)
=S A (=) k| EL tanh kb + E2 ———— | cos kpz =
D A=) sinhrnd+n; ( o QD o ko | 7
= ), Bjcosk;z,
J
and
c < z < H
ax ZA,,( 1)” [exp —r(z — ) — exp —ru(z — ¢ — 2h)] +

x= b
1

% 1 * 2 * — — (25)

+ E k (D tanh k, b + D,, " kb anh b cosk,(z—c) =

= ZB cosk;z .

In a similar way, for the boundary at (x = —b), the following relations hold:

0<z<d
_ 9| _
B ax x=b B
i coshr,z { ) 1 (26)
E, tanhk,b + E;, ———— knz =
Z "sinh r,d Zk( m (1 - " tanh k,,b €08 Km?
=-2Cjcosk;z,
J
and
c<z<H
= g—ﬁ ZA — [exp —rulz — ¢) — exp —ru(z — ¢ — 2h)] +

x= b
1

x 1 * 2 X0y — 27)

+ E k ( —-D,, tanh k, b + D;, " anh kb cosk,(z—c) =

m

The difference (c — d) in the relations equals the plate thickness. Knowing that the
constants E!, E2, and D), D} (m,n =1,2,- ) in the above relations depend on B;
and C; (j = 1,2,--), one can use equations (22-27) to express the latter constants
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in terms of A, (n = 1,2, - - -). In order to find the desired relations, equations (24-27)
are multiplied in succession by cosk;z (j = 1,2, - -) and then integrated within the
range (0 < z < H). Such a procedure leads to two systems of equations:

x=b
d

. .1
EIA,Z(—I) e fcoshrnz-coska dz+
n= 0

d
+ Z; ki [E,; tanh k,,b + E2 p— b] fcos kyz - cosk;z dz+
"= 0
LT (28)
- ZAn(_l)n_ f[e—r,,(z—c) _ e—rn(z—c—Zh)] . COS ka dz+
Un
n=1 "
| H
+ n;k;"n [D,i1 tanh &k, b + Dim] fcosk (z—c)-cosk;zdz =
— B H ‘
=B,
and
x=-b
d
h f coshr,z - cosk;z dz+
"sinh r,d
n=1 0
d
* Z Ko [_E;L tanh k,,b + E2 _— b] fcos knz - cosk;z dz+
0
(29)

H
.1
- Z A,— f [e_’”(z_c) - e""(z_c_zh)] -cosk;z dz+
n=1 Un s

H

]fcosk,’;(z—c)-coska dz =

c

+ » k' |-D) tanhk’ b + D2 ————
n;m[ m S ¥ B o k2 b

H
= —C j 3 .
The formulae written above have a complicated structure. In order to make our further
discussion clear and to simplify the description of the problem, we confine our atten-
tion to a finite number of terms in the infinite series entering all the above relations.
Thus, let us assume that na denotes the number of constants A, taken into account.
And, similarly, nd, ne and nj denote the numbers of constants D,,, E, and B;(C;),
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respectively. With respect to these finite numbers of terms in the series, it is convenient
to make the following substitutions:

d
fcosh rnZ - cosk;z dz+

2
JA" = Z(=1)"
J H( ) sinh r,d
0

H
1
S f(e—rn(z—c) - e_r"(z_C_Zh)) - cos kjZ dz} ’
Un
C

H

(30)
m 2 * * *
JD} = Ekm tanh kmbfcos k,(z—c)-cosk;z dz,

c

2
JE;." = ﬁkm tanh k,,,b fcos knz - cosk;z dz,
0

and

KA"

d
: coshr,z-cosk;z dz+
J H s1nh rad f 8 !

0

1
L e o) st
Un
J ; (31
2 1

ﬁk;m fcos ky(z—c) - cosk;z dz,

c

KD’J’.1 =

d

m 2 1
KE} = EkmmeOSka'COSij dz.
0

From substitution of (30) and (31) into relations (28) and (29), we obtain

x=>
na ne nd
Y A+ (ENJET + ELKEY)+ ) (D) JD} + DLKDY) = Bj, (52)

n=1 m=1 m=1

and
x =-b
ne
ZA KA" + Z ~EjJE" + EZKE’")
n=1 m=1
d
Z( D}, JD" + DLKDT) = -C;.

m=1

(33)
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Equations (32) and (33) are written for j = 1,2, - - -, nj. The system of equations ob-
tained in this way may be written in a more compact, matrix form:

(B) = [JA](A) + [JE] (E1) + [KE] (E2) + [J D] (D1) + [KD] (D2),

. (34)
(€) = - {[KAI(A) - [JEI(E1) + [KE](E2) - [JD1(D1) + [KD](D2)}.

The vector matrices (B) and (C) in these equations have nj elements. The dimensions
of the square matrices correspond to the number of terms taken into account in the
associated series. With the notation presented above, the dimensions of the associated
matrices are

JA, KA — (nj xna), JE,KE — (nj xne), JD, KD — (nj X nd). (35)

In accordance with the finite matrix description, equations (17-21) are also replaced
by a finite system of equations with a finite number of terms. These equations are
written in the following matrix form:

Eo = [EOB](B + C),

(E1 + E2) = [EB](B),

(E1 - E2) = [EB](C), (36)
(D1 + D2) = [DB](B),

(D1 - D2) = [DB](C),

where (1 X nj) matrix EOB reads

I 1
EOB =|.... ,———— sinkjd, ........ . 37
2d (k])z SINK; ( )

At the same time, equations (18) and (19) lead to the (ne X nj) matrix EB:
(=1D)"sink;d

——= for k; #k
2 32— 2 J mn
d| 4 for k; =k
2k, s
Finally, the (nd X nj) matrix DB is defined by the formula
sink;c R
) N (2 77 Km

m(kjh'COSij—Sinij) for k]:k;l
J

The sum and difference of the two equations (34) lead to the following relations
(X) = (B+C) = [JA - KA](A) + 2[JE](E1) + 2[JD](D1),

40
(Y)=(B-C)=[JA+KA](A) + 2[KE] (E2) + 2 [KD] (D2). (0
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On the other hand, equations (36) give
2(E1) = [EB] (B + C) = [EB] (X),

2(E2) = [EB](B - C) = [EB](Y),
(41)
2(D1) = [DB](B + C) = [DB](X),

2(D2) = [DB](B - C) = [DB] (Y).

From substitution of equations (41) into relations (40), the following system of equa-
tions is obtained: .
[RA](X) = [JA - KA](4),
_ (42)
[RB](Y) = [JA + KA](A),

where
[RA] =[I] - [JE][EB] - [JD][DB], @)
[RB] = [I] - [KE][EB] - [KD][DB].

The matrix [I] in these relations is the (nj X nj) unit diagonal matrix. From equations
(44), the following solutions are obtained:

(X) = [RAT™' [JA - KA](A) = [XA](4).

. . (44)
(Y)=[RB]"'[JA + KA] (A) = [YA] (A).
Substitution of these relations into equations (36) and (41) gives
Eo = [EOB][XA](A)
(E1) = 5 [EBI[XA](A), (E2) = 5 EBI[YA](A) (45)
2 ’ 2 ’

(D1) = % [DB][XA] (A), (D2) = %[DB] [YA] (A).

With these relations, all unknown constants (parameters) of the problem considered
are expressed in terms of independent parameters that correspond to the plate deflec-
tion. It is important to note that none of the matrices in these equations, i.e. [EOB],
[EB], [DB], [XA] or [Y A], depends on time.

3. Free Vibrations of the Plate and Co-vibrating Mass of Fluid

The solution presented in the preceding section corresponds to a general case of stand-
ing waves (the pressure at the surface z = H is zero) and arbitrary motion of the plate.
In order to find a fundamental set of natural frequencies of the band plate submerged
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in a layer of fluid, both the deflection of the plate and potential functions are expressed
in the following forms:

w(x,t) = W(x)exp(iwt),
o*(x,7,1) = iwd(x, 7) exp(iwt), (46)
¢ (x,2,1) = iwp(x, 2) exp(in).
Substitution of these relations into equation (1) gives the fundamental equation for
the free vibrations of the plate submerged in fluid:
LW ()
ox*

—mp? (W) + L= (o= ¢),| + D = 0. 47)
m pl

The frequency w in this relation is different from that corresponding to free vibrations
of the plate in air. The potential functions ¢ and ¢ in (47) are described by the general
formulae given in the previous section. Vibrations of the plate in fluid are accompa-
nied by the so-called co-vibrating mass of fluid, which leads to the above-mentioned
differences in natural frequencies. This co-vibrating mass of fluid leads to a shift of
the natural frequencies of the coupled vibrations to smaller values as compared to fre-
quencies in air. At the same time, as in the case of vibrations in air, the plate deflection
and its space derivatives are described by the formulae

na

W(x) = Y A, sinr,(x + b),
1

na 48)
oW (
8x‘(‘x) = Zl: An(r)* sin ru(x +b), 1, = g.
From substitution of these relations into equation (47), one obtains
NA
—mpla)2 Z A, sinr,(x + b)+
NA " (49)
+D" Y Ay(ra) sinry(x + b) - M’ == (go ) =

n=1

Multiplication of this equation in succession by sinr,(x + b) (n = 1,2,- - -,nj) and

integration of the result within the range (—b < x < +b), leads to the system of equa-
tions:

ES

f(go ¢) i sinry(x + b)dx — Db

My w?

b
ra)* " n)4 iy

n=12,--

A, =0, (50)
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The term p(¢ — ¢),; in equation (49) corresponds to the mass of fluid vibrating
together with the plate. From equations (31) and (32), it follows that

NA _ ,—2r,h

1 1 l-e
- = E A,— + inr,(x + b)+
(=@ e (tanh rad 1+ e 2k ) sinry(x +b)

NE .
cosh k,,,x sinh k,,,x
+Ey+ » (-D)"|E} ™ 4+ E? )+
0+ 2D ( " cosh kb ’”sinhkmb)

m=1 (51)
Z D! cosh kj,x L D sinh k;,x
"coshkib  "sinhkib)’
nm mn 2m—1
n = A7 km:_’ k* =
T > " 2n
Substitution of this equation into (50) gives
b 1 1 1 — e 2l Db
2 1+ L2 + c A, — ——A+
(r)* my rp \tanhr,d = 1+ e=2h mpw?
+b
P .
+ 7 Eofsm ro(x + b)dx+
mpl(rn)
(52)

NE +b '
cosh k,,x sinh k,,,x
+ —1 m El m +E2 m . : +b d N
n;( ) f( mCOShkmb msinhkmb)slnl" (x ) X

Z f 1coshk X sinh &, x sinr,(x + b)d 0 )
_ ra(x x[{=0,n=12,---
/ "coshk:b  "sinhk:b

m=1_p

Obviously, all constants E and D in these equations depend on A, (n = 1,2, - ), and
therefore, the final system of equations will uniquely depend on these latter constants.
From these equations it follows that, in the limit p — 0, we arrive at equations cor-
responding to free vibration of the plate in air. The integrals in equations (52) are
expressed in exact form as
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+b
1
LAY = fsin ra(x + bydx = —[1 - (=1)"],
rn
-b
Ly +b
Al = m fcosh kpnx - sinr,(x + b)dx =
-b
=1)"r,
=—— " _[1-(-1)"
(kim)? + (ry)? 1=,
+b
m D" fsinh kpx - sinr,(x + b)dx =
" sinhk,b
-b
=1)"r,
—_——[1+ (-1
(e + e LD
] +b
KA" = m fcosh kyx - sinry(x + b)dx =
-b
r’l
" [l =(=1)"
(mﬁ+mﬁ[ =1,
! +b
KB = Snh kb fsmh k,x -sinr,(x + b)dx =
—b
rn n
[1+(=D"].

(k)2 + ()2
With these results, equations (52) may be written in the following form:

b 1 1 1 — e 2nh Db
ﬁpﬁ4 e
(rn) mp 1y \tanhr,d 1+ e 2 My w

LAYE, + Z (LATE), + LByE2)+

m

mpl(rn)4

S (kaoh + kmR)| =0, =12,

m=1

Finally, all these equations are written in the matrix form

[AB](A) + (EO)E, + [LA](E1)+
[LB](E2) - [KA](D1) - [KB](E2) - A[I](A) =

where .
bD*

A= .
My w?*
pl
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(53)

(54)

(55)

(56)
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The elements of the diagonal matrix [AB] and vector matrix (E0) are described by

the formulae
b 1 1 1 — e 2rnh
AB) = 1+ 2= + ¢ ,
r)* mp rp \tanhr,d = 1+ e=2rh

p 1-(=1y
mpl(rn)4 I'n .

(57
EO,=

Substituting equations (57), (53) and (45) into (55) and making simple manipulations,
one obtains the final system of equations

([AA] - A[I])(A) = 0. (58)

The matrix [A A] in this equation is a square matrix. With this matrix, dependent on
the plate parameters and a gap between the plate and the fluid bottom, it is possible
to calculate the associated set of eigenfrequencies of the plate.

Table 1. Steel plate, § = 4 mm, D = 1207.38 kg- m* - s72, H = 0.60 m

Eigenfrequencies of the plate in air
w1 w) w3 Wy ws
61.201 | 244.803 | 550.807 | 979.212 | 1530.019
Eigenfrequencies of the plate in water
w1 wy w3 Wy ws

2510 | 20.309 | 66.427 | 158.082 | 299.403
3946 | 32.074 | 101.374 | 239.614 | 440.465
4.870 | 39.564 | 121.811 | 285.119 | 513.626
5.567 | 45.081 | 135.855 | 314.741 | 558.640
6.127 | 49.385 | 146.166 | 335.256 | 588.357
6.595 52.849 | 154.023 | 349.959 | 608.760
6.995 55.694 | 160.154 | 360.725 | 623.125
7.343 58.063 | 165.021 | 368.724 | 633.413
7.650 | 60.056 | 168.933 | 374.727 | 640.876
7.924 | 61.746 | 172.108 | 379.263 | 646.343
8.170 | 63.190 | 174.706 | 382.706 | 650.381
8.393 64.430 | 176.845 | 385.327 | 653.383
8.596 | 65.500 | 178.616 | 387.325 | 655.629
8.782 | 66.427 | 180.090 | 388.848 | 657.320
8.954 | 67.235 | 181.323 | 390.005 | 658.600
9.114 | 67.941 | 182.359 | 390.882 | 659.575
9.263 68.561 | 183.232 | 391.543 | 660.323
9.402 | 69.107 | 183.972 | 392.037 | 660.899
9.532 | 69.592 | 184.601 | 392.401 | 661.347
9.656 | 70.023 | 185.140 | 392.667 | 661.698

_,
e e e i e e N e T e}
8©oo\loxm.l>ww_o©oo\loxul.uw[\>._50

=,

The solution of the problem presented above is illustrated by numerical examples
below. Two plates are considered. The first one is a steel plate of thickness 6 = 4 mm,
and the second one of thickness = 20 mm is made of reinforced concrete. In order
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to investigate the influence of the gap between the plates and the fluid bottom on the
eigenfrequencies of these plates, a chosen set of the gap widths is taken into account.
Some of the results obtained in numerical calculations are drawn up in tables 1 and 2.

Table 2. Reinforced concrete plate, § = 2 mm, D = 2.8964 - 10* kg m’-s2, H=0.60m

Eigenfrequencies of the plate in air

w1 wy w3 Wy w5

237.546 | 950.184 | 2137.915 | 3800.739 | 5938.655

c Eigenfrequencies of the plate in water
[cm] w wy w3 Wy ws

3 14.838 | 121.016 | 387.919 | 925.757 | 1722.011
4 20.212 | 165.480 | 513.935 | 1217.468 | 2207.365
5 23972 | 196.111 | 594.404 | 1394.321 | 2484.107
6 26.896 | 219.299 | 651.606 | 1512.898 | 2660.854
7 29.288 | 237.646 | 694.424 | 1596.309 | 2780.070
8 31.307 | 252.544 | 727.481 | 1656.660 | 2863.118
9 33.049 | 264.851 | 753.535 | 1701.131 | 2922.216
10 34575 | 275.147 | 774.379 | 1734.308 | 2964.911
11 35.928 | 283.841 | 791.243 | 1759.273 | 2996.108
12 37.140 | 291.240 | 805.008 | 1778.167 | 3019.111
13 38.236 | 297.575 | 816.328 | 1792.520 | 3036.201
14 39.233 | 303.031 | 825.693 | 1803.443 | 3048.985
15 40.146 | 307.752 | 833.484 | 1811.758 | 3058.608
16 40.988 | 311.857 | 839.996 | 1818.079 | 3065.895
17 41.767 | 315.441 | 845.466 | 1822.870 | 3071.447
18 42493 | 318.585 | 850.081 | 1826.484 | 3075.705
19 43.172 | 321.357 | 853.992 | 1829.190 | 3078.992
20 43.810 | 323.812 | 857.323 | 1831.196 | 3081.550

Table 1 contains a set of five lowest eigenfrequencies of the steel plate. Similar
results for the reinforced concrete plate are shown in table 2. In order to obtain a better
insight into the solutions obtained, the lowest eigenfrequencies are illustrated in Fig. 2.
From the data collected in these tables and from the plots in this figure, it may be
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Fig. 2. Eigenfrequencies of steel and reinforced plates versus slip width
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seen that the lowest frequencies correspond to the lowest gaps. It is important for
practical reasons that the formulation presented above makes it possible to calculate
the smallest plate eigenfrequency for a given distance between the horizontal plate
and the fluid (sea) bottom.

4. Flow-induced Vibrations of the Plate

Results of the previous sections are employed here to investigate forced vibrations of
the horizontal plate induced by gravitational waves. In the case considered, the plate
is submerged in a semi-infinite layer of fluid, as shown schematically in Fig. 3.

A,
04— 4 o E - E
B I
| xg(1) 3 6 H
B 3 C
7 I T S S—1

Fig. 3. Simply supported elastic plate BC submerged in a semi-infinite layer of fluid

Water waves are generated by a piston-type generator (rigid vertical wall OA)
placed at the beginning of the layer. The generator motion is described by the formula

xg(t) = xg exp(iwt), 59)

where xg is the generation amplitude.

The potential function for the fluid domain (the fluid domain except for the fluid
below the horizontal plate) consists of two parts, i.e. * = &(x,z,) + ¢(x,z,1). The
first part corresponds to wave generation, and the second part is associated with vibra-
tions of the plate. With respect to the harmonic generation, both ¢ and ¢ are written
in a form similar to that in equations (46), namely

P(x,z,1) = iw P(x,z) expliwt),
d(x,z,t) = iw ¢(x,7) exp(iwt).

At the same time, the boundary conditions at the upper fluid surface and the surfaces
of the plate read

(60)

o (x.2) + g8<I>(x,z) N g8¢(x, 2) _o,

aZ aZ 7z=H (61
9 dp(x.2) )
—[®(x,2) + ¢(x,2)]| = = W(x).
0z plate 0z plate




Vibrations of a Horizontal Elastic Band Plate Submerged in Fluid of Constant Depth 209

In order to obtain the first part of the solution, i.e. ®(x, z), we resort to a discrete
formulation of the problem by means of the finite difference method (FDM). With this
method, however, only a finite fluid domain may be considered. And therefore, instead
of the infinite fluid layer in Fig. 3, a finite part of it, with a boundary at x = L, far off
the generator-plate system, is taken into account. With such an approach, however, it
is necessary to formulate transmitting boundary conditions at this boundary. Thus, for
the steady state, harmonic motion and a sufficiently large distance L from the plate, it
is justified to consider only a progressive wave, for which we have

0P wid
— +==— =0, 62
ot ko ox ©2)
where
w? = gk tanh koh. (63)

Equation (62) describes a local boundary condition at the artificial boundary at
x = L. Since we are dealing with a discrete formulation, it is reasonable to consider
a non-local boundary condition, which is more convenient in the discrete method
applied. One can show that for the FDM formulation, with vertical spacing of nodal
points equal to a, the transmitting boundary condition for the velocity potential reads

(I>|x:L+a =~ <I)ljc:L—a +2 (blx:L cos koa. (64)

This relation is employed for the difference analogue of Laplace’s equation, writ-
ten for all nodal points at x = L. In this way, the problem considered is reduced to
unknown nodal values of the potential at points of the finite fluid domain (interior
and boundary points of the fluid domain). A solution of the system of FDM equations
for the discrete values of the potential $(x;, z;), where i means the number of a nodal
point, depends not only on the generator amplitude, but also on the unknown poten-
tial ¢(x, z). These two potentials are coupled through the boundary conditions at the
free surface and the surface of the plate (equations 61). In order to find a solution to
this problem, a two-step procedure is employed. In the first step, the solution to the
potential $(x,z) is expressed in the form of a linear combination of solutions corre-
sponding to unknown parameters A, (n = 1,2, - - -, na). And then, in the second step,
these parameters are obtained by a solution of the plate equation. This, in turn, makes
it possible to calculate the deflection of the plate, as well as the pressure field and the
amplitude of the free surface elevation.

With respect to the procedure described above, it is necessary to formulate asso-
ciated boundary conditions for the potential $*(x, z). Thus, at the boundary (1-2) in
Fig. 3, one obtains

0d*
ox

0% 99

9¢
1_2_5-}-8)6 Ox

-2 Ox

1-2 -
(65)

coshr,z | | 1
= A, + kn|-E, tanhk,b+ FE — kinz.
; sinh r,d ; [ m a0 mianh kb |
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In a similar way,

0" _ 0 99 0P ¢
— O, - = — = O, 66
9x by~ 0x " ox 7Gxl Oxls (00)
At the right boundary at (5-6-7-8), the following relations hold:
0" _ 0% L 99 ap|  _ 99
0x |g—7 T Ox  Ox a7  Oxlg_7
—ZA -1)'—— nCOSh T2 Zk E! tanhk,,b + E! ! cosk, o
" sinhr,d =~ 44 T " " tanh k,,b me
and 0P _ 0% 0 0P 0
= 0’ —_— = — = 0 68
ox e 0x  Oxli_e 0xli1_¢ 0xl7_¢ (68)
At the upper surface of the plate (segment 3—6 in Fig. 3), we have
0" 0% 9¢ 0o .
+ —= = — = A, sinr,(x + b) cos k,,z. 69
0z i 9z Bzl 0z 13-6 ; et 0) - )

The boundary condition at the free surface of the fluid is described by the first equation
(61), which is rewritten in the form

0®(x,2) _ 0¢(x,2)

Z Ci(-1) +1 exp(—k;x), at (A—4), x—local coordinate

—a)2<I>(x, 2)+g

_rn

2 Z Ap———sinr,(x + b)+ (70)

hk,,x sinh k,,,x
k 1 m+1 Dl COs m D2 m
i Z m(=1) [ osh kb " Sinh kyb

ZB( 1Y+ exp(=k;x), at (5-E).

J=1

4-5)

The boundary condition at x = L (D — E) describes equation (64). Obviously, at
the boundaries (0 — 1) and (6 — D), the normal derivative (0$/dz) is equal to zero.
These boundary conditions depend on the constants (B, C, D, E) that can be expressed
in terms of the parameters A, (n = 1,2, - - -, na). Following the procedure applied, the
right-hand side of the discrete system of equations for the potential ®(x;,z;) will de-
pend not only on the generator amplitude, but also on the setof A, (n = 1,2, - - -, na).
These latter parameters will be obtained from equation (1) describing the plate mo-
tion.
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With the boundary conditions in mind, the final system of FDM equations for the
potential ®(x;,z;) may be written in the following form:

[AA](®) = (P), (71)

where (P) depends on the generator amplitude and the potential ¢(x,z). Non-zero
components of (P), which correspond to nodal points of the free surface, are

Z C ~(—1)jJrl exp(—k;x,), at (A—4), x,—local coordinate

. 2 Z An———— sinr,(x, + b)+

b* cosh k,,x sinh k,,,x
km 1 m+1 Dl m-r D2 m-r
+ D k(=D [ coshknb | Sinh knb

DBy (=1 exp(—k;x,), at (5-E).

J=1

(72)

m=1

(4-5)

The parameters a and b* in this equation denote the horizontal and vertical spac-
ing of nodal points. It is worth adding here that all the constants (B;,C;, - -, E},, E2)
in this equation are uniquely expressed in terms of A, (n = 1,2, - - -, na). Finally, in
order to find the parameters A, (n = 1,2, - - -, na), it is necessary to solve the system
of equations describing the plate motion:

1 1 1= —2r,h D* ; 4
Anb{[1+i—( + ¢ )]— (n) }+
mpy 1y \tanhr,d = 1+ e=2rh My w?

+b
+L Eofsinrn(x+b)dx+
np|
—b b
NE + .
cosh k,,,x sinh k,,x
+ - El m + E2 m . (X + Pydxl+
Z( ) f ( " Cosh kb msinhkmb)smr(x dx (73)
Zf 1coshk X Dzsinhk'x (et bydx| +
sinr,
= mcoshkrb  ™sinh kb * *
L -~-f<l>(x,z:H)sinr,,(x+b)dx-~- =0, n=1,2,--,na
mpl

-b

The integrals entering these equations are defined by equations (53). Simple,
though tedious, manipulations allow us to calculate the set of independent variables
A, (n=1,2,---,na). This solution is illustrated in subsequent Figures 4 and 5.

Plots in Fig. 4 show amplitudes of the free-surface elevation and deflection of the
plate. Figure 5 shows the distribution of the maximum deflection of the plate versus
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H=0.60m, A=2.00m, xg=0.02m, §=0.004m, L,=1.00m

Free surface elevation of the fluid
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Fig. 4. Free-surface elevation of the fluid and deflection of the steel plate
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Fig. 5. Maximum deflection of the steel plate versus the gap width

the width of the gap between the plate and the fluid bottom. It should be stressed that
this deflection depends on the wave length (associated with the generator frequency),
the amplitude of the wave maker, as well as the distance between the plate and the
piston generator. Therefore, in practical applications, one should be aware of a cer-
tain ambiguity in calculating the plate amplitude, which results from the fundamental
assumption of the steady state harmonic motion of the system considered.

5. Concluding Remarks

The formulation developed in this paper makes it possible to calculate the co-vibrating
mass of fluid and a set of eigenfrequencies of a horizontal thin elastic plate submerged
in fluid of constant depth. As compared to vibrations of the plate in air, the most impor-
tant result of these investigations is an assessment of the reduction in the plate eigen-
frequencies due to the co-vibrating mass of fluid. At the same time, the approximate
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theory makes it possible to assess the influence of the gap width on this reduction. It is
important to note that the lowest eigenfrequency of the plate vibrations may fall into
the range inherent for surface gravitational waves. In such a case, one should be aware
of the possibility of a resonance phenomenon that may lead to increased deflection of
the plate. Obviously, under natural conditions, one may expect a certain damping of
the plate vibrations. Nevertheless, the theoretical result of the possible resonance of
waves and plate vibrations is important in the construction of such plates as founda-
tions for offshore structures. At the same time, the numerical experiments conducted
for forced vibrations of the plate reveal that, for a certain gap width, one should expect
a maximum deflection of the plate. From investigations conducted above, it follows
that for a safe operation of such a structure under natural conditions, it may be rea-
sonable to place such a plate foundation at a relatively greater distance from the sea
bottom.
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