Effect of calcination temperature and calcination time on the kaolinite/tio2 composite for photocatalytic reduction of CO2

Open access


The kaolinite/TiO2 composite (60 wt% of TiO2) was prepared by thermal hydrolysis of a raw kaolin suspension in titanyl sulphate and calcined at different temperatures (600, 650 and 700°C) and for different times (1, 2 and 3 h). The obtained samples were characterized by XRPD, N2 physical adsorption and SEM, and tested for photocatalytic reduction of CO2. The different calcination conditions did not influence TiO2 phase composition, only slightly changed the specific surface area, and significantly affected crystallite size of kaolinite/TiO2 composite. A higher temperature and longer duration of calcination lead to higher crystallinity of the powder. The photocatalytic results showed that the crystallite size determined the efficiency of kaolinite/TiO2 photocatalysts.

[1] ADACHI, K.; OHTA, K.; MIZUNO, M. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy. 1994, LIII. Nr. 2, pp. 187-190. ISSN 0038-092X.

[2] MIZUNO, T.; ADACHI, K.; OHTA, K.; SAJI, A. Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry. 1996, IIC, Nr. 1-2, pp. 87-90. ISSN 1010-6030.

[3] TSENG, I.-H.; CHENG, W.-C.; WU, J. C. S. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental. 2002, XXXVII, Nr. 1, pp. 37-48.ISSN 0926-3373.

[4] SASIREKHA, N. ; BASHA, S. J. S. ; SHANTHI, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental. 2006, LXII, Nr. 1-2, pp. 169-180. ISSN 0926-3373.

[5] ZHANG, Q.-H.; HAN, W.-D.; HONG, Y.-J.; YU, J.-G. Photocatalytic reduction of CO2 with H2O on Ptloaded TiO2 catalyst. Catalysis Today. 2009, CXLVIII, Nr. 3-4, pp. 335-340. ISSN: 0920-5861.

[6] ZHAO, Z.; FAN, J.; XIE, M.; WANG, Z. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. Journal of Cleaner Production. 2009, XVII, Nr. 11, pp. 1025-1029. ISSN 0959-6526.

[7] VARGHESE, O. K.; PAULOSE, M.; LATEMPA, T. J.; GRIMES, C. A. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters. 2009, IX, Nr. 2, pp. 731-737.ISSN 1530-6992.

[8] WU, J. C. S. Photocatalytice reduction of greenhouse gas CO2 to fuel. Catatalysis Surveys from Asia. 2009, XIII, pp. 30-40. ISSN 1574-9266.

[9] KIBANOVA, D.; TREJO, M.; DESTAILLATS, H.; CERVINI-SILVA, J. Synthesis of hectorite- TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Applied Clay Science. 2009, XLII, Nr. 3-4, pp. 563-568. ISSN 0169-1317.

[10] KOČÍ, K.; MATĚJKA, V.; KOVÁŘ, P.; LACNÝ, Z.; OBALOVÁ, L. Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catalysis Today. 2011, CLXI, Nr. 1, pp. 105-109. ISSN 0920-5861.

[11] HAMADANIAN, M.; REISI-VANANI, A.; MAJEDI, A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Applied Surface Science. 2010, CCLVI, Nr. 6, pp. 1837-1844. ISSN 0169-4332.

[12] MAHDJOUB, N.; ALLEN, N.; KELLY, P.; VISHNYAKOV, V. SEM and Raman study of thermally treated TiO2 anatase nanopowders: Influence of calcination on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry. 2010, CCXI, Nr. 1, pp. 59-64. ISSN 1010-6030.

[13] JIA, A.; LIANG, X.; SU, Z.; ZHU, T.; LIU, S. Synthesis and the effect of calcination temperature on the physical-chemical properties and photocatalytic activities of Ni,La codoped SrTiO3. Journal of Hazardous Materials. 2010, CLXXVIII, Nr. 1-3, pp. 233-242. ISSN 0304-3894.

[14] KUBACKA, A.; COLÓN, G.; FERNÁNDEZ-GARCÍA, M. N- and/or W-(co)doped TiO2-anatase catalysts: Effect of the calcination treatment on photoactivity. Applied Catalysis B: Environmental. 2010, XCV, Nr. 3-4, pp. 238-244. ISSN 0926-3373.

[15] ZHENG, R.; GUO, Y.; JIN, C.; XIE, J.; ZHU, Y.; XIE, Y.; J. Mol. Catal. A: Chem. 2010, 319, 46.

[16] MAMULOVÁ-KUTLÁKOVÁ, K.; TOKARSKÝ, J.; KOVÁŘ, P.; VOJTĚŠKOVÁ, S.; KOVÁŘOVÁ, A.; SMETANA, B.; KUKUTSCHOVÁ, J.; ČAPKOVÁ, P.; MATĚJKA, V. Preparation and characterization of photoactive composite kaolinite/TiO2. Journal of Hazardous Materials. 2011, CLXXXVIII, Nr. 1-3, pp. 212-220. ISSN 0304-3894.

[17] SCHERRER, P. Estimation of the size and internal structure of colloidal particles by means of röntgen.Nachrichten von der Akademie der Wissenschaften in Göttingen. 1918, XXVI, pp. 96-100.

[18] KOČÍ, K.; OBALOVÁ, L.; MATĚJOVÁ, L.; PLACHÁ, D.; LACNÝ, Z.; JIRKOVSKÝ, J.; ŠOLCOVÁ, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental . 2009, LXXXIX, Nr. 3-4, pp. 494-502. ISSN 0926-3373.

[19] BALLARI, M. M.; BRANDI, R.; ALFANO, O.; CASSANO, A. Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: I. Concentration profiles in the bulk.Chemical Engineering Journal. 2008, CXXXVI, Nr. 1, pp. 50-65. ISSN 1385-8947.

[20] BALLARI, M. M.; BRANDI, R.; ALFANO, O.; CASSANO, A. Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: II. External and internal particle constrains for the reaction. Chemical Engineering Journal. 2008, CXXXVI, Nr. 2-3, pp. 242-255. ISSN 1385-8947.

[21] KOČÍ, K.; OBALOVÁ, L.; PLACHÁ, D.; LACNÝ, Z. Effect of temperature, pressure and volume of reacting phase on photocatalytic CO2 reduction on suspended nanocrystalline TiO2. Collection of czechoslovak chemical communications. 2008, LXXIII, Nr. 8-9, pp. 1192-1204. ISSN 1212-6950.

[22] CHONG, M. N.; VIMONSES, V.; LEI, S.; JIN, B.; CHOW, C.; SAINT, C. Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous and Mesoporous Materials. 2009, CXVII, pp. 233-242. ISSN 1387-1811.

[23] PATSOURA, A.; KONDARIDES, D. I.; VERYKIOS, X. E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today. 2007, CXXIV, Nr. 3-4, pp. 94-102. ISSN 0920-5861.

[24] KONDARIDES, D. I.; DASKALAKI, V. M.; PATSOURA, A.; VERYKIOS, X. E. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catalysis Letters. 2008, CXXII, pp. 26-32. ISSN 1572-879X.

[25] MAIRA, A. J.; YEUNG, K. L.; LEE, C. Y.; YUE, P. L.; CHAN, C. K. Size Effects in Gas-Phase Photooxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis. 2000, CXCII, Nr. 1, pp. 185-196. ISSN 0021-9517.

[26] ALMQUIST, C. B.; BISWAS, P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. Journal of Catalysis. 2002, CCXII, Nr. 2, pp. 145-156. ISSN 0021-9517.

[27] ZHANG, Z.; WANG, C.-C.; ZAKARIA, R.; YING, J. Y. Role of particle size in nanocrystalline TiO2- based photocatalyst. The Journal of Physical Chemistry B. 1998, CII, Nr. 52, pp. 10871-10878. ISSN 1520-5207.

[28] WAHI, R. K.; YU, W. W.; LIU, Y.; MEJIA, M. L.; FALKNER, J. C.; NOLTE, W.; COLVIN, V. L.Photodegradation of Congo Red catalyzed by nanosized TiO2. Journal of Molecular Catalysis A: Chemical. 2005, CCXLII, Nr. 1-2, pp. 48-56. ISSN 1381-1169.

GeoScience Engineering

The Journal of VŠB-Technical University of Ostrava, Faculty of Mining and Geology

Journal Information

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 391 274 20
PDF Downloads 155 121 12