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Abstract

In this paper the problem of transient gravitational wave propagation in a viscous incompress-
ible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing
equations of the problem are solved by the smoothed particle hydrodynamics method (SPH).
In order to impose the incompressibility constraint on the fluid motion, the so-called projec-
tion method is applied in which the discrete SPH equations are integrated in time by using
a fractional-step technique. Numerical performance of the proposed model has been assessed
by comparing its results with experimental data and with results obtained by a standard (weakly
compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem
is simulated, in order to investigate the formation and propagation of a wave generated by
a sudden collapse of a water column initially contained in a rectangular tank, as well as the
impact of such a wave on a rigid vertical wall. The results of simulations show the evolution
of the free surface of water, the variation of velocity and pressure fields in the fluid, and the
time history of pressures exerted by an impacting wave on a wall.

Key words: gravity water wave, free-surface, incompressible flow, Lagrangian description,
smoothed particle hydrodynamics

Notation

— reference particle label,

— neighbouring particle label,

— kernel smoothing length,

— initial water column height,

— initial water column length,
mass,

— number of particles in a support domain,
— pressure,

— kernel support domain radius,
— time,

— velocity vector,
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w — smoothing kernel function,
x;(i =1,2) — spatial Cartesian coordinates,
X — position vector,

V2 — Laplace operator,

7 — viscosity,

P — density,

o — Cauchy stress tensor.

1. Introduction

Conventionally, fluid dynamics problems that involve moving free surfaces have been
solved numerically by grid-based methods. The classical approach consists in solv-
ing physical governing equations in the Eulerian (spatial) frame. Typical representa-
tives of such an approach include the finite difference method and the finite volume
method. However, owing to its inherent features, the Eulerian description has serious
limitations, and often fails when attempting to simulate violent flows, such as wave
breaking, green water overtopping, sloshing, or water impact on solid structures; that
is, when the position of the free surface changes rapidly, or fragmentation of the fluid
body occurs. A more successful approach to such complex phenomena is based on the
Lagrangian (material) description, in which a discrete grid is attached to selected par-
ticles of the material. Such a grid follows the deformation of the fluid, and, since the
fluid boundaries are material surfaces that do not move in the Lagrangian coordinate
frame, the solution of boundary-value problems is easier than in the case of the Eule-
rian formulation. Typically, the Lagrangian methods are applied within the framework
of the finite element method (Ramaswamy and Kawahara 1987, Radovitzky and Or-
tiz 1998, Staroszczyk 2007, 2009). A more recent approach consists in combining
the advantages of the spatial and material description, forming the basis of so-called
Arbitrary Lagrangian-Eulerian (ALE) method. In this approach, a purely Eulerian
method is applied to one part of the fluid domain, whereas the other (near moving
boundaries) is treated by a purely Lagrangian method, which makes this approach
computationally very complicated and expensive (Braess and Wriggers 2000, Souli
and Zolesio 2001, Rabier and Medale 2003).

Yet, despite much progress achieved in recent years in the field of computational
fluid dynamics, it is recognized that the above mesh-based methods cannot success-
fully deal with certain classes of phenomena, in which discontinuities develop and
subsequently evolve within the fluid, leading to the separation of some of its parts from
the main body. In such cases, it is more natural, and usually more straightforward in
numerical implementations, to apply one of the so-called particle methods. Rigourous
foundations of such meshless methods were formulated in the 1990s in the field of
solid mechanics (Belytschko et al 1996, 1998), though some ideas of such methods
appeared as early as in the mid 1950s, when particle-in-cell (PIC) and marker-and-cell
(MAC) methods were developed (Harlow 2004, Harlow and Welch 1965).



Incompressible SPH Model for Simulating Violent ... 63

One of the most popular meshless methods is the smoothed particle hydrodynam-
ics (SPH) approach. The method was invented by Lucy (1977) and Gingold and Mon-
aghan (1977) and was originally used only in the field of astrophysics. However, in
the mid 1990s the SPH method, owing to its attractive features, such as the natural ca-
pability of dealing with large displacements and deformations, attracted the attention
of the solid mechanics community (Johnson et al 1996, Randles and Libersky 1996).
Ever since, the interest in the method has been growing, and it has found application
in many branches of applied mechanics and engineering, including hydrodynamics
as well as hydro- and off-shore engineering (Monaghan 1996, Shao and Lo 2003,
Colagrossi and Landrini 2003, Gémez-Gesteira et al 2005, Dalrymple and Rogers
2006, Antoci et al 2007, Shao 2010, Staroszczyk 2011).

Basically, two versions of the SPH method have been developed and used in prac-
tice. In the original, and still most common approach, referred to as weakly compress-
ible SPH (WCSPH), the fluid is treated as a compressible medium, with the compress-
ibility modulus adjusted artificially in such a way that typical fluctuations of the fluid
density are of order 1%. An advantage of this approach is that the resulting discrete
equations can be solved by using computationally fast explicit time-stepping schemes.
Examples of the application of the WCSPH method can be found in Monaghan (1992),
Colagrossi and Landrini (2003), Antoci et al (2007), Staroszczyk (2010), Cummins
et al (2012) and many other publications. An alternative approach is based on the
assumption (very common in the theory of gravity waves) that the fluid is incompress-
ible. A characteristic feature of this approach, termed incompressible SPH (ISPH), is
the necessity of solving a Poisson equation for pressure at each time step in order
to enforce incompressibility of the medium. This significantly increases the cost of
computations, and requires special techniques for solving the discrete equations in
the time domain. Usually a fractional-step projection method is applied, in which, at
each time step, the velocity field is first calculated without enforcing incompressibil-
ity, and then the intermediate velocity field is projected onto a divergent-free space to
satisfy the incompressibility constraint (Chorin 1968, Cummins and Rudman 1999).
Some examples of the application of the ISPH approach are presented by Lo and Shao
(2002), Shao (2006) and Hu and Adams (2007).

It is known from computational practice that fluid pressure fields predicted by
the WCSPH method exhibit some noisiness, and discrete particles tend to cluster
near free surfaces of the fluid. These negative features are due to the stiff charac-
ter of the equation of state used in the method. To some extent the results can be
improved by performing a so-called correction of the SPH interpolating functions
based on the moving least squares (MLS) technique (Colagrossi and Landrini 2003,
Dalrymple and Rogers 2006, Staroszczyk 2010). It turns out, however, that an even
greater improvement in terms of the smoothness of the fluid pressure fields obtained
from simulations can be achieved by employing the ISPH method, as demonstrated by
Rafiee et al (2012). In many engineering problems the accurate determination of the
water pressure field, that is the forces exerted by water on structures, is of paramount
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significance. For this reason, the ISPH method has been selected in the present work
to simulate violent free-surface flows in which the interaction of water with rigid
walls has a very dynamic nature. In order to assess how the more complex ISPH
method performs against the simpler standard WCSPH approach, the two models are
used to simulate a classical two-dimensional dam-break flow problem; the latter has
been frequently used for testing numerical implementations of various discrete meth-
ods (Colagrossi and Landrini 2003, Quecedo et al 2005, Szydiowski and Zima 2006,
Chang et al 2011). The predictions of the ISPH and WCSPH models are compared
with each other and, in addition, some comparisons are also made with experimental
data available from the literature. Hence, results showing the time evolution of the
water free surface and the velocity and pressure fields in water are presented, and, in
particular, the time history of pressures exerted by a surging wave during its impact
on a rigid vertical wall is illustrated.

The paper is structured as follows. First, equations defining the problem to be
solved are presented in Section 2. The following Section 3 deals with the discrete
formulation of the equations involved, together with the description of the fractional
time-stepping scheme used to integrate the ISPH equations. Then, in Section 4, results
of numerical simulations are presented, and, finally, some conclusions are given in
Section 5.

2. Problem Formulation

A plane water flow problem with a free surface is considered, in which the fluid is
treated as isotropic, linearly viscous and incompressible. It is assumed that the flow
occurs under isothermal conditions and is entirely due to the action of gravity. The
problem is solved in rectangular Cartesian coordinates, with origin O and the coordi-
nate axes x; (i = 1,2), see Fig. 1. Let ¢ denote time, then the current position of a fluid
particle is described by the position vector x with components x;(¢).

The law of mass conservation expressed in the adopted coordinate frame is ex-
pressed in a local form by the continuity equation

Dp

— +pV-0=0 1
Dt+p v=0, (1)

where D/Dt denotes the material (convected) time derivative, p is the fluid density, v
is the fluid velocity vector, and V stands for the nabla operator. Note that the form of
the continuity equation (1) corresponds to that for a compressible fluid, even though
the incompressible flow is actually analysed. The purpose of this is that the variations
of the fluid density at each discrete particle during a predictor step are used to enforce
incompressibility during a correction step of the time integration scheme, which will
be described further in Section 3.2.

The linear momentum conservation balance, in the presence of body forces, for
alinearly viscous (Newtonian) and incompressible liquid, is given by the Navier-Stokes
equation of the form:
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Fig. 1. Plane free-surface liquid flow problem definition

D
pD—I; = -Vp +uV’v + pg, (2)

where p is pressure, u is the fluid viscosity, V2 is the vector Laplace operator, and
g denotes the body force vector. In the problem investigated, the only body force is
that due to gravity. The viscosity term is included in the motion equation (2) solely
in order to improve the stability of the numerical time-integration scheme, as it is
realized that viscosity effects are negligibly small in the physical problem considered
here.

To complete the problem statement, initial and boundary conditions must be spec-
ified. It is supposed that the fluid motion starts at time ¢ = 0, and at ¢ < 0 the fluid is
at rest, that is, the fluid velocities are zero, and the initial stress in the fluid is that of
the hydrostatic pressure. Hence, the initial conditions are defined by

t=0: v=0 and o =-pl, 3)

where o denotes the Cauchy stress tensor and I is the unit tensor.

The boundary conditions are adopted in the standard form. Hence, the fluid free
surface is assumed to be traction free, following from the tacit assumption that all
stresses in the fluid are measured relative to the atmospheric pressure, treated as con-
stant and equal to zero. Thus, on the free surface, denoted as I',-, we have

n-(on)=0 and s-(on)=0, on I, @)

where n and s are the unit vectors normal and tangential, respectively, to the boundary.
At solid boundaries, I',, treated as rigid and impermeable walls, free-slip conditions
are adopted. This simplification implies that boundary layer effects are not accounted
for. Accordingly, kinematic conditions at the solid boundaries are expressed as
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v-n=0 on [, (5)

meaning that the velocity component tangential to I, is unconstrained.

3. Incompressible SPH Methodology

In the SPH method, a continuum is represented by a collection of discrete particles,
each of which carries, in a Lagrangian sense, information on the local physical prop-
erties of the system under consideration. Since no topological connectivity for neigh-
bouring particles is needed, the method has a fully mesh-free character, which makes
it very suitable for dealing with large deformations, material discontinuities, etc. In
order to approximate field variables between arbitrarily distributed discrete particles,
and to calculate spatial derivatives at each location, special interpolating functions
are used. These functions, known as smoothing kernels in the SPH, define weight-
ings with which individual particles contribute to the approximated value of a depen-
dent variable at a given spatial or material point. A characteristic feature of the SPH
smoothing kernel is that it has non-zero values only in a small domain, called the ker-
nel support. Most often, the kernel has a shape of a circle or sphere centred at a given
material particle or spatial point. Thus, the number of particles involved in approxi-
mation is limited (typically 20 to 50 in two-dimensional problems), which facilitates
fast computations. Through the use of the smoothing kernels, the field functions are
expressed by integrals, which in turn are approximated by summations over all parti-
cles contained within the kernel support. The spatial derivatives of the field functions
are evaluated similarly, by summation formulae, which involve spatial derivatives of
the smoothing kernel functions (the latter functions, and their derivatives, are usually
defined by analytical expressions).

Let a and b be labels of a pair of neighbouring material particles. Then, the value
of any field variable f(x) at particle a (called a reference particle), situated at position
x,, is evaluated by means of a kernel function, W, centred at this particle, by the
following interpolation formula

N
Ja = Z Vi fo Wap . (6)
b=l

In the above relation, f, = f(x,) and f, = f(x;) are the discrete values of f at particles
a and b, respectively, Vj, is the volume of particle b, and N is the number of particles
currently located within the kernel support domain. The abbreviation W, typical of
the SPH convention, denotes the value of the kernel W, centred at x,, at the point x;,.
That is,

War, = W(rap, h),  rap = |Xap| = 1xa — x|, (7

where r,;, is the distance between particles a and b. The parameter /4 in (7) denotes
the kernel smoothing length, which defines the resolution of discretization, that is, the
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average number of discrete particles involved in kernel interpolations. Spatial differ-
entiation of the function W gives the gradient of the kernel, denoted by V,W,;,, and
defined by

ab OW (Tap, h

VW, = Xap OW (rap, 1) _ (8)
Tab or, ab

The latter relation will be used in the next section to define SPH approximations to

differential operators.

3.1. SPH Equations

There is a variety of possible discrete approximations to differential operators that
can be used in the SPH formulations (Monaghan 1992, Li and Liu 2004). Usually,
the best accuracy of conservation laws is achieved by applying forms that possess
certain symmetry properties with respect to particle indices a and b. In this work,
forms recommended by Monaghan (1992) are employed. Hence, the first-order oper-
ators, the gradient of a scalar function f and the divergence of a vector function f are
respectively approximated at particle a by the formulae:

N
(ﬂ) = m, (% + %)vawah, ©)
p a b=1 pa pb
and
V-f al
(—) = — Z My far-VaWap (10)
P a b=1

where my, denotes the mass of particle b, pj, is its density, and f,;, = f, — f»-

The approximation of the Laplace operator can be derived in a straightforward
manner by the successive application of the gradient and divergence operators defined
above. It has been found, however, that the resulting formula, because of the presence
of the second-order derivative of the kernel function, is very sensitive to the distribu-
tion of particles (Cummins and Rudman 1999, Shao and Lo 2003). More efficient is
a hybrid approach in which the Laplacian approximation is constructed by combining
the first-order derivative with a finite-difference approximation. The resulting formula
for the SPH Laplace operator has then the form (Shao and Lo 2003):

Vf) Y 8 fab Xab 'VaWab
vV [=L]| = , 11
(p a ;mb(p (11)

2 2
atpp)  rr + P

with the notation x,, = x, — x;. 17 is a small parameter, usually adopted as = 0.14,
introduced to regularize the denominator of the last term in (11).
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The application of the approximations (9)—(11) to the continuity and momentum
equations, (1) and (2) respectively, yields the following SPH expressions for a discrete
material particle a:

doa _ ©
= -V.W, 12
I ;mb Ui b (12)
and
%=—Z (—+—+Hab]v Wab + 4, (13)

In the latter equation, the term I1,;, defines the viscous force between particles a and
b, and, in view of the approximation formula (11), is given by

8/1 Vab Xab
(Pa + Pp)* 12, + 1

Shao and Lo (2003) consider a more general relation for I1,,, admitting different vis-
cosities at particles a and b; in the present analysis, however, it is supposed that the
viscosity u has a constant value throughout the liquid body.

The ordinary differential equations (12) and (13), describing interaction between
a given particle and its neighbours, must be supplemented by an equation describing
the particle trajectory x(¢), which is simply expressed by

Hab:_

(14)

dx,
dr

=v,. (15)

3.2. Time Integration of the SPH Equations

The discrete representations of the continuity, momentum and displacement equa-
tions, (12), (13) and (15), form a set of differential equations that must be integrated in
the time domain, given the initial conditions stated generally in equation (3). In order
to satisfy the fluid incompressibility constraint, V - v = 0, the equations are typically
integrated by applying a two-step method proposed by Chorin (1968), subsequently
called the fractional step method, or the projection method. Several variants of this
method have been developed since its origination. In the present study, we follow an
approach which is similar to that of Shao and Lo (2003) and Rafiee et al (2012).

Accordingly, at a given time step of length Az, advancing the solution from time
instant 7, to ¢,+1, the equations are first integrated explicitly without enforcing the fluid
incompressibility. That is, in expression (13), approximating the the Navier-Stokes
equation (2), the pressure gradient term is ignored, so that only the viscous stress
and body force terms are retained. Hence, an intermediate velocity of particle a is
calculated as

N
v = vZ—At(ZmbHab +ga], (16)

b=1
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the particle is shifted to its intermediate position x7, see (15), by
x, =x,+Atv,, (17)

and, using the shifted particle positions, the fluid density is calculated from the rela-
tion (Rafiee et al 2012)

N
pa= > myWa, (18)
b=1

where W, denotes the kernel functions smoothed out by the Shepard filtering formula
(Dalrymple and Rogers 2006)

—_ Wa
Wop=—2b =2t (19)

N
bZI Vi Wap P

Note that the values of the kernel functions W, at all neighbouring particles b
of a reference particle a will change slightly due to the changes in distances |x, — x,
between all the particles involved.

The intermediate fluid densities p, determined from (18) deviate from the initial
constant value pg. Therefore, a second corrective step is performed in order to adjust
the density to its value pg at the beginning, and the end, of the time step. For this
purpose, the pressure term in the momentum equation (2), in the SPH form repre-
sented by (13), is now used (with the other terms being omitted) in order to update
the intermediate velocity v,. Hence, by expressing (2) for particle a in the approximate
form

vl’l+1 _ v* 1

a a___ vy n+1’ 20
At o Pa 20)

and by applying the divergence operator, we have

1 1
A—t(v-vg*1 —V-vZ):—V(EV-pZ”). (21)

a

In the above equations, v"*! and p"*! denote, respectively, the velocity and pressure

at the end of the time step, at the instant #,,,.;. Since it is required that at the end of the

step the incompressibility condition V - v"*! = 0 is fulfilled, equation (21) becomes

V-v v 1
At

- VPZ”) : (22)
Pa
which is the Poisson equation for pressure with a source term involving the diver-
gence of the intermediate velocity vector. The latter quantity, V - v}, is determined
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from the continuity equation (1), in the SPH form given by (12). Accordingly, after
approximating the time derivative in equation (1) by the finite difference, one obtains

pa L0

V.v, 23
Ry @)
Combining now equations (22) and (23) gives
1 Pz~ Po
V-l— Vpg“) ==L = (24)
(pZ pi(Ar)?

where the Laplacian on the left-hand side is expressed in the SPH form by (11). Thus,
by applying this approximation, equation (24) becomes

Py X2, VaWab _ Pa~Po
(p + pb)2 (152 +n? Pi(Ar)?

Mz

(25)

The above is an implicit relation for the pressures p™*! at all particles of the discrete
system (recall that p,;, stands for p, — pp). Thus, it represents a system of linear alge-
braic equations, with a sparse matrix of coefficients.

With pressures at all particles calculated from (25), the final velocity at particle
a at the end of the current time step can be determined from equation (20), with the
gradient operator approximation given by (9), to yield

n+] i’l+1

vt =t — At ( )VaWab, (26)
> (e

and the position of particle a at time #,,,; is

27)

a

+vn+l
x””—x +Al(— .

2

4. Numerical Simulations

The numerical SPH model presented in the preceding section has been employed
to simulate a plane dam-break problem, in which violent water flow is induced by
the collapse of a water column, resulting from an instantaneous removal of a gate
lock containing the liquid in a reservoir. Such a classical problem, however idealized,
is often used as a benchmark test for assessing the performance and robustness of
numerical techniques for solving computational fluid dynamics problems. Two cases,
sketched in Figure 2, are considered. In the first case, water is released into a channel
with a dry bed (i.e. the channel contains no water prior to the dam failure), whereas in
the second case there is a shallow layer of water in the channel. In order to assess the
accuracy of the SPH model predictions, some of the numerical results obtained have
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Fig. 2. Dam-break problem definitions: geometric parameters and coordinate axes

been compared with experimental measurements by Martin and Moyce (1952) for the
dry-bed case shown in Fig. 2(a). Therefore, the specific geometric dimensions have
been adopted to agree with those occurring in the corresponding laboratory tests.
The simulations for the case (a) in Fig. 2 were conducted for the geometric aspect
ratio L/H = 1, which is one of the dimensionless ratios investigated by Martin and
Moyce (1952). Hence, the parameters H = L = 1.0 m, defining the initial geometry
of the water reservoir, were used in calculations. The water domain was discretized
by adopting a uniform grid of particles in the initial fluid configuration, with equal
spacings in the x and z directions. The inter-particle spacing was taken as d = (1/60)
m; so that the SPH model consisted of 60 x 60 = 3600 particles. In the simulations,
the kernel function proposed by Morris (1996) was used, which is a polynomial ap-
proximation of the Gaussian kernel function (Monaghan 1992). The kernel support
domain radius was taken as R = 4d, which implied that, in the initial configuration,
a typical particle inside the fluid domain had about 50 interacting neighbours. The
evolution equations were integrated with the time step of length At = 2 x 10~* s. The
density of water was adopted as py = 10° kg/m?, and its viscosity as u = 1.01 x 1073
Nsm™2. The initial conditions assumed at ¢ = O were those of the hydrostatic equi-
librium, that is, v, = v, = 0 and p = pog(H — 7). At all solid boundaries, the vertical
walls at x = 0 and x = L + L; and the horizontal bed z = 0, free-slip conditions were
adopted. These conditions were implemented in the numerical code by introducing
so-called ghost (fictitious) particles outside the walls (Cummins and Rudman 1999),
in such a way that all their physical properties (mass, density, volume, velocity and
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pressure) mirror the corresponding properties of real particles distributed (at a given
time instant) along the walls inside the water domain.
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Fig. 3. Time evolution of the surging wave front position x/H (a), and the free-surface
elevation z/H at the wall z = 0 (b), for L/H = 1. Comparison of numerical (lines)
and experimental (solid dots) results

Figure 3 illustrates the evolution of the surging wave front position, x/H, and the
free-surface elevation, z/H, at the wall x = 0, for the aspectratio L/H = 1, as functions
of dimensionless time t\/g/_H . The numerical results are compared with empirical
data obtained by Martin and Moyce (1952), represented by the solid dots. Shown are
the predictions of the standard weakly compressible (WCSPH) method, represented
by the dashed lines, and of the present incompressible (ISPH) method, represented
by the solid lines. It is seen that the application of the incompressible version of the
SPH improves the results, though this improvement is more pronounced for the pre-
diction of the wave front position, whereas the free-surface elevations given by the
two methods are very similar. Similarly good agreement between the ISPH results
and the experimental data was achieved for the aspect ratio L/H = 0.5.

The plots presented in Figures 4, 5 and 6 show the evolution of the water do-
main for a water tank of the dimensions L = H = 1 m with time elapsing from the
dam-break instant ¢ = 0. First, in the series of plots in Figure 4, flow over a dry bed is
illustrated. It is seen that discrete particles are distributed in a regular and consistent
pattern, and the particles on the top form a smooth free surface. This indicates that
the SPH model has been properly constructed and yields reliable results, at least in
terms of the qualitative behaviour of the liquid. Only after a relatively long time of
simulation the numerical solution starts to deteriorate near the leading edge of the
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Fig. 4. Time evolution of the water domain during dam-break flow over a dry bed
(L = H = 1 m, 3600 discrete particles used in the simulations)

wave, which is due to the fact that there are too few discrete particles across the very
shallow water domain to accurately interpolate field variables.

In the next two sets of plots, in Figures 5 and 6, dam-break flow over a layer of
fluid is illustrated. Figure 5 presents the results of simulations for a shallower layer,
for which H|/H = 0.2, whereas the following Figure 6 illustrates the case of a deeper
layer, defined by Hi/H = 0.4. One can see in both figures that the presence of an
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Fig. 5. Time evolution of the water domain during dam-break flow over a dry bed
(L=H=1m,H; =0.2m, L; =5 m, 7200 discrete particles used in the simulations)

ambient layer of water, due to its dynamic interaction with the surging wave, gives
rise to a different behaviour of the fluid system. Two features can be noticed in the
plots. First, that the layer of water outside the dam can effectively constrain the water
from the dam reservoir by preventing it from moving far away from the dam wall.
Another feature is the possibility of forming a breaking wave in the region near the
moving interface of the two fluids, which can be seen in the case of the shallow water,
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Fig. 6. Time evolution of the water domain during dam-break flow over a dry bed
(L=H=1m,H; =04 m, L; =5 m, 10800 discrete particles used in the simulations)

see Figure 5. In the case of the deeper layer, illustrated in Figure 6, the progressive
wave also develops, but its evolution is less violent and no wave breaking occurs.
Corresponding to the flow case shown in Figure 5 are the plots presented in Fig-
ures 7 and 8, which illustrate the evolution of water pressure and horizontal velocity
fields during the wave-breaking process. The pressures and velocities in the plots are
given in dimensionless forms, obtained by scaling the respective quantities by the
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Fig. 7. Time evolution of dimensionless pressure field during dam-break flow over a water
layer (L=H =1m, H; = 0.2 m, L; =3 m, 5760 discrete particles used in the simulations)
Particles are coloured by their velocities
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units pogH and +/gH. It is seen that the discrete representations of the two fields are
relatively smooth and regular in nearly the whole fluid domain. Some irregularities
and numerical oscillations appear on the free surface directly ahead of the advancing
water front only after a plunging jet has formed, followed by its disintegration due to
the impact on the water surface below.

1.00 084

1 T

oo & \”%
0.20 2

g NN \\\\\\
.

—

Fig. 9. Time evolution of dimensionless pressure field during dam-break flow over a dry bed
(left column) and over a water layer (right column),for L = H = 1m,L; = 2mand H; = 0.2 m.
Particles are coloured by their pressures

Finally, a situation in which a surging water wave generated by the dam break hits
arigid vertical wall was simulated to determine the pressures exerted by water on the
structure. The two cases sketched in Figure 2 were considered, with the initial fluid
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configurations defined by the parameters L=H =1 m, L; =2 m and H; = 0.2 m.
The results obtained are presented in Figure 9. The consecutive plots in the left panel
illustrate flow over a dry bed, whereas the plots on the right side show the pressure
evolution in the case of flow in the presence of a water layer. One can see again that,
even though water pressures vary rapidly, the ISPH model predicts reasonably smooth
pressure fields. It follows from the plots that the maximum water impact pressures
generated during flow over a dry bed significantly exceed those appearing in the pres-
ence of a water layer.
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Fig. 10. Time history of dimensionless pressure p/pogH exerted by a dam-break generated

wave impacting on a rigid wall. Left column: flow over a dry bed (H; = 0), right column: flow

over a layer of water of depth H; = 0.2 m. The z-coordinates in the plots indicate the locations
of the points on the wall for which the graphs are presented

The time variation of pressures exerted by a dam-break generated wave on a rigid
wall is illustrated in Figure 10, showing pressure histories at two selected points: one
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at the bottom of the wall (z = 0) and the other at a height of z = 0.2 m. Again, two flow
cases are considered: flow over a dry bed, that is for H; = 0, and flow over a water
layer of depth H; = 0.2 m. One can see that the pressures at the rigid wall change
very rapidly and in an irregular manner from the instant of the first contact of the
wave with the structure, reflecting the violent dynamics of the impact mechanism.
Such behaviour has been observed in experiments, see, for instance, Colagrossi and
Landrini (2003) and Rafiee et al (2012). Clearly, the largest pressures are exerted on
the wall during water flow over a dry bed, with the peak values of about 2.5 pggH
occurring at the bottom corner point z = 0 (see the top left plot). The corresponding
impact pressures at the point z = 0.2 m are much smaller, indicating that the main
thrust of the surging wave is restricted to the near-bottom region. In contrast, in the
case of a breaking wave impact illustrated in the two plots in the right column, the
pressures at the points z = 0 and z = 0.2 m (the initial free surface elevation of water
in the channel) attain similar values (around 1.8 ppgH at the bottom). Furthermore,
the pressure variations in time at the two points are qualitatively similar.
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Fig. 11. Time history of dimensionless dynamic pressure force Pyy/Pgar (Psiar = 1/2 pogH 2)
exerted by a dam-break wave impacting on a rigid wall. Left plot: flow over a dry bed (H; = 0),
right plot: flow over a layer of water of depth H; = 0.2 m

Corresponding to the previous plots are those presented in Figure 11, illustrating
the time variation of total dynamic pressure forces Py, exerted by an impacting water
wave on the vertical wall; these forces are calculated by integrating fluid pressures at
all discrete particles being currently on the wall surface. The resulting dynamic forces
are normalized by means of a static pressure force Py, = %pogH 2 which is the total
force exerted on the wall by still water of depth H. Again, two cases are considered,
namely flow over a dry bed (the plot on the left), and flow over a wet bed, that is, over
alayer of water of the initial depth H; = 0.2 m (the plot on the right). It can be seen that
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in both cases the variations in time of the normalized total forces P,,/Pq resemble
qualitatively the corresponding variations of the normalized dynamic pressures at the
wall point z = 0.2 m (see the two plots in the lower row in Figure 10).

5. Conclusions

In this paper, the incompressible smoothed particle hydrodynamics (ISPH) method
has been applied to solve numerically the equations describing violent free-surface
water flow under gravity. The comparisons of the results of calculations with exper-
imental data have shown that the ISPH method yields better quantitative predictions
of the surging wave front position and of the water free-surface elevation than the
standard, weakly compressible, SPH approach. However, the improvement has been
achieved at a significantly greater computational cost, associated with the need to
solve the Poisson equation for water pressures. In the simulations carried out here,
this cost increased by a factor of about five. The plots illustrating the evolution of the
water domain during a dam-break event prove that the numerical model is capable
of realistically capturing physical phenomena taking place during violent transient
water flows. The plots showing the variation of pressure and velocity fields remain
smooth over long time scales, except those regions of water near its free surface in
which wave breaking and jet formation occur. A more successful treatment of these
phenomena may require, on one hand, consideration of additional physical mecha-
nisms, such as surface-tension effects in the case of small geometrical scales, and, on
the other hand, an increased resolution of the discrete model and the application of
a more sophisticated numerical time-integration scheme.
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