Correlation between geology and concentration-volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran)

Open access

Abstract

This study identifies the major mineralized zones including supergene enrichment and hypogene enrichment in the Kahang Cu-Mo porphyry deposit which is located in Central Iran based on subsurface data and utilization of the concentration-volume (C-V) fractal model. Additionally, a correlation between results achieved from a C-V fractal model and geological models consisting of zonation, mineralography and alteration have been conducted in order to have an accurate recognition and modification of the main mineralized zones. Log-log plots indicate five geochemical populations for Cu and Mo in the deposit which means that mineralization commences with 0.075 % and 13 ppm for Cu and Mo (as the first thresholds) respectively. The main mineralization began for Cu ≥ 0.42 % and Mo ≥ 100 ppm and also enriched mineralization containing Cu ≥1.8 % and Mo ≥ 645 ppm which is located in the central part of the deposit. According to the C-V model, the main Cu-Mo mineralized zones occur in the hypogene zone, especially in the central, NW and NE parts of the Kahang deposit. The supergene enrichment zone derived via the C-V model is smaller than that in the geological model and is located in the central and eastern parts of the deposit. Results analysed by the C-V fractal model certify that the interpreted zones based on the fractal model are accurate. To certify this, a logratio matrix has been employed to validate the C-V fractal model for the Cu and Mo main mineralized zones

Afzal P., Khakzad A., Moarefvand P., Rashidnejad Omran N., Esfandiari B. & Fadakar Alghalandis Y. 2010: Geochemical anomaly separation by multifractal modelling in Kahang (Gor Gor) porphyry system, Central Iran. J. Geochem. Exploration 104, 34-46.

Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P. & Rashidnejad Omran N. 2011: Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. J. Geochem. Exploration 108, 220-232.

Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N. & Asadi Haroni H. 2012: Application of power-spectrum-volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. J. Geochem. Exploration 112, 131-138.

Agterberg F.P., Cheng Q. & Wright D.F. 1993: Fractal modeling of mineral deposits. In: Elbrond J. & Tang X. (Eds.): 24th APCOM Symposium Proceeding. Montreal, Canada, 43-53.

Agterberg F.P., Cheng Q., Brown A. & Good D. 1996: Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Computers and Geosciences 22, 497-507.

Alavi M. 1994: Tectonic of Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211-238.

Ali Kh., Cheng Q. & Zhijun C. 2007: Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China. Geochemistry:Exploration, Environment, Analysis 7, 4, 293-301.

Asghari O. & Hezarkhani A. 2008: Appling discriminant analysis to separate the alteration zones within the Sungun porphyry copper deposit. Asian J. Applied Sci. 8, 24, 4472-4486.

Beane R.E. 1982: Hydrothermal alteration in silicate rocks. In: Titley S.R. (Ed.): Advances in geology of the porphyry copper deposits, Southwestern North America. The University of ArizonaPress, Tucson, 117-137.

Berberian M. & King G.C. 1981: Towards a paleogeography and tectonic evolution of Iran. Canad. J. Earth Sci. 18, 210-265.

Berger B.R., Ayuso R.A., Wynn J.C. & Seal R.R. 2008: Preliminary model of porphyry copper deposits. USGS, Open-FileReport, 1-1321.

Carranza E.J.M. 2008: Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry. Vol. 11. Elsevier, Amsterdam, 1-351.

Carranza E.J.M. 2009: Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol. Rev. 35, 383-400.

Carranza E.J.M. 2011: Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Exploration 110, 167-185.

Carranza E.J.M. & Sadeghi M. 2010: Predictive mapping of prospectively and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol. Rev. 38, 219-241.

Carranza E.J.M., Owusu E. & Hale M. 2009: Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Depos. 44, 8, 915-938.

Cheng Q. 1999: Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Exploration 65, 3, 175-194.

Cheng Q. 2007: Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 32, 314-324.

Cheng Q. & Agterberg F.P. 2009: Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers andGeosciences 35, 2, 234-244.

Cheng Q., Agterberg F.P. & Ballantyne S.B. 1994: The separation of geochemical anomalies from background by fractal methods. J. Geochem. Exploration 51, 109-130.

Cox D. & Singer D. 1986: Mineral deposits models. U.S. Geol. Surv. Bull., 1-1693.

Daneshvar Saein L., Rasa I., Rashidnejad Omran N., Moarefvand P. & Afzal P. 2012: Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonlinear Processes inGeophysics 19, 431-438.

Dargahi S., Arvin M., Pan Y. & Babaei A. 2010: Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision. Lithos 115, 190-204.

David M. 1977: Geostatistical ore reserve estimation. Elsevier, Amsterdam, 1-283.

Goncalves M.A., Mateus A. & Oliveira V. 2001: Geochemical anomaly separation by multifractal modeling. J. Geochem. Exploration 72, 91-114.

Journel A.G. & Froidevaux R. 1982: Anisotropic hole-effect modelling. Mathematical Geol. 14, 217-239.

Lauwerier H. 1991: Fractals: Images of chaos. Princeton UniversityPress, New Jersey, 1-240.

Li C., Ma T. & Shi J. 2003: Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Exploration 77, 167-175.

Lima A., De Vivo B., Cicchella D., Cortini M. & Albanese S. 2003: Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Applied Geochem. 18, 1853-1865.

Lowell J.D. 1968: Geology of the Kalamazoo orebody, San Manuel district, Arizona. Economic Geol. 63, 645-654.

Lowell J.D. & Guilbert J.M. 1970: Lateral and vertical alterationmineralization zoning in porphyry ore deposits. EconomicGeol. 65, 373-408.

Lucido G., Caponetti E. & Triolo R. 1991: Fractality as a working tool for petrology: small-angle neutron scattering experiments to detect critical behaviour of magma. Geol. Carpathica 42, 85-91.

Mandelbrot B.B. 1983: The fractal geometry of nature. W.H. Freeman, San Fransisco, 1-468.

Melfos V., Vavelidis M., Christo des G. & Seidel E. 2002: Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Depos. 37, 648-668.

Nash J.T. 1976: Fluid inclusion petrology-data from porphyry copper deposits and applications to exploration. U.S. Geol. Surv. Prof. Pap., Vol. 907-D, 1-16.

Ortega O.J., Marrett R. & Laubach S.E. 2006: A scale-independent approach to fracture intensity and average fracture spacing. Amer. Assoc. Petrol. Geol. Bull. 90, 2, 193-208.

Rashidnejad Omran N., Afzal P., Harati H., Moarefvand P., Asadi Haroni H. & Daneshvar Saeein L. 2011: Application of powerlaw frequency fractal model in determination of vertical geochemical distribution of Cu in Kahang porphyry deposit, Central Iran. J. Mining and Metallurgy 47A, 1, 1-8.

Roedder E. 1971: Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 66, 98-120.

Schwartz G.M. 1947: Hydrothermal alteration in the “porphyry copper” deposits. Econ. Geol. 42, 319-352.

Shahabpour J. 1994: Post-mineral breccia dyke from the Sar-Cheshmeh porphyry copper deposit, Kerman, Iran. Explor. and MiningGeol. 3, 39-43.

Shen W. & Zhao P. 2002: Theoretical study of statistical fractal model with applications to mineral resource prediction. Computers and Geosciences 28, 369-376.

Sillitoe R.H. 1997: Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum- Pacific region. Australian J. Earth Sci. 44, 373-388.

Sim B.L., Agterberg F.P. & Beaudry C. 1999: Determining the cut off between background and relative base metal contamination levels using multifractal methods. Computers and Geosciences 25, 1023-1041.

Spalla M.I., Morotta A.M. & Gosso G. 2010: Advances in interpretation of geological processes: refinement of multi-scale data and integration in numerical modelling. Geol. Soc. London, 1-240.

Stocklin J.O. 1977: Structural correlation of the Alpine ranges between Iran and Central Asia. Mem. Hors Service Soc. Geol. France 8, 333-353.

Tabatabaei S.H. & Asadi Haroni H. 2006: Geochemical characteristics of Gor Gor Cu-Mo porphyry system. 25th IranianSymposium on Geosciences, Geological Survey of Iran, 1-60.

Takayasu H. 1990: Fractals in the physical sciences. ManchesterUniversity Press, Manchester and New York, 1-176.

Turcotte D.L. 1986: A fractal approach to the relationship between ore grade and tonnage. Econ. Geol. 18, 1525-1532.

Ulrich T., Gunther D. & Heinrich C.A. 2001: The evolution of a porphyry Cu-Au deposit, based on La-ICP-MS analysis of fluid inclusions, Bajo de la Alumbrera, Argentina. Econ. Geol. 96, 1743-1774.

Wang Q.F., Deng J., Liu H., Wang Y., Sun X. & Wan L. 2011: Fractal models for estimating local reserves with different mineralization qualities and spatial variations. J. Geochem. Exploration 108, 196-208.

Wilson A.J., Cooke David R., Harper B.J. & Deyell C.L. 2007: Sulfur isotopic zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkalic porphyry gold-copper deposits. Mineralium Depos. 42, 465-487.

Yamamoto J.K. 2000: An alternative measure of the reliability of Ordinary Kriging Estimates. Mathematical Geology 32, 489-507.

Zuo R. 2011: Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochem. 26, 271-273.

Zou R., Cheng Q. & Xia Q. 2009: Application of fractal models to characterization of vertical distribution of geochemical element concentration. J. Geochem. Exploration 102, 1, 37-43.

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.169
5-year IMPACT FACTOR: 1.431

CiteScore 2017: 1.26

SCImago Journal Rank (SJR) 2017: 0.551
Source Normalized Impact per Paper (SNIP) 2017: 0.836

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 172 15
PDF Downloads 107 107 14