Spinal Cord Injuries in Dogs Part I: A Review of Basic Knowledge

Open access


Spinal cord injuries (SCI) in dogs are not frequent, but they are serious pathological conditions accompanied with high morbidity and mortality. The pathophysiology of SCI involves a primary insult, disrupting axons, blood vessels, and cell membranes by mechanical force, or causes tissue necrosis by ischemia and reperfusion. The primary injury is followed by a cascade of secondary events, involving vascular dysfunction, edema formation, continuing ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. The most frequent cause of SCI in dogs is an acute intervertebral disc extrusion, exogenous trauma or ischemia. Neurological symptomatology depends on the location, size and the type of spinal cord lesions. It is characterized by transient or permanent, incomplete or complete loss of motor, sensory, autonomic, and reflex functions caudal to the site of the lesion. In a case of partial spinal cord (SC) damage, one of the typical syndromes develops (e. g. Brown-Séquard syndrome, central SC syndrome, ventral SC syndrome, dorsal SC syndrome, conus medullaris syndrome, or traumatic cauda equina syndrome). The severe transversal spinal cord lesion in the cervical region causes paresis or plegia of all four extremities (tetraparesis, tetraplegia); in thoracic or lumbosacral region, paresis or plegia of the pelvic extremities (paraparesis, paraplegia), i. e. sensory-motor deficit, urinary and foecal incontinence and sexual incompetence. The central nervous system in mammals does not regenerate, so the neurological deficit in dogs following severe SCI persists for the rest of their lives and animals display an image of permanent suffering. The research strategy presented here involved a PubMed, Medline (Ovid) and ISI Web of Science literature search from Januray 2001 to December 2017 using the term “canine spinal cord injury” in the English language; also references from selected papers were scanned and relevant articles included.

1. Aciduman, A., Belen, D., Simsek, S., 2006: Management of spinal disorders and trauma in Avicenna’s Canon of medicine. Neurosurgery, 59, 397—403.

2. Adams, F., 1886: The Genuine Works of Hippocrates Translated from the Greek with a Preliminary Discourse and Annotations. Vol. 2, William Wood and Co, New York, 411 pp.

3. Adams, M. M., Hicks, A. L., 2005: Spasticity after spinal cord injury. Spinal Cord, 43, 577—586.

4. Akhtar, A. Z., Pippin, J. J., Sandusky, C. B., 2008: Animal models in spinal cord injury: a review. Rev. Neurosci., 19, 47—60.

5. Anderson, K. M., Welsh, C. J., Young, C., Levine, G. J., Kerwin, S. C., Boudreau, C. E., 2015: Acute phase proteins in cerebrospinal fluid from dogs with naturally-occurring spinal cord injury. J. Neurotrauma, 32, 1658—1665.

6. Anwar, M. A., Al Shehabi, T. S., Eid, A. I., 2016: Inflammogenesis of secondary spinal cord injury. Front. Cell. Neurosci., 10, 98. doi: 10.3389/fncel.2016.00098.

7. Borrie, S. C., Baeumer, B. E., Badtlow, C. E., 2012: The nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res., 349, 105—117.

8. Breasted, J. H., 1980: The Edwin Smith Surgical Papyrus, Volume 1: Hieroglyphic Transliteration, and commentary. Univ. Chicago press, Chicago, 596 pp.

9. Brisson, B. A., 2010: Intervertebral disc disease in dogs. Vet. Clin. North Am. Small Anim. Pract., 40, 829—858.

10. Bruce, C. W., Brisson, B. A., Gyselinck, K., 2008: Spinal fracture and luxation in dogs and cats: a retrospective evaluation of 95 cases. Vet. Comp. Orthop. Traumatol., 21, 280—284.

11. Cauzimille, L., Kornegay, J. N., 1996: Fibrocartilaginous embolism of the spinal cord in dogs: Review of 36 histologically confirmed cases and retrospective study of 26 suspected cases. J. Vet. Intern. Med., 10, 241—245.

12. David, S., Kroner, A., 2011: Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci., 12, 388—399.

13. Devaux, S., Cizkova, D., Quamico, J., Franck, J., Nataf, S., Pays, L., et al., 2016: Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Moll. Cell. Proteomics, 15, 2641—2670.

14. Dewey, C. W., 2008: A Practical Guide to Canine and Feline Neurology. 2nd edn., Iowa State University Press, Ames, Iowa, USA, 706 pp.

15. Ditunno, J. F., Little, J. W., Tessler, A., Burns, A. S., 2004: Spinal shock revisited: a four-phase model. Spinal Cord, 42, 383—395.

16. Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., et al., 2001: Acute spinal cord injury, Part. I: Pathophysiologic mechanisms. Clin. Neuropharm., 24, 254—264.

17. Filbin, M. T., 2003: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 4, 703—713.

18. Fleming, J. C., Noremberg, M. D., Ramsay, D. A., Dekalan, G. A., Marcillo, A. E., Saenz, A. D., et al., 2006: The cellular inflammatory response in human spinal cords after injury. Brain, 169, 3249—3269.

19. Fletcher, T. F., Kitchell, R. L., 1966: Anatomical studies on the spinal cord segments of the dog. Am. J. Vet. Res., 27, 1759—1767.

20. Fletcher, T. F., 2013: Spinal cord and meninges. In Evans, H. P., de Lahunta, A., (Eds.): Miller’s Anatomy of the Dog. 4th edn., Elsevier, Saunders, St. Louis, USA, 589—610.

21. Gandini, G., Cizinauskas, S., Lang, J., Fatzer, R., Jaggy, A., 2003: Fibrocartilaginous embolism in 75 dogs: clinical findings and factors influencing the recovery rate. J. Small Anim. Pract., 44, 76—80.

22. Hansen, H. J., 1951: A pathologic-anatomical interpretation of disc degeneration in dogs. Acta Orthop. Scand., 20, 280—293.

23. Henke, D., Vandevelde, M., Doher, M. G., Stockli, M., Forterre, F., 2013: Correlations between severity of clinical signs and histopathological changes in 60 dogs with spinal cord injury associated with acute thoracolumbar intervertebral disc disease. Vet. J., 198, 70—75.

24. Jeffery, N. D., Hamilton, L., Granger, N., 2011: Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice. Vet. Rec., 168, 102—107.

25. Jeong, S. Y., Seol, D. W., Li, F. C., Chen, Q. X., 2008: The role of mitochondria in apoptosis. BMB Reports, 41, 11—22.

26. Kato, S., Kawakaza, N., Tomita, K., Murakami, H., Demura, S., Fujimaki, Y., 2008: Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiwicz. Spine, 33, 1533—1541.

27. Kruger, E. A., Pires, M., Ngann, Y., Sterling, M., Rubay, S., 2013: Comprehensive management of pressure ulcers in spinal cord injury. Biomaterials, 30, 2582—2590.

28. Lacroix, S., Chang, L., Rose-John, S., Tuszynski, M. H., 2002: Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J. Comp. Neurol., 454, 213—228.

29. Lee, J. Y., Choi, S. Y., Oh, T. H., Yune, T. Y., 2012: 17β-estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting Rhoa-JNK3 activation after spinal cord injury. Endocrinology, 153, 3815—3827.

30. Levine, G. J., Levine, J. M., Budke, C. M., Kerwin, S. C., Au, J., Vinayak, A., et al., 2009: Description and repeatability of a newly developed spinal cord injury scale for dogs. Prev. Vet. Med., 89, 121—127.

31. Mack, E. H., 2013: Neurogenic shock. Open Ped. Med. J., 7 (Suppl. 1: M4), 16—18.

32. Marketos, S. G., Skiadas, P. K., 1999: Galen. A pioneer of spine research. Spine, 24, 2358—2362.

33. McKee, W. M., Downes, C. J., Pink, J. J., Gemmill, T. J., 2010: Presumptive exercise-associated peracute thoracolumbar disc extrusion in 48 dogs. Vet. Rec., 166, 523—528.

34. McKinley, W., Santos, K., Meade, M., Brooke, K., 2007: Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med., 30, 215—224.

35. Nakamoto, Y., Ozawa, T., Katanabe, K., Nishiya, K., Yasuda, N., Mashita, T., et al., 2009: Fibrocartilaginous embolism of the spinal cord diagnosed by characteristic clinical findings and magnetic resonance imaging in 26 dogs. J. Vet. Med. Sci., 71, 171—176.

36. Navarro, R., Juhas, S., Keshavarzi, S., Juhasova, J., Motlik, J., Johe, K., et al., 2012: Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J. Neurotrauma, 29, 499—513.

37. Noble, L. J., Donovan, F., Igarashi, T., Goussev, S., Werb, Z., 2002: Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J. Neurosci., 22, 7526—7535.

38. Okon, E. B., Streijger, F., Lee, J. H., Anderson, L. M., Russel, A. K., Kwon, B. K., 2013: Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive spinal cord injury. J. Neurotrauma, 30, 1564—1576.

39. Olby, N., 2010: The pathogenesis and treatment of acute spinal cord injuries in dogs. Vet. Clin. N. Am. Small Anim. Pract., 40, 791—807.

40. Orr, M. B., Gensel, J. C., 2017: Interactions of primary insult biomechanics and secondary cascades in spinal cord injury: implications for therapy. Neural Regen. Res., 12, 1618—1619.

41. Oyinbo, C. A., 2011: Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol. Exp., 71, 281—299.

42. Quin, W., Bauman, W. A., Cardozo, C., 2010: Bone and muscle loss after spinal cord injury: organ interactions. Ann. N. Y. Acad. Sci., 1211, 66—84.

43. Risio, L. D., Platt, S. R., 2010: Fibrocartilaginous embolic myelopathy in small animals. Vet. Clin. North Am. Small Anim. Pract., 40, 859—869.

44. Rowland, J. W., Hawryluk, G. W. J., Kwon, B., Fehlings, M. G., 2008: Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg. Focus, 25, E2. doi:10.317/FOC.2008.25.11.E2.

45. Sherrington, C. S., 1947: Action of the Nervous System. 2nd edn., Cambridge University Press, Cambridge, UK, 241—250.

46. Silva, N. A., Sousa, N., Reis, R. L., Salgado, A. J., 2014: From basics to clinical: a comprehensive review on spinal cord injury. Progr. Neurobiol., 114, 25—57.

47. Smith, P. M., Jeffery, N. D., 2005: Spinal shock — comparative aspects and clinical relevance. J. Vet. Intern. Med., 19, 788—793.

48. Srugo, I., Aroch, I., Christopher, M. M., Chai, O., Goralnik, I., Bdolah-Abram, I., et al., 2011: Signs and outcome in acute nonambulatory thoracolumbar disc disease in dogs. J. Vet. Intern., Med., 25, 846—855.

49. Staffeldt, K., 1963: Zur Morphogenese der pathologisch-anatomischen Befunde bei der “Commotio medullae spinalis”. Arch. Psych. Nervenkrankheiten, 204, 328—341.

50. Stiffer, K. S., Stevenson, M. A., Sanchez, S., Barsanti, J. A., Hofmeister, E., Budsberg, S. C., 2006: Prevalence and characterization of urinary tract infections in dogs with surgically treated type I thoracolumbar intervertebral disc extrusion. Vet. Surg., 35, 330—336.

51. Sullivan, P. G., Krishnamurthy, S., Patel, S. P., Pandya, J. D., Rabchevsky, A. G., 2007: Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J. Neurotrauma, 24, 991—999.

52. Šulla, I., Balik, V., Petrovičová, J., Almášiová, V., Holovská, K., Oroszová, Z., 2016: A rat spinal cord injury experimental model. Folia Veterinaria, 60, 41—46.

53. Taylor, A. R., Welsh, C. J., Young, C., Spoor, E., Kerwin, S. C., Griffin, J. F., et al., 2014: Cerebrospinal fluid inflammatory cytokines and chemokines in naturally occuring canine spinal cord injury. J. Neurotrauma, 31, 1561—1569.

54. Tomko, P., Farkaš, D., Čížková, D., Vanický, I., 2017: Longitudinal enlargement of the lesion after spinal cord injury in the rat: a consequence of malignant oedema ? Spinal Cord, 55, 255—263.

55. Waters, R. L., Adkins, R. H., Yakura, J. S., 1991: Definition of complete spinal cord injury. Spinal Cord, 29, 573—581.

56. Webb, A. A., Ngan, S., Fowler, D. J., 2010: Spinal cord injury I: a synopsis of the basic science. Can. Vet. J., 51, 485—492.

57. Wu, K. L. H., Hsu, C., Chan, J. Y. J., 2009: Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis inducing factor and mitochondrial release of cytochrome C after spinal cord injury. J. Neurotrauma, 26, 965—977.

58. Xu, J., Fan, G., Chen, S., Wu, Y., Xu, M., Hsu, C. Y., 1998: Methylprednisolone inhibition of TNF-KB activation after spinal cord injury in rats. Brain Res. Mol. Brain Res., 59, 135—142.

59. Yang, L., Blumberg, P. C., Jones, N. R., Manavis, J., Sarvestami, G., Ghabriel, M. N., 2004: Early expression and cellular localization of proinflammatory cytokines Interleukin-1β, Interleukin-6, and Tumor necrosis factor-α in human traumatic spinal cord injury. Spine, 29, 966—971.

60. Zaki, F. A., Prata, R. G., 1976: Necrotizing myelopathy secondary to embolization of herniated intervertebral disk material in the dog. J. Am. Vet. Med. Assoc., 169, 222—228.

61. Zhou, X., He, X., Ren, Y., 2014: Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Reg. Res., 9, 1787—1795.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 430 92
PDF Downloads 298 298 61