Palaeobiology, palaeoecology and stratigraphic significance of the Late Miocene cockle Lymnocardium soproniense from Lake Pannon

Open access


Stratigraphic subdivision of the Upper Miocene deposits in the Pannonian Basin has been traditionally based on the endemic mollusc species of Lake Pannon. The cockle species Lymnocardium soproniense Vitális, apparently evolving through a sympatric speciation event in the sublittoral zone of Lake Pannon about 10.2-10.3 Ma, attained wide geographical distribution in the Pannonian basin and thus may serve as a good stratigraphic marker. Lymnocardium soproniense was one of the few large-sized cockles in Lake Pannon, most closely related to its ancestor, L. schedelianum (Fuchs), and to another descendant of the latter, L. variocostatum Vitális. According to the δ18O stable isotope record of its shells, the large size of L. soproniense was coupled with an extended life time of more than 10 years, probably reflecting a stable lake environment with increased resource availability and decreased predation. The species lived in quiet offshore conditions, below the storm wave base, where clay was deposited from suspension and the influence of currents was negligible. The base of the Lymnocardium soproniense Zone in the sublittoral deposits of Lake Pannon is defined by the first occurrence of the species, whereas the top of the zone is marked with the base of the overlying Congeria praerhomboidea Zone, defined by the FAD of C. praerhomboidea.

Andreasson F.P. & Schmitz B. 2000: Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells. Geol. Soc. Amer. Bull. 112, 628-640.

Barna P., Starek D. & Pipík R. 2010: Middle Pannonian sublittoral ostracod fauna from the locality Sopron (Hungary). Geologické výzkumy na Moravě a ve Slezsku, Kenozoikum 17, 8-9.

Bartha F. 1971: Biostratigraphy of the Pannonian Stage in Hungary. In: Góczán F. & Benkő J. (Eds.): Research of Pannonian formations in Hungary.. Akadémiai Kiadó, Budapest, 9-172 (in Hungarian).

Boda J. 1964: Catalogus originalium fossilium Hungariae. Pars Zoologica. Magyar Állami Földtani Intézet, Budapest, 1-229.

Csillag G., Sztanó O., Magyar I. & Hámori Z. 2010: Stratigraphy of the Kálla Gravel in Tapolca Basin based on multi-electrode probing and well data. Földtani Közlöny 140, 183-196 (in Hungarian with English abstract).

Cziczer I., Magyar I., Pipík R., Böhme M., Ćorić S., Bakrač K., Sütő-Szentai M., Lantos M., Babinszki E. & Müller P. 2009: Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary. Int. J. Earth Sci. 98, 1741-1766.

Dettman D.L. & Lohmann K.C. 1993: Seasonal Change in Paleogene Surface Water δ18O: Fresh‐Water Bivalves of Western North America. Geophysical Monograph 78, 153-163.

Dettman D.L., Reische A.K. & Lohmann K.C. 1999: Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochim. Cosmochim. Acta 63, 1049-1057.

Goodwin D.H, Flessa K.W., Schöne B.R. & Dettman D.L. 2001: Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16, 387-398.

Goodwin D.H., Schöne B.R. & Dettman D.L. 2003: Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18, 110-125.

Geary D.H., Magyar I. & Müller P. 2000: Ancient Lake Pannon and its Endemic Molluscan Fauna (Central Europe; Mio-Pliocene). In: Rossiter A. & Kawanabe H. (Eds.): Ancient Lakes: Biodiversity, Ecology, and Evolution. Academic Press, Advances in Ecological Research 31, 463-482.

Geary D.H., Hoffmann E., Magyar I., Freiheit J. & Padilla D. 2012: Body size, longevity, and growth rate in Lake Pannon melanopsid gastropods and their predecessors. Paleobiology 38, 554-568.

Harzhauser M. & Piller W.E. 2007: Benchmark data of a changing sea - palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8-31.

Harzhauser M., Daxner-Höck G. & Piller W.E. 2004: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Austrian J. Earth Scie. 95-96, 6-19.

Hilgen F.J., Lourens L.J. & Van Dam J.A. 2012: The Neogene Period. In: Gradstein F.M, Ogg J.G., Schmitz M. & Ogg G.: The Geologic Time Scale 2012. Elsevier B.V., 923-978.

Ivany L.C. & Runnegar B. 2010: Early Permian seasonality from bivalve 18O and implications for the oxygen isotopic composition of seawater. Geology 38, 1027-1030.

Ivany L.C., Wilkinson B.H., Lohmann K.C., Johnson E.R., McElroy B.J. & Cohen G.J. 2004: Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene temperature, seasonality, and salinity on the US Gulf Coast. J. Sed. Res. 74, 7-19.

Johnson M.R. 2016: An integrated stable isotope record from the Late Miocene Pannonian Basin System: the ecology of horses, the life histories of bivalves, and mass-balance modeling. PhD Thesis, University of Wisconsin-Madison, 1-171.

Korpás-Hódi M. 1983: Palaeoecology and biostratigraphy of the Pannonian Mollusca fauna in the northern foreland of the Transdanubian Central Range. Annals of the Hungarian Geological Institute 66, 1-163.

Korpás-Hódi M. 1994: The Neogene of the Sopron Mts. Claypit, Sopron, Balfi street, Pannonian. In: Nagymarosy A. (Ed.): IGCP 329 Project “The Neogene of the Paratethys”. Workshop Meeting 1994, Sümeg, Excursion Guide, 34-36.

Magyar I. 1988: Mollusc fauna and flora of the Pannonian quartz sandstone at Mindszentkálla, Hungary. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Geologica 28, 209-222.

Magyar I. & Geary D.H. 2012: Biostratigraphy in a Late Neogene Caspian-type lacustrine basin: Lake Pannon, Hungary. In: Baganz O.W., Bartov Y., Bohacs K. & Nummedal D. (Eds.): Lacustrine sandstone reservoirs and hydrocarbon systems. AAPG Memoir 95 255-264.

Magyar I., Geary D.H., Sütő-Szentai M., Lantos M. & Müller P. 1999: Integrated biostratigraphic, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geol. Hung. 42, 5-31.

Magyar I., Müller P., Geary D.H., Sanders H.C. & Tari G.C. 2000: Diachronous deposits of Lake Pannon in the Kisalföld basin reflect basin and mollusc evolution. Abhandlungen der Geologischen Bundesanstalt 56, 669-678.

Magyar I., Müller P.M., Sztanó O., Babinszki E. & Lantos M. 2006: Oxygen-related facies in Lake Pannon deposits (Upper Miocene) at Budapest-Kőbánya. Facies 52, 209-220.

Magyar I., Lantos M., Ujszászi K. & Kordos L. 2007: Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geol. Carpath. 58, 277-290.

Mihaila N. & Marinescu F. 1971: Limnocardium (Pannonicardium) Mihaili sp. n. de la faune á Congeria subglobosa du Bassin de Crisul Repede. Dari de seama ale sedintelor 57, 41-48 (in Romanian with French abstract).

Müller P., Geary D.H. & Magyar I. 1999: The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family- level taxonomy. Lethaia 32, 47-60.

Papp A. 1951: Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien 39-41, 99-193.

Papp A. 1953: Die Molluskenfauna des Pannon im Wiener Becken. Mitteilungen der Geologischen Gesellschaft in Wien 44, 85-222.

Papp S. 1915: Das neue Vorkommen der pannonischen Petrefakten Congeria Spathulata Partsch und Limnocardium Penslii Fuchs in Ungarn und die auf dieselben bezügliche Literatur. Földtani Közlöny 45, 251-254.

Schmitz B. & Andreasson F.P. 2001: Air humidity and lake δ18O during the latest Paleocene-earliest Eocene in France from recent and fossil fresh-water and marine gastropod δ18O, δ13C, and 87Sr/86Sr. Geol. Soc. Amer. Bull. 113, 774-789.

Schöne B.R., Freyre Castro A.D., Fiebig J., Houk S.D., Oschmann W. & Kröncke I. 2004: Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 215-232.

Schöne B.R., Houk S.D., Freyre Castro A.D., Fiebig J., Oschmann W., Kröncke I., Dreyer W. & Gosselck F. 2005: Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios 20,78-92.

Schréter Z. 1939: Geologische Verhältnisse der so-lichen Seite des Bükk-gebirges. Annual Report of the Hungarian Royal Geological Institute of 1933-35, Volume II, 511-532 (in Hungarian with German summary).

Schultz O. 2003: Catalogus Fossilium Austriae. Bivalvia neogenica, Band 1/Teil 2. Verlag der Österreichischen Akademie der Wissenschaften, Wien, 381-690, plates 57-95.

Stevanović P.M. 1951: Pontische Stufe im engeren Sinne - obere Congerienschichten Serbiens und der angrenzenden Gebiete. Serbische Akademie der Wissenschaften, Sonderausgabe 187, Mathematisch-Naturwissenschaftliche Klasse 2, Beograd, 1-361.

Strausz L. 1942: Das Pannon des mittleren Westungarns. Annales Historico-Naturales Musei Nationalis Hungarici, pars Mineralogica, Geologica et Palaeontologica 5, 1-102.

Surge D.M., Lohmann K.C. & Dettman D.L. 2001: Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 283-296.

Szilaj R., Szónoky M., Müller P., Geary D.H. & Magyar I. 1999: Stratigraphy, paleoecology, and paleogeography of the “ Congeria ungulacaprae beds” (=Lymnocardium ponticum Zone) in NW Hungary: study of the Dáka outcrop. Acta Geol. Hung. 42,33-55.

Talbot M.R. 1990: A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol.: Isotope Geosci. Section 80, 261-279.

Vitális I. 1934a: A Limnocardium soproniense n. sp. A Magyar Tudományos Akadémia Matematikai és Természettudományi Értesítője (Mathematischer und Naturwissenschaftlicher Anzeiger der Ungarischen Akademie der Wissenschaften) 51, 705-716.

Vitális I. 1934b: Zwei neue Muschelarten aus den pontischen Sedimenten von Sopron. Publications of the Department of Mining and Metallurgy, Royal Hungarian Palatin - Joseph University of Technical and Economical Sciences, Faculty of Mining, Metallurgy and Forestry of Sopron, Sopron, Hungary, 6, 77-92.

Vitális I. 1951: Les sédiments et fossiles sarmatiens et pannono-pontiens des environs de Sopron. Annals of the Hungarian Geological Institute 40, 1-75 (in Hungarian with French abstract).

Wurster C.M., Patterson W.P. & Cheatham M.M. 1999: Advances in micromilling techniques: a new apparatus for acquiring high-resolution oxygen and carbon stable isotope values and major/ minor elemental ratios from accretionary carbonate. Computers & Geosciences 25, 1159-1166.

Wurster C.M. & Patterson W.P. 2001: Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater molluscs: paleoclimatological implications for sub-weekly temperature records. J. Paleolimnology 26, 205-218.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 110 7
PDF Downloads 77 76 3