Hydrothermal-to-metasomatic overprint of the neovolcanic rocks evidenced by composite apatite crystals: a case study from the Maglovec Hill, Slanské vrchy Mountains, Slovakia

Open access


The apatite assemblage from Maglovec hill (Slanské vrchy Mountains near the city of Prešov) from fissures of hydrothermally altered neovolcanic rocks (andesites and related lithologies) was studied. The assemblage consists of two different morphological apatite types (apatite in cores of prismatic crystals and fibrous apatite mantling these cores). The assemblage was investigated by a multi-analytical approach to reveal its unique chemical composition and structure. Both types of apatite display zoning visible in back-scattered electron (BSE) images. Core apatite is relatively homogenous with porous rims appearing darker in the BSE images at the contact with fibrous apatite, and occasionally with darker regions along fractures. These parts are depleted in trace elements, mostly in LREE. Fibrous apatites display concentric and/or patchy zoning. Dark regions in fibrous apatite occasionally display a porous structure. In part of fibrous crystals, substitution of (CO3)2− for phosphorus is confirmed by Raman spectroscopy by the presence of a band at ~ 1071 cm−1. This method also confirmed the presence of OH in different populations in the structure of all apatite types. The three most important observed peaks are caused by vibrations of hydroxyls influenced by different adjacent anions: hydroxyl (band at ~ 3575 cm−1); fluorine (band at ~ 3535–3540 cm−1); chlorine (band at ~ 3494 cm−1). In REE-depleted parts of both apatite types, fine inclusions of monazite and rarely Th-rich silicate are observed. The acquired data suggest a hydrothermal origin of this assemblage and indicate a formation sequence of distinct apatite types. Moreover, minerals from the epidote group were identified, which have not been described from this locality before as well as vanadium-rich magnetites that form exsolution lamellae in ilmenite grains.

Armbruster T., Bonazzi P., Akasaka M., Bermanec V., Chopin C., Gieré R., Heuss-Assbichler S., Liebscher A., Menchetti S., Pan Y. & Pasero M. 2006: Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 18, 5, 551–567.

Antonakos A., Liarokapis E. & Leventouri T. 2007: Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28, 19, 3043–3054.

Awonusi A., Morris M.D. & Tecklenburg M.M.J. 2007: Carbonate assignment and calibration in the Raman spectrum of apatite. Calcified Tissue International 81, 1, 46–52.

Broom-Fendley S., Styles M.T., Appleton J.D., Gunn G. & Wall F. 2016: Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 101, 3, 596–611.

Bruker AXS 2008: TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual, Bruker AXS, Karlsruhe, Germany.

Černý P., Parma Z., Povondra P. & Veselovský F. 1973: Occurence of danburite in xenolithes in andesite from Maglovec hill near Prešov. Acta Universitatis Carolinae — Geologica 1–2, 111–118 (in Czech).

Ďuďa R., Černý P., Kalinčiak M., Kalinčiaková E., Tözser J., Ulrych J. & Veselovský F. 1981: Mineralogy of northern part of Slánské vrchy Mountains. Mineralia Slovaca, Monografia 2, 1–99 (in Slovak).

Gaft M., Panczer G., Reisfeld R. & Uspesnsky E. 2001: Laser-induced time-resolved luminescene as a tool for rare-earth element identification in minerals. Phys. Chem. Miner. 28, 5, 347–363.

Goldoff B., Webster J.D. & Harlov D.E. 2012: Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am. Mineral. 97, 7, 1103–1115.

Guggenheim S., Adams J.M., Bain D.C., Bergaya F., Brigatti M.F., Drits V.A., Formoso M.L.L., Galán E., Kogure T. & Stanjek H. 2006: Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale Pour L’Etude Des Argiles (AIPEA) nomenclature committee for 2006. Clays Clay Miner. 54, 761–772.

Harlov D.E. 2015: Apatite: A Fingerprint for Metasomatic Processes. Elements 11, 3, 171–176.

Harlov D.E., Förster H.J. & Nijland T.G. 2002: Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. Am. Mineral. 87, 245–261.

Harlov D.E., Wirth R. & Förster H. J. 2005: An experimental study of dissolution-reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contrib. Mineral. Petrol. 150, 3, 268–286.

Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C. & Welch M.D. 2012: Ima report: Nomenclature of the amphibole supergroup. Am. Mineral. 97, 11–12, 2031–2048.

Hughes J.M., Cameron M. & Crowley K.D. 1989: Structural variations in natural F, OH, and Cl apatites. Am. Mineral. 74, 870–876.

Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther D. & Enzweiler J. 2011: Determination of reference values for NIST SRM 610-617 glasses following ISO guildelines. Geostand. Geoanal. Res. 35, 397–429.

Klemme S., Prowatke S., Münker C., Magee C.W., Lahaye Y., Zack T., Kasemann S.A., Cabato E.J. A. & Kaeser B. 2008: Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses. Geostand. Geoanal. Res. 32, 1, 39–54.

Krneta S., Ciobanu C.L., Cook N.J., Ehrig K. & Kontonikas-Charos A. 2017: Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia. Minerals 7, 8, 135.

Kuthan M. 1948: The undation volcanism of the. Carpathian orogene and volcanological survey of the northem part of the Prešov Mountains. Geologické práce — Zošit 17, 87–174 (in Slovak).

Lafuente B., Downs R.T., Yang H. & Stone N. 2015: The power of databases: the RRUFF project. In: Armbruster T. & Danisi R.M. (Eds.): Highlights in Mineralogical Crystallography. W. De Gruyter, Berlin, 1–30.

Lenz C. & Nasdala L. 2015: A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am. Mineral. 100, 1123–1133.

MacRae C.M. & Wilson N.C. 2008: Luminescence Database I — Minerals and Materials. Microsc. Microanal. 14, 2, 184–204.

Marcinčáková Z. & Košuth M. 2011: Characteristics of Xenoliths in the East Slovakian Neogene Volcanites. Al. I. Cuza “ Din Iasi Seria Geologie 57, 1, 17–27.

O’Donnell M.D., Hill R.G., Law R.V. & Fong S. 2009: Raman spectroscopy, 19F and 31P MAS-NMR of a series of fluorochloroapatites. Journal of the European Ceramic Society 29, 377–384.

Pan Y. & Fleet M.E. 2002: Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Rev. Mineral. Geochem. 48, 1, 13–49.

Pasero M., Kampf A. R., Ferraris C., Pekov I. V., Rakovan J., & White T. J. 2010: Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 22, 2, 163–179.

Penel G., Leroy G., Rey C., Sombret B., Huvenne J.P. & Bres E. 1997: Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J. Mater. Sci. — Mater. Med. 8, 5, 271–276.

Penel G., Leroy G., Rey C. & Bres E. 1998: MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcified Tissue International 63, 6, 475–481.

Petříček V., Dušek M. & Palatinus L. 2014: Crystallographic Computing System JANA2006: General features. Zeitschrift Für Kristallographie 229, 5, 345–352.

Plissart G., Féménias O., Mãruntiu M., Diot H. & Demaiffe D. 2009: Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite southwestern Romania. Canad. Mineral. 47, 81–105.

Povondra P., Skála R. & Chapman R. 2007: Hydrothermal assemblage of Cl–F- and OH-bearing apatite-group minerals from Maglovec near Prešov, Slovakia. Canad. Mineral. 45, 6, 1355–1366.

Rieder M., Cavazzini G., Yakonov Y.D., Frank-Kanetskii V.A., Gottardi G., Guggenheim S., Koval P.V., Muller G., Neiva A.M.R., Radoslovich E.W., Robert J.L., Sassi F.P., Takeda H., Weiss Z. & Wones D.R. 1998: Nomenclature of the micas. Canad. Mineral. 36, 3, 905–912.

Stock M.J., Humphreys M.C.S., Smith V.C., Johnson R.D. & Pyle D.M. 2015: New constraints on electron-beam induced halogen migration in apatite. Am. Mineral. 100, 1, 281–293.

Stormer J.C., Pierson M.L. & Tackler R.C. 1993: Variation of F and Cl X-ray intensity due to anisotropicdiffusion in apatite during electron microprobe analysis. Am. Mineral. 78, 641–648.

Tacker C.R. 2004: Hydroxyl ordering in igneous apatite. Am. Mineral. 89, 1411–1421.

Tischendorf G., Gottesmann B., Förster H.J. & Trumbull R.B. 1997: On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation. Mineral. Mag. 61, 6, 809–834.

van Achterbergh E., Ryan C.G., Jackson S.E. & Griffin W. 2001: Data reduction software for LA-ICPMS. In: Sylvester P. (Ed.): Laser Ablation ICPMS in the earth sicence: principles and applications. Mineral. Ass. Canada 29, 239–243.

Wang A., Kuebler K.E., Jolliff B.L. & Haskin L.A. 2004: Raman spectroscopy of Fe–Ti–Cr-oxides, case study: Martian meteorite EETA79001. Am. Mineral. 89, 665–680.

Waychunas G.A. 2002: Apatite Luminescence. Rev. Mineral. Geochem. 48, 1, 701–742.

Wojdyr M. 2010: Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128.

Zane A. & Weiss Z. 1998: A procedure for classifying rock-forming chlorites based on microprobe data. Rendiconti Lincei-Scienze Fisiche E Naturali. 9, 51–56.

Armbruster T., Bonazzi P., Akasaka M., Bermanec V., Chopin C., Gieré R., Heuss-Assbichler S., Liebscher A., Menchetti S., Pan Y. & Pasero M. 2006: Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 18, 5, 551–567.

Locock A.J. 2014: An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers and Geosciences 62, 1–11.

Yavuz F. 2003: Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+. Computers and Geosciences 29, 10, 1203–1213.

Yavuz F., Kumral M., Karakaya N., Karakaya M.T., & Yildirim D.K. 2015: A Windows program for chlorite calculation and classification. Computers and Geosciences 81, 101–113.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 7
PDF Downloads 76 76 7