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Introduction

Statistical functions are often used to mod-
el diameter distributions of forest stands 
(e.g., Poudel & Cao, 2013; Gorgoso-Varela 
& Rojo-Alboreca, 2014; Ogana et al., 2017), 
and have become an important part of for-
est management and planning. Diameter 
distribution forms the link between stand 
level and tree level models (Nord-Larsen & 
Cao, 2006). It can be used to provide infor-
mation on the growth, value and volume 

production of forest stands (Gorgoso et al., 
2012; Ogana et al., 2017).

Some important statistical functions 
that have been adequately used to model 
diameter distribution of forest stands in-
clude: the beta, gamma, Johnson’s SB and 
Weibull; more recently the Burr XII and 
Logit-Logistic functions. Extensive forest-
ry literature is available on the application 
of these statistical functions. For example, 
Poudel & Cao (2013) compared several 
methodologies to estimate the parameters 
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of Weibull for tree diameter characteri-
sation. Similarly, Gorgoso-Varela & Ro-
jo-Alboreca (2014) evaluated different es-
timation methods for fitting the Johnson’s 
SB and Weibull functions to pedunculate 
oak (Quercus robur L.) and birch (Betula 
sp.) stands in Northwest Spain. In Nige-
ria, Ogana et al. (2017, 2018) modelled the 
diameter distributions of Gmelina arborea 
Roxb. and Eucalyptus camaldulensis Dehn. 
plantations, respectively. Recently, Sun et 
al. (2019) characterised tree diameter distri-
butions for mixed stands of oak and pine 
in China. Other studies include: Zhang et 
al. (2003), Cao (2004), Wang & Rennolls 
(2005), Palahi et al. (2007), Zheng & Zhou 
(2010), Gorgoso et al. (2008, 2012), etc. 

Although research on diameter dis-
tribution has spanned several decades in 
forestry, there are however, some simpli-
fied statistical distributions such as the 
Log-Logistic which have not been suffi-
ciently applied to forestry. The two-param-
eter Log-Logistic distribution (hereafter 
referred to as LogL) is a continuous prob-
ability distribution characterised by shape 
(α) and scale (β) parameters. The LogL has 
been applied to several disciplines, includ-
ing actuarial science, computer science, 
economics, hydrology, medicine, etc. The 
LogL also known as Fisk distribution in 
economics was applied to model income 
distribution (Kleiber & Kotz, 2003). It has 
also been used in survival analysis to mod-
el accelerated failure time (Bennett, 1983). 
In hydrology, Ashkar & Mahdi (2006) mod-
elled precipitation and the rates of stream 
flow using the LogL function. The applica-
tion of LogL to forestry has been limited. 
Ogana & Dau (2019) used the LogL func-
tion to derive crown distributions from di-
ameter at breast height for Parkia biglobosa 
Benth. stands in Nigeria.

The choice of distribution function de-
pends on its relative flexibility, simplicity 
in terms of model expression, ease of pa-
rameter estimation and ease of comput-
ing proportion of trees in diameter classes 

(Burkhart & Tomé, 2012). The LogL has a 
simplified expression and a closed-form 
cumulative distribution function (cdf), 
thus, it does not require numerical integra-
tion to estimate the proportion of trees in 
diameter classes. Furthermore, different 
estimation methods such as the maximum 
likelihood estimation (MLE), general-
ized moments, and the least square have 
been used to estimate the parameters of 
LogL with different levels of success (e.g., 
Kleiber & Kotz, 2003; Ashkar & Mahdi, 
2006; Ogana & Dau, 2019). These methods 
vary in complexity; and as such, there is a 
need for developing a simplified method 
of estimating the parameters of LogL for 
characterising tree diameter distributions. 
The percentile estimator is a good substi-
tute to the MLE (Clutter et al., 1983). This 
method has not been used to estimate the 
parameter of LogL in forestry. A simplified 
estimation method for the LogL function 
will increase its application in diameter 
distribution yield systems.

Generally, diameter distribution yield 
systems predict values for the parameters 
of distribution functions (Clutter et al., 
1983). The parameters are related either 
directly with stand variables such as the 
quadratic mean diameter, basal area per 
ha, stand age, number of trees per ha, site 
index (or the average height of dominant 
trees), etc. (i.e., parameter prediction mod-
el) or diameter moment/percentiles de-
rived from forest stand variables (param-
eter recovery model). This can be used for 
implicit prediction of future yield. To date, 
no published forestry literature exists that 
relate the parameters of LogL distribution 
with stand variables to the knowledge of 
the researcher. Therefore, the objectives 
of this study were to evaluate a percen-
tile-based estimator for the fitting of the 
LogL function; and to develop models that 
could be used to derive the parameters of 
distribution using Nigerian forest stands 
as a case study.
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Methodology

Data
The data used in this study were collected 
from two natural forest stands (multiple 
species composition with indeterminate 
age structure) and two monoculture stands 
of Gmelina arborea Roxb. and Tectona gran-
dis Linn. f. One of the natural stands is 
situated in Ikrigon Forest Reserve, Cross 
River State, Nigeria and lies between Lat-
itude 6°17.597′–6°17.862′ N and Longitude 
8°35.597′–8°35.276′ E with an area of 542.7 
ha. The second natural forest and part of 
the G. arborea stand are in Oluwa Forest Re-
serve, Ondo State, Nigeria. The natural for-
est lies between 6.83°–6.91° N and Longi-
tude 4.52°–4.59° E with an area of 629 km2. 
The G. arborea stand lies between Latitude 
6°55′–7°20′ N and Longitude 3°45′–4°32′ 
E and occupies an area of 87,816 ha (On-
yekwelu, 2001). T. grandis and G. arborea 
data were also collected from Omo Forest 
Reserve. Omo Forest Reserve is situated 
in Ogun State, Nigeria between Latitude 
6°35′–7°05′ N and Longitude 4°10′–4°19′ E 
with an area of 130,500 ha.

Data were collected from 75 and 35 tem-
porary sample plots (TSPs) in G. arborea and 
T. grandis stands, respectively; while 10 and 
7 TSPs were used in Ikrigon and Oluwa 
natural forests, respectively. The plot sizes 
ranged from 0.04 to 0.25 ha, to achieve at 
least 30 trees in a plot. All living trees with-
in the plots of the monoculture stands were 
measured, while in the natural forest, only 
trees with diameter at breast height (Dbh) 
≥ 10 cm were measured. Details of the sam-
pling procedures used for the data collec-
tion in Ikrigon natural forest, Oluwa natu-
ral forest, G. arborea and T. grandis can be 
found in T.E. Adeniyi (unpubl.) and Oga-
na et al. (2015, 2017), and Chukwu & Osho 
(2018), respectively. The descriptive statis-
tics of the Dbh, total height (Ht), quadratic 
mean diameter (dg), dominant height (i.e., 
average height of the 100 tallest trees per 
ha, Ho), basal area per ha (G), density (N) 
and stand age (A) are presented in Table 1.

Log-Logistic (LogL)
The probability density function (pdf) and 
cumulative distribution function (cdf) of 
the LogL are expressed as:
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where f(x) = pdf; F(x) = cdf  = shape pa-
rameters ( > 0); β = scale parameter (β > 0). 
The LogL has a closed-form cdf as to facili-
tate the estimation of tree proportion in dif-
ferent diameter classes without resorting to 
numerical integration. 

The percentile estimator
The idea of the percentile estimator for the 
LogL stems from the principle developed 
for the Weibull distribution by Clutter et al. 
(1983). The idea is, if two sample percen-
tiles are known, each can be related to its 
corresponding LogL cdf, and the resulting 
equations are iteratively solved to get the 
estimates of shape (α) and scale (β). Thus, 
the equations were developed as follows: 
“Let Xp represent the p-percentile value in 
the sample so that 100p-percentile of the 
sample values are less than Xp”. Therefore, 
from the definition of the LogL cdf:

𝑃𝑃 = �1 + �
𝛽𝛽
𝑋𝑋�
�
�

�
��

 (3)

 Equation (3) was then solved for Xp to give 
equation (4)

𝑋𝑋� = 𝛽𝛽 �
1
𝑃𝑃
− 1�

�� ��

 (4)

The parameters of the LogL distribution 
were derived from equation (4). Since this 
is the first attempt of applying this percen-
tile-based estimator for the LogL, several 
sample percentiles were considered. The 
following sample percentiles were analysed:



110

F.N. Ogana

-	 Method 1 (M1): 25th and 75th sample 
percentiles 

-	 Method 2 (M2): 17th and 97th sample 
percentiles

-	 Method 3 (M3): 24th and 93rd sample 
percentiles 

-	 Method 4 (M4): 40th and 80th sample 
percentiles

-	 Method 5 (M5): 30th and 70th sample 
percentiles

-	 Method 6 (M6): 35th and 65th sample 
percentiles

-	 Method 7 (M7): 40th and 60th sample 
percentiles

-	 Method 8 (M8): 33rd and 67th sample 
percentiles 

From equation (4), method 1 was derived as:

𝑋𝑋�� = 𝛽𝛽 �
1

0.25
− 1�

�� ��

 (5)

𝑋𝑋�� = 𝛽𝛽 �
1
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− 1�
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 (6)

where X25 and X75 are the diameters corre-
sponding to the 25 and 75%, respectively. 
Equation (5) and (6) were solved iterative-
ly using the Newton-Raphson algorithm 
of the ‘lmfor’ package (Mehtätalo, 2017) 
implemented in R (R Core Team, 2017). A 
similar procedure was used for M2 to M8 
by substituting the various percentiles and 
solving the system of equation iteratively.

Table 1. Descriptive statistics of the inventoried data from natural forests and plantations.

Forest Statistics Dbh Ht dg Ho G N A

(cm) (m) (cm) (m) (m2ha-1) (trees ha-1) (years)

Ikrigon Natural Forest Mean 30.0 24.1 33.8 31.9 28.0 310.4

63 species Min 10.0 5.7 29.4 27.6 16.9 184.0 na*

776 trees Max 125.0 43.8 39.6 35.9 40.9 440.0

SD 15.9 7.5 3.5 2.5 8.3 72.8

Oluwa Natural Forest Mean 25.1 16.9 29.6 25.7 19.4 227.1

58 species Min 10.0 4.8 26.1 22.0 14.5 200.0 na*

486 trees Max 118.5 63.7 34.5 33.0 31.7 352.0

SD 16.7 9.0 2.7 3.7 6.7 56.6

G. arborea Mean 21.2 13.9 22.3 21.6 30.5 710.3 26.6

486 trees Min 3.0 1.6 14.7 8.8 6.2 300.0 11.0

Max 54.5 42.7 31.0 34.5 72.9 1525.0 39.0

SD 9.8 5.8 3.7 4.5 19.5 308.6 7.7

T. grandis Mean 17.9 16.7 18.5 21.3 24.2 877.6 19.8

1,916 trees Min 6.0 6.6 14.3 17.9 11.5 624.0 13.0

Max 37.9 26.5 22.4 24.0 50.8 1744.0 27.0

SD 5.3 3.5 2.2 1.9 8.9 198.6 5.2
*na = not applicable
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To ascertain the suitability of the per-
centile method, it was compared with the 
well-known maximum likelihood estima-
tor (MLE). The MLE involves taking the 
partial derivative of the log-likelihood 
function of LogL with respect to the pa-

rameters (α and β) and setting the expres-
sion equal to zero. The resulting function 
is solved by numerical algorithm to get the 
estimates of the parameters. The log-likeli-
hood function (𝜕𝜕ℓ
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the partial derivative of equation (7) with respect to α and β will give equations (8) and 
(9), respectively:
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tion, 
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 is diameter at breast height and i 

ranged from 1 to n, other parameters are 
previously defined in equation (1). Since 
there are no explicit solutions to equations 
(8) and (9), the estimates were obtained nu-
merically using the mledist function from 
the fitdistrplus package (Delignette-Muller 
& Dutang, 2015) implemented in R (R Core 
Team, 2017). The R code for the MLE is 

presented in Appendix 1.

Evaluation statistics
Three goodness-of-fit statistics were used 
to evaluate the suitability of the percentile 
estimator. For each method, the Kolmogor-
ov-Smirnov (KS), Anderson-Darling (AD) 
and Cramer-von Mises (W2) statistics were 
computed. The smaller the statistics are, 
the better the method.

KS statistic:

𝐾𝐾𝐾𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚�������𝐹𝐹�(𝑥𝑥�) − 𝐹𝐹��𝑥𝑥���,𝑚𝑚𝑚𝑚𝑚𝑚�������𝐹𝐹��𝑥𝑥�� − 𝐹𝐹�(𝑥𝑥���)�� (10)
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AD statistic:
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W2 statistic:
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where F(xi) = observed cumulative fre-
quency distribution for xi (i ranged from 
1 to n), F0(xi) = theoretical cumulative fre-
quency distribution.

Ranking of methods
The relative rank introduced by Poudel 
& Cao (2013) and recently used by Sun et 
al. (2019) was used for this study. It is ex-
pressed as:

𝑅𝑅� = 1 +
(𝑚𝑚 − 1)(𝑆𝑆� − 𝑆𝑆���)

𝑆𝑆��� − 𝑆𝑆���
 (13)

where Ri = relative rank of method i (i = 
1, 2, …, m); m = number of methods as-
sessed (8 percentiles plus the MLE, i.e., 9 
altogether), Si = evaluation statistics value 
of method i; Smin and Smax = minimum and 
maximum value of Si, respectively. The rel-
ative rank is a real number between 1 (best) 
and 9 (worst). For each method, the rela-
tive ranks were summed across the three 
goodness-of-fit statistics to ascertain the 
best percentile point for the estimator. 

Modelling the diameter distribution
A scatterplot was used to establish the 
form of association between the depen-
dent (LogL parameters and diameter per-
centiles) and independent variables (stand 
variables, e.g., quadratic mean diameter 
(dg), dominant height (Ho), stand density 
(N), basal area per ha (G), stand age (A), 
etc.). Thereafter, a stepwise linear regres-
sion technique was used in the modelling 
process. This ensured that only the best 

predictor variables were included in the 
models. Relating the parameters directly 
with stand variables is known as the pa-
rameter prediction method (PPM); while 
modelling the diameter percentiles with 
stand variables from which the LogL pa-
rameters could be derived is referred to as 
the parameter recovery model (PRM). Both 
PPM and PRM were evaluated to deter-
mine the best option for the LogL distribu-
tion. The models were of this form:

𝑌𝑌� = 𝑓𝑓(𝑋𝑋�, 𝛽𝛽) + 𝜀𝜀� (14)

where Yi is a vector of the dependent vari-
ables (parameters of the LogL distribution 
and various diameter percentiles), Xi is the 
vector of the predictor variables (quadrat-
ic mean diameter, dominant height, stand 
density, basal area per ha, stand age, etc.) 
and  is the error term. 

Models were only developed for the 
G. arborea and T. grandis stands because a 
sufficient number of plots is required for 
effective modelling. There were more than 
30 plots from these stands compared to the 
few plots in the natural stands (10 and 7 
in Ikrigon and Oluwa, respectively). Since 
sufficient data are not available for model-
ling, a k-fold cross-validation was used to 
ascertain the predictive ability of the mod-
els (Sileshi, 2014). Different fit indices, such 
as root mean square error (RMSE), coeffi-
cient of variation (CV), corrected Akaike 
Information Criterion (AICc), Bayesian In-
formation Criterion (BIC) and adjusted co-
efficient of determination (𝑅𝑅�� ) were used 
to evaluate the cross-validation results.
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Results and Discussion

Fit of the LogL from percentile and MLE
The estimated parameters of the LogL from 
the different percentiles and those from the 
MLE are presented in Table 2 and Table 3 
for the natural forests and plantations, re-
spectively. Little variation was observed in 
the values of the parameters of the LogL 
estimated from the MLE and percentiles 
methods. Evaluation of the performance 
of the methods based on the fit statistics 
showed that MLE had the smallest relative 
rank sum (R) of 3.79 and 3.32 for Ikrigon 

and Oluwa natural forests, respectively. 
This was followed by method 4 (M4: 40th 
and 80th diameter percentiles), method 
1 (M1: 25th and 75th) and method 7 (M7: 
40th and 60th) with respect to Ikrigon for-
est. In Olwua natural forest, M4 had the 
largest R. The Cramer-von Mises (W2) 
statistics of M1, M4 and M7 were smaller 
relative to the value of the MLE in Ikrigon 
natural forest. Just as with KS and AD, W2 
statistic is an important index that gives 
the overall squared difference between 
empirical distribution and the theoretical 
cdf (Wang, 2005).

Table 2. 	 Estimated parameters, goodness-of-fits and the relative rank sum (R) of the percentiles 
and MLE in natural forest.

Natural Forest Percentiles
Parameters Goodness-of-fit

R
Shape Scale KS AD W2

Ikrigon M1 2.6293 26.2730 0.0736 8.4744 0.6452 7.29

M2 3.4970 23.7620 0.1263 21.5400 3.4572 27.00

M3 3.2008 24.5129 0.0889 10.3310 1.5687 12.34

M4 2.7855 26.1412 0.0648 5.9910 0.4154 4.49

M5 2.6278 26.3674 0.0731 8.5303 0.6549 7.29

M6 2.5619 26.2305 0.0785 9.9085 0.8018 8.97

M7 2.7658 26.1683 0.0658 6.2362 0.4338 4.77

M8 2.5572 26.3818 0.0778 10.0510 0.8231 9.00

MLE 3.2957 26.2105 0.0547 5.2472 0.7167 3.79

Oluwa M1 3.0771 20.2929 0.1061 6.5088 0.6674 7.29

M2 3.0150 21.6576 0.0988 8.5493 1.3996 21.48

M3 2.9375 20.7274 0.1089 7.0406 0.8385 11.56

M4 2.7995 20.1118 0.1299 8.6210 0.9602 22.20

M5 3.0966 19.8522 0.1125 7.3039 0.7098 11.73

M6 3.0229 19.8817 0.1172 7.5092 0.7532 13.74

M7 3.2683 19.6982 0.1037 7.5823 0.6984 11.12

M8 3.0186 19.8512 0.1180 7.6141 0.7661 14.41

MLE 3.3928 20.4790 0.0827 6.4187 0.6964 3.32
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Similarly, in G. arborea stand, the MLE 
had the smallest relative rank sum of 3.05 
which was closely followed by M4 with a 
value of 3.47. The performances of M1 and 
M7 were equally good. In the case of T. 
grandis stand, M4 had the smallest relative 
rank sum of 3.00 whereas MLE had 3.52. 
This was followed by M1 and M5 (30th 
and 70th diameter percentiles). Method 2 
(17th and 97th diameter percentiles) with 
the largest relative rank sum had the worst 
performance in three out of the four stands. 
The 17th and 97th sample percentiles were 
recommended for the Weibull distribution 
by Shiver (1988). Thus, the study shows 
that these diameter percentiles are unsuit-
able for the LogL distribution. Gorgoso et 

al. (2007) also observed a poor fit with the 
percentiles for the Weibull distribution in 
the birch-dominated stands of Northwest 
Spain. Also, the most efficient sample per-
centiles – 24th and 93rd recommended for 
the Weibull function by Dubey (1967) per-
formed poorly (M3) for the LogL function. 

The graph of the relative frequency of 
trees against the equal diameter class of 
the best diameter percentiles and MLE for 
the four stands are shown in Figure 1a, b, c 
and d. The graph showed that the estima-
tion methods produce a good representa-
tion of the four stands, that is, the reverse 
J-shaped and the Gaussian distribution 
typical of natural forests (uneven-aged) 
and plantations (even-aged), respectively. 

Table 3. 	 Estimated parameters, goodness-of-fits and the relative rank sum (R) of the percentiles 
and MLE in plantations.

Plantation Percentiles
Parameters Goodness-of-fit

R
Shape Scale KS AD W2

G. arborea M1 2.9081 19.2593 0.0739 19.0410 2.0426 4.13

M2 3.7818 16.2732 0.2120 182.6300 33.5450 27.00

M3 3.5858 17.7908 0.1325 60.1980 11.6370 11.50

M4 3.3184 19.8874 0.0598 19.9870 2.0377 3.47

M5 2.8103 19.6023 0.0853 22.5520 2.1931 4.91

M6 2.8513 19.8796 0.0862 22.9980 2.1995 4.98

M7 3.0304 20.1196 0.0773 21.7450 2.0812 4.44

M8 2.8908 19.8028 0.0824 21.2250 1.9992 4.66

MLE 3.3267 19.4248 0.0526 18.0290 2.1989 3.05

T. grandis M1 5.0963 17.4920 0.0593 8.5247 0.7829 6.42

M2 6.0548 16.5020 0.1084 33.8000 6.4582 27.00

M3 6.1169 16.9031 0.0840 16.3320 2.8739 14.37

M4 5.3251 17.2658 0.0415 5.2366 0.5085 3.00

M5 5.1543 17.5622 0.0594 8.9145 0.8782 6.67

M6 4.9264 17.4620 0.0657 10.6700 1.0045 8.08

M7 4.8683 17.3897 0.0657 11.1180 1.0443 8.26

M8 4.9804 17.5226 0.0655 10.5200 1.0175 8.03

MLE 5.6892 17.2884 0.0436 5.4299 0.6729 3.52
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However, the relative frequency of trees 
was underestimated in the diameter class 
of < 20 cm in Oluwa natural forest (Figure 
1b) and overestimated in the middle diam-
eter class of G. arborea stand.

The results obtained with the LogL 
function in this study were better than 
those reported by Ogana & Wali (2018) for 
similar natural forest stands. Studies on 
LogL in forestry have used either the MLE 
(Ogana & Wali, 2018) or the least square re-
gression method (Ogana & Dau, 2019). The 
least square method may seem handy, it is 
however, time-consuming. One important 
advantage of the MLE is the ability to eval-
uate the reliability of the estimates of the 

parameters using the standard error which 
can be derived from the hessian matrix. 
However, the MLE requires specifying the 
log-likelihood function for the distribution 
which may not converge due to poor ini-
tial guess for the parameters. The MLE is 
also affected by sample size (Shiver, 1988). 
Contrary to the MLE and least square 
method, the percentile estimator is more 
simplified, handier and does not require 
a complex iterative procedure. Therefore, 
when considering simplicity, vis-à-vis the 
ease of estimating the LogL parameters, 
the percentile estimator can be considered 
as a good alternative.

Figure 1. 	Observed and fitted LogL diameter distributions of the natural forests and plantations.



116

F.N. Ogana

Modelling the diameter distribution
Two sets of models for predicting the di-
ameter distributions of G. arborea and T. 
grandis stands were developed. The first 
set of models relate the best diameter per-
centiles with stand variables (parameter 
recovery model, PRM) in a simple linear 
relationship wherein the shape and scale 
parameters of the LogL were recovered. 
The quadratic mean diameter (dg) was the 
only suitable predictor variable for the de-
pendent variables (diameter percentiles). 
The second set of models relate the LogL 
parameters directly with stand variables 
(parameter prediction model, PPM). The 
scale (β) parameter was predicted from the 
quadratic mean diameter (dg) in a simple 
linear relationship. The shape (α) parame-
ter was predicted from the inverse of the 
natural logarithm of the ratio of the 25th 
diameter percentile and dg i.e.,

𝛼𝛼 = 𝑎𝑎 + 𝑏𝑏 �

������ ��� �
; 

where a and b are the estimated parame-
ters. The parameters and standard errors 
of the models are presented in Table 4. 
The results of the 5-fold cross-validation 
showed that both model forms had a rela-
tively low RMSE, CV, AICc, BIC and a high 
R̅2. Thus, they can be relied on for predic-
tion purpose. Sun et al. (2019) also found dg 
as one of the most important predictors of 
the Weibull parameters in the mixed stand 
of oak and pine.

The graphs of the application of the 

PRM and PPM to independent stands of G. 
arborea (0.08 ha) and T. grandis (0.125 ha) 
are shown in Figure 2a and b. The predict-
ed diameter distributions were compara-
ble to the observed diameter distributions 
of the stands. The first PRM (models from 
the 25th and 75th percentiles) had KS, AD 
and W2 of 0.0670, 0.7583 and 0.0751, respec-
tively in the 0.08 ha G. arborea stand. These 
values were respectively, 0.0778, 0.6879 
and 0.0782 in the second PRM (models 
from the 40th and 80th percentiles). The 
PPM had 0.0727, 0.5968 and 0.0669, respec-
tively. In the T. grandis, the KS, AD and W2 
of the PRM were 0.0993, 0.9301 and 0.1780, 
respectively. Whereas the PPM had 0.1178, 
2.0522 and 0.3479, respectively. The second 
PRM could not predict the diameter dis-
tribution of the stand; as such, it was not 
represented in the graph.

The performances of the PRM and PPM 
were relatively the same for the LogL dis-
tribution. One major argument with the 
PPM is the difficulty of developing models 
that would account for high variations in 
the parameters of distributions (Borders & 
Patterson, 1990). While this statement may 
be valid for the shape parameters of some 
distributions, such as the well-known 
Weibull, it is not application to the LogL 
function. The models predicting the shape 
and scale parameters of the LogL explained 
more than 0.75 (> 75%) of the variation in 
the parameters for the stands. Thus, both 
the PRM and PPM could be used for the 
LogL in the G. arborea and T. grandis stands.

Table 4. Models for the percentiles, scale and shape parameters and their cross-validation indices.

Species DV* Parameter Estimate SE
5-fold Cross-validation

RMSE CV AICc BIC

G. arborea P25 b0 -0.590 1.570 4.830 4.801 116.937 123.460 0.533

b1 0.632 0.069

P40 b0 -2.975 1.676 5.539 5.441 126.491 133.015 0.677

b1 0.912 0.074

P60 b0 -0.768 1.159 2.519 2.615 72.663 79.186 0.854

b1 1.050 0.051

𝑅𝑅�� 
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Figure 2. The observed and predicted diameter distributions from PRM and PPM models.

Species DV* Parameter Estimate SE
5-fold Cross-validation

RMSE CV AICc BIC

P75 b0 -0.677 1.116 2.446 2.418 67.149 73.672 0.897

b1 1.232 0.049

P80 b0 -0.468 1.148 2.567 2.561 71.250 77.774 0.900

b1 1.288 0.051

Shape b0 1.952 0.124 0.138 0.147 -146.720 -140.196 0.764

b1 -0.826 0.054

Scale b0 -0.753 0.955 1.803 1.768 44.331 50.855 0.860

b1 0.888 0.042

T. grandis P25 b0 -3.885 1.374 0.917 0.874 -1.105 2.556 0.844

b1 0.975 0.074

P40 b0 1.562 1.189 0.668 0.652 -10.687 -7.025 0.874

b1 0.951 0.064

P60 b0 0.263 1.016 0.495 0.475 -21.063 -17.401 0.912

b1 0.995 0.055

P75 b0 2.704 1.232 0.671 0.704 -8.334 -4.672 0.873

b1 0.982 0.066

P80 b0 4.946 1.331 0.786 0.829 -3.200 0.461 0.833

b1 0.905 0.071

Shape b0 2.514 0.397 0.368 0.378 -30.438 -26.776 0.773

b1 -1.028 0.098

Scale b0 -1.306 0.625 0.186 0.181 -53.142 -49.480 0.965

b1 1.002 0.033

*DV = dependent variables

𝑅𝑅�� 
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Conclusion

Developing a simplified estimation meth-
od without compromising the perfor-
mance of the distribution is germane to 
forest modelling. The percentile estimator 
introduced for the Log-Logistic did not 
compromise the quality of fits of the model 
across the four forest stands in Nigeria and 
are comparable to the maximum likelihood 
estimator. The 25th and 75th, and 40th and 
80th were the best sample percentiles for 
the estimator in the forest stands. The pre-
dicted diameter distributions of G. arborea 
and T. grandis stands from the PRM and 
PPM were reasonable and compared well 
with the observed diameter distribution. 
This implies that both the PRM and PPM 
can be incorporated into the growth and 
yield system of forest stand management.
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Appendix 1. The R (R Core Team, 2017) code for maximum 
likelihood estimation.

#### Maximum Likelihood Estimation ####
rm(list=ls(all.names=TRUE))
library(fitdistrplus)
library(readxl)
dat <- read_excel(“Data.xlsx”, sheet=”gmelina”)
dat1 <- split(dat$dbh, dat$Plot)
dLogL <- function(x, alpha, beta)(alpha/beta)*(x/beta)^(alpha-1)*((1+(x/beta)^al-
pha)^-2)  ##  LogL pdf
pLogL <- function(x, alpha, beta) (1 + (beta/x)^alpha)^-1		    ##  LogL cdf
result <- c()
for (i in 1:75) {
	 d <- dat1[[i]]
fitLogL <- mledist(d, “LogL”, start=list(alpha=3.1, beta=20.2))
result <- rbind(result, data.frame(Plot = i,
	 shape = fitLogL$estimate[1],
	 scale = fitLogL$estimate[2]))
}
result


