Multiphase carbonate cementation in the Miocene Pétervására Sandstone (North Hungary): implications for basinal fluid flow and burial history

Open access


The paper focuses on the reservoir heterogeneity of a sandstone formation in which the main issue is the evaluation of diagenetic features. Integrated data from field observations as well as petrographic and geochemical analyses from surface and core sections from different structural settings were applied. In the shallow marine Pétervására Sandstone, eogenetic minerals are comprised of calcite, pyrite and siderite; mesogenetic minerals are albite, ankerite, calcite, quartz, mixed layer clays and kaolinite. Dissolution occurred during mesogenetic and telogenetic phases. Ankerite is only present in the core setting, where the sandstone is at ca. 900 m depth and diagenetic calcite predates quartz cementation. Based on stable isotopic values (δ13 CV-PDB −18.3 to −11.4 ‰ and δ18 OV-PDB −9.5 to −7.2 ‰), diagenetic calcite is of mesogenetic origin and was precipitated from fluids migrated along fault zones from the underlying, organic matter-rich formation. In outcrop setting, on the other hand, calcite is present in a larger quantity and postdates quartz cementation. Carbon isotope data (δ13 CV-PDB = −9.9 to −5.1 ‰) indicate less contribution of light isotope, whereas more negative oxygen isotopic values (OV-PDB = −13.1 to −9.9 ‰) likely imply higher temperature of mesogenetic fluids.However, carbon–oxygen isotope covariation can indicate precipitation from meteoric fluid. In this case, further analyses are required to delineate the final model.

Aagaard P., Egeberg Z.P.K., Saigal G.C., Morad S. & Bjorlykke K. 1990: Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway, II. Formation water chemistry and kinetic considerations. J. Sediment. Petrol. 60, 575–581.

Abreu V.S. & Anderson J.B. 1998: Glacial eustasy during theCenozoic: sequence stratigraphic implications. Am. Assoc. Pet. Geol. Bull. 82, 1385–1400.

Allan J.R. & Wiggins W.D. 1993: Dolomite reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists Continuing Education Course Note Series, Tulsa, Oklahoma, 1–170.

Badics B. & Vető I. 2012: Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays. Mar. Pet. Geol. 31, 53–69.

Baker J.C., Kassan J. & Hamilton P.J.O.E. 1995: Early Diagenetic Siderite as an Indicator of Depositional Environment in the Triassic Rewan Group, Southern Bowen Basin, Eastern Australia. Sedimentology 43, 77–88.

Báldi T. 1983: The Oligocene and Lower Miocene formations ofHungary. Akadémiai Kiadó, Budapest, 1–293 (in Hungarian).

Báldi T. & Báldi-Beke M. 1985: The evolution of the Hungarian Paleogene basins. Acta Geol. Hungarica. 28, 5–28 (in Hungarian).

Beke B.K. 2016: The role of deformation bands in Cenozoic structural evolution of Northern Hungary, PhD thesis. Eötvös Loránd University, Budapest, 1–148 (in Hungarian).

Berner, R. A., Leeuw J.W. De, Spiro B., Murchison D.G. & Eglinton G. 1985: Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 315, 25–38.

Bojanowski M.J., Barczuk A. & Wetzel A. 2014: Deep-burial alteration of early-diagenetic carbonate concretions formed in Palaeozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland). Sedimentology. 61, 1211–1239.

Calvo R., Ayalon A., Bein A. & Sass E. 2011: Chemical and isotopic composition of diagenetic carbonate cements and its relation to hydrocarbon accumulation in the Heletz-Kokhav oil field (Israel). J. Geochemical Explor. 108, 88–98.

Dickson J. 1966: Carbonate identification and genesis as revealed by staining. J. Sediment. Petrol. 36, 491–505.

Dutton S.P. 2008: Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. Am. Assoc. Pet. Geol. Bull. 92, 765–787.

El-ghali M.A.K., Tajori K.G., Mansurbeg H., Ogle N. & Kalin R.M. 2006: Origin and timing of siderite cementation in Upper Ordovician glaciogenic sandstones from the Murzuq basin, SW Libya. Mar. Pet. Geol. 23, 459–471.

Folk R.L. 1974: Petrology of sedimentary rocks. Hemphill Publishing Company. Austin, Texas, 1–190.

Friedman I. & O’Neil J. 1977: Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: M. Fleischer (Ed.): Data of Geochemistry. US Geological Survey Professional Paper, 440-KK, Washington.

Gier S., Worden R.H., Johns W.D. & Kurzweil H. 2008: Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Mar. Pet. Geol. 25, 681–695.

Gradstein F. & Ogg J. 2004: Geologic Time Scale 2004 — why, how, and where next!. Lethaia 37, 175–181.

Grundtner M.L., Gross D., Gratzer R., Misch D., Sachsenhofer R.F. & Scheucher L. 2017: Carbonate cementation in upper eocene clastic reservoir rocks from the north alpine foreland basin (Austria). Austrian J. Earth Sci. 110, 55–75.

Grundtner M.L., Gross D., Linzer H.G., Neuhuber S., Sachsenhofer R.F. & Scheucher L. 2016: The diagenetic history of Oligocene-Miocene sandstones of the Austrian north Alpine foreland basin. Mar. Pet. Geol. 77, 418–434.

Hámor T. 1985: Geological report on Sámsonháza- 16/a well. Geological Institute of Hungary, Budapest, 1–16

Hendry J.P. 2002: Geochemical trends and palaeohydrological significance of shallow burial calcite and ankerite cements in Middle Jurassic strata on the East Midlands Shelf (onshore UK). Sediment. Geol. 151, 149–176.

Hendry J.P., Wilkinson M., Fallick A.E. & Haszeldine R.S. 2000: Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. J. Sediment. Res. 70, 227–239.

Horváth F. & Tari G. 1999: IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration. Geol. Soc. London, Spec. Publ. 156, 195–213.

Horváth F., Musitz B., Balázs A., Végh A., Uhrin A., Nádor A. & Koroknai B. 2015: Geothermics Evolution of the Pannonian basin and its geothermal resources. Geothermics 53, 328–352.

Kantorowicz J.D. 1985: The origin of authigenic ankerite from the Ninian Field, UK North Sea. Nature 315, 214–216.

Karim A., Pe-Piper G. & Piper D.J.W. 2010: Controls on diagenesis of Lower Cretaceous reservoir sandstones in the western Sable Subbasin, offshore Nova Scotia. Sediment. Geol. 224, 65–83.

Kázmér M. 2004: Hydrocarbon geology o f northem Hungary (Palaeogene basin), in: Kázmér, M. (Ed.), General Geological Review Journal of the Section for General Geology Hungarian Geological Society. Hantken Kiadó, Budapest, 9–120.

Khalifa M.A., Mansurbeg H., Morad D., Morad S., Al-Aasm I.S., Spirov P., Ceriani A. & De Ros L.F. 2017: Quartz and Fe-dolomite Cements Record Shifts in Formation-water Chemistry and Hydrocarbon Migration in Devonian Shoreface Sandstones, Ghadamis Basin, Libya. J. Sediment. Res. 88, 38–57.

Lakatos L., Varadi M., Pogacsas G., Nagymarosy A., Kis B. & Barvitz A. 1991: Sequence stratigraphy of Paleogene Formations in Zagyva Trough. Hung. Geophys. 20–37 (in Hungarian).

Land L.S. & Milliken K.L. 1981: Feldspar diagenesis in the Frio formation, Brazoira County, Texas Gulf Coast. Geology 9, 314–318.

Lenkey L., Dövényi P., Horváth F. & Cloetingh S. a. P.L. 2001: Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec. Publ. Ser. 3, 29–40.

Lima R.D. & De Ros L.F. 2002: The role of depositional setting and diagenesis on the reservoir quality of Devonian sandstones from the Solimões Basin, Brazilian Amazonia. Mar. Pet. Geol. 19, 1047–1071.

Lonoy A., Akselsen J. & Ronning K. 1986: Diagenesis of a deeply buried sandstone reservoir; Hild Field, northern North Sea. Clay Miner. 497–511.

Makeen Y.M., Abdullah W.H., Ayinla A.A., Hakimi M.H. & Sia S.G. 2016: Sedimentology, diagenesis and reservoir quality of the upper Abu Gabra Formation sandstones in the Fula Sub-basin, Muglad Basin, Sudan. Mar. Pet. Geol. 77, 1227–1242.

Maraschin A.J., Mizusaki A.M.P. & De Ros L.F. 2004: Near-Surface

K-Feldspar Precipitation in Cretaceous Sandstones from the Potiguar Basin, Northeastern Brazil. J. Geol. 112, 317–334.

Marfil R., Delgado A., Rossi C., La Iglesia A. & Ramseyer K. 2003: Origin and diagenetic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous, Salam Field, Western Desert (Egypt). In: Worden, R.H., Morad, S. (Eds.): Sandstone Diagenesis: The Evolution of Sand to Stone. International Association of Sedimentologists, Bodmin, Corn-wall. 319–342.

Márton E. & Fodor L. 1995: Combination of palaeomagnetic and stress data: a case study from Northern Hungary. Tectonophysics 242, 99–114.

McBride E.F., Milliken K., Cavazza W., Cibin U., Fontana D., Picard M.D. & Zuffa G.G. 1994: Patterns of calcite cementation at the outcrop scale in Tertiary sandstones. AAPG Annu. Conv. 1–209.

McKinley J.M., Worden R.H. & Ruffell a H. 2002: Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis. Int. Assoc. Sedimentol. Spec. Publ. 109–128.

Milota K., Kovacs A. & Galicz Z. 1995: Petroleum potential of the North Hungarian Oligocene sediments. Pet. Geosci. 1, 81–87.

Moore S.E., Ferrell R.E. & Aharon P. 1992: Diagenetic siderite and other ferroan carbonates in a modem subsiding marsh sequence. J. Sediment. Petrol. 62, 357–366.

Morad S. 1998: Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In: Morad S. (Ed.): Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. Special Publication 26 of the IAS, University Press, Cambridge, 1–26.

Morad S., Márfil R. & Pena J. 1989: Diagenetic K-feldspar pseudo-morphs in the Triassic Buntsandstein sandstones of the Iberian Range, Spain. Sedimentology 36, 635–650.

Morad S., Ketzer J.M. & De Ros L.F. 2000: Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology 47, 95–120.

Mozley P.S. 1989: Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology 17, 704–706.

Nagymarosy A. 2012: Accretion of the ALCAPA Mega-Unit. In: Haas J., Hámor G., Jámbor Á., Kovács S., Nagymarosy A. & Szederkényi T. (Eds.): Geology of Hungary. Springer-Verlag, Berlin Heidelberg, 81–102.

Nickel E.H. & Grice J.D. 1998: The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Can. Mineral. 36, 1–14.

Odin G. & Matter A. 1981: De glauconiarum origine. Sedimentology 28, 611–641.

Oluwadebi A.G., Taylor K.G. & Dowey P.J. 2018: Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sediment. Geol. 371, 55–74.

Petrik A., Beke B. & Fodor L. 2014: Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics 633, 43–62.

Püspöki Z., Hámor-Vidó M., Pummer T., Sári K., Lendvay P., Selmeczi I., Detzky G., Gúthy T., Kiss J., Kovács Z., Prakfalvi P., McIntosh R.W., Buday-Bódi E., Báldi K. & Markos G. 2017: A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters — Central Paratethys, N-Hungary. Int. J. Coal Geol. 179, 196–210.

Pye K., Dickson J., Schiavon N., Coleman M.L. & Cox M. 1990: Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37, 325–343.

Rögl F. & Steininger F.F. 1983: Vom Zerfall der Tethys zu Mediterran und Paratethys. Wien. Ann. Naturhistorische Museum 85, 135–163.

Royden L. & Baldi T. 1988: Early Cenozoic tectonics and paleogeography of the Pannonian basin and surrounding regions. In: Royden L.R., Horvath F. (Eds.): The Pannonian Basin a Study in Basin Evolution. Amer. Assoc. Petro Geol., Memoir 45, 1–16.

Saigal G.C.G., Morad S., Bjorlykke K., Egeberg P.K. & Aagaard P. 1988: Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway; I, Textures and origin. J. Sediment. Petrol. 58, 1003–1013.

Siklósy Z., Demény A., Leél-Őssy S., Szenthe I., Lauritzen S.-E. & Shen C. 2011: The dating of stalagmites and their palaeoclimatological significance. Bull. Hungarian Geol. Soc. 141, 73–88.

Szőcs E., Hips K., Józsa S. & Bendő Z. 2015: Diagenetic evolution of the Lower Miocene Pétervására Sandstone Formation. Bull. Hung. Geol. Soc. 145, 351–366 (in Hungarian).

Sztanó O. 1994: The tide-influenced Petervasara Sandstone, early Miocene, northern Hungary: sedimentology, palaeogeography and basin development. Geol. Ultraiectina, Uthrecht, 120, 155.

Sztanó O. & Boer P. 1995: Basin dimensions and morphology as controls on amplification of tidal motions (the Early Miocene North Hungarian Bay). Sedimentology 42, 665–682.

Sztanó O. & Józsa S. 1996: Interaction of basin-margin faults and tidal currents on nearshore sedimentary architecture and composition: a case study from the Early Miocene of northern Hungary. Tectonophysics 266, 319–341.

Sztanó O. & Tari G. 1993: Early Miocene basin evolution in Northern Hungary: tectonics and eustasy. Tectonophysics 261, 485–502. Tari G., Báldi T. & Báldi-Beke M. 1993: Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226, 433–455.

Tóth J. & Almasi I. 2001: Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids 1, 11–36.

Van Den Bril K. & Swennen R. 2008: Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation. Geol. Belgica 12, 3–23.

Virág M., Mindszenty A., Surányi G., Molnár M. & Leél-Őssy S. 2013: A Búboskemence cseppkőlefolyás. In: Mindszenty A. (Ed.): Budapest Földtani Értékek És Az Ember. Városgeológiai Tanulmányok. ELTE Eötvös Kiadó, Budapest, 245–248 (in Hungarian).

Waldmann S. & Gaupp R. 2016: Grain-rimming kaolinite in Permian Rotliegend reservoir rocks. Sediment. Geol. 335, 17–33.

Wanas H.A. 2008: Calcite-cemented concretions in shallow marine and fluvial sandstones of the Birket Qarun Formation (Late Eocene), El-Faiyum depression, Egypt: Field, petrographic and geochemical studies: Implications for formation conditions. Sediment. Geol. 212, 40–48.

Wang J., Cao Y., Liu K., Liu J., Xue X. & Xu Q. 2016: Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China. Mar. Pet. Geol. 72, 279–294.

Wang J., Cao Y., Liu K., Costanzo A. & Feely M. 2018: Diagenesis and evolution of the lower Eocene red-bed sandstone reservoirs in the Dongying Depression, China. Mar. Pet. Geol. 94, 230–245.

Yuan G., Cao Y., Cluyas J., Li X., Xi K., Wang Y., Jia Z., Sun P. & Oxtoby N.H. 2015: Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China. Am. Assoc. Pet. Geol. Bull. 99, 2121–2154.

Yuan G., Cao Y., Zhang Y. & Gluyas J. 2017: Diagenesis and reservoir quality of sandstones with ancient “deep” incursion of meteoric freshwater —An example in the Nanpu Sag, Bohai Bay Basin, East China. Mar. Pet. Geol. 82, 444–464.

Zhang C.L., Horita J., Cole D.R., Zhou J., Lovley D.R. & Phelps T.J. 2001: Temperaturedependent oxygen and carbon isotope fractionation of biogenic siderite. Geochim. Cosmochim. Acta 65, 2257–2271.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 10
PDF Downloads 47 47 11