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Abstract. Optical remote sensing data-based estimates of terrestrial net primary 
production (NPP) are released by different projects using light use effi ciency-type 
models. Although spatial resolution of the NPP data sets is still too coarse (500–1000 m) 
for single forest stands, regional monitoring of forest management and growth with 
25–100 ha sampling units is feasible if the NPPSAT estimates are sensitive to forest 
growth differences depending on soil fertility in the area of interest. In this study, 
NPP estimates for 2,914 mixed forest class pixels (according to the MODIS land cover 
map) located in Estonia were (1) obtained from three different NPPSAT products, (2) 
calculated using an empirical soil potential phytoproductivity (SPP) model applied 
to a 1:10,000 soil map (NPPSPP), and (3) calculated using stem volume increment 
estimates given in a forest management inventory data base (NPPFIDB). A linear 
multiple regression model was then used to explore the relationships of NPPSAT with 
the proportion of coniferous forests, the NPPSPP and distance of the pixels from the 
Baltic Sea coast – the variables that have been found informative in previous studies. 
We found a positive moderate correlation (0.57, p < 0.001) between NPPSPP and 
NPPFIDB. The local or downscaled meteorological data-based NPPSAT estimates were 
more consistent with the NPPSPP and NPPFIDB, but the correlation with NPPSAT was 
weak and sometimes even negative. The range of NPP estimates in NPPSAT data sets 
was much narrower than the range of NPPSPP or NPPFIDB. Errors in land cover maps 
and in estimates of absorbed photosynthetically active radiation were identifi ed as the 
main reasons for NPPSAT inconsistencies.
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Introduction

Productivity of forest ecosystems is moni-
tored and estimated using terrestrial sam-
pling e.g. in case of National Forest Inven-
tories (Tomppo et al., 2010; GFOI, 2013; 
Bontemps & Bouriaud, 2014) or forest 
growth monitoring networks (Sims et al., 
2014; Kiviste et al., 2015), using airborne 
lidar (ALS) data (Kandare et al., 2017), 
process-based modelling (Liu et al., 1997), 
combining ALS data and climate data with 
process-based modelling (Härkönen et al., 
2013) or using spaceborne measurements 
of absorbed photosynthetically active ra-
diation (APAR) in light use effi ciency 
models (Zhao et al., 2005) as an alternative 
to pure terrestrial sampling. The light use 
effi ciency or (LUE)-type models estimate 
the gross primary production of photosyn-
thesis (GPP) based on APAR, LUE, water 
vapour pressure defi cit (VPD) and ambient 
air temperature. Net primary production 
(NPP) is calculated by substracting auto-
trophic respiration from the GPP. Such 
models are used routinely for terrestrial 
net primary production NPPSAT estimates 
based on global satellite measurements 
(Zhao et al., 2011). The estimates have been 
validated e.g. using eddy-covariance mea-
surements from fl ux towers (Turner et al., 
2006) and ground reference NPP (Olson et 
al., 2001). Locally at specifi c sites, however, 
the estimates may have large uncertainties 
due to errors in model parameters and as-
sumptions (Zhao et al., 2005), coarse scale 
input data (Eenmäe et al., 2011) and errors 
in land cover maps (Quaife et al., 2008; 
Lang et al., 2013). Higher accuracy could 
be achieved by using local or downscaled 
meteorological data (Olofsson et al., 2007; 
Härkönen et al., 2010; Nilson et al., 2012; 
Neumann et al., 2016) and combining re-
mote sensing data and sample plot-based 
forest inventory data (Härkönen et al., 
2011).

The growth of plants is determined by 
soil fertility in addition to APAR and am-
bient conditions (Tooming, 1977). More 

fertile soil stipulates photosynthesis. War-
ing et al. (2006) showed that soil fertility at 
a coarse scale is strongly correlated with 
the multispectral enhanced vegetation 
index which is a good predictor for GPP 
(Schubert et al., 2012). Inclusion of soil data 
into global scale NPP estimation models is 
problematic due to generality and incon-
sistencies of the existing global soil data-
bases e.g. the harmonized world soil data-
base, HWSD (FAO et al., 2012). However, 
high quality soil maps can be a valuable 
data source for evaluation of spaceborne 
NPP estimates when information for soil 
productivity estimation is available in the 
soil data base, on the other hand, soil man-
agement (Kõlli & Kanal, 2010) may benefi t 
from satellite data-based yearly estimates 
of the NPP. Discrepancies between NPPSAT 
and the potential productivity of soil can 
be used for targeting the areas where the 
forest management practices have to be 
reviewed. Time series of the NPPSAT are 
found informative for tree mortality moni-
toring and predicting (Neumann et al., 
2017). Regional monitoring systems e.g. 
sCASE (Stagakis et al., 2015) can be con-
structed to locate problematic areas based 
on NPPSAT. A necessary prior for this type 
of monitoring application is the evaluation 
of relationships between NPPSAT estimates 
and soil productivity in the area of interest.

In this study, we analysed LUE-based 
estimates of NPPSAT to evaluate their pos-
sible applicability in a forest NPP monitor-
ing system in Estonia. We were interested 
in fi nding the most critical error sources 
in the NPPSAT estimates that must be tar-
geted in future research. The NPPSAT was 
calculated from GPP, if available, using a 
uniform NPP/GPP ratio to decrease uncer-
tainties arising from leaf area index (LAI) 
estimates and averaged over observation 
period. To carry out the study, we con-
structed a GIS database where the elemen-
tary sampling unit (ESU) was a MODIS 
grid cell with the size of 50 ha. Considering 
that the mean forest stand size in Estonia is 
about 1.3 ha (Raudsaar et al., 2016) we used 
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data from mixed forest class ESUs. Since 
there is only one fl ux tower in Estonia (Noe 
et al., 2015) where continuous measure-
ments are done, we used the soil potential 
phytoproductivity (SPP) model of Kõlli 
(1988) applied to the database of a 1:10,000 
soil map as an independent reference for 
the assessment of NPPSAT. To each ESU we 
assigned also (1) tree species composition, 
site index and an estimate of NPP based 
on stem volume increment from a forest 
inventory database (FIDB) (2) an estimate 
of disturbed area and current forest land 
area from Landsat images-based map, (3) 
land cover class codes from MODIS land 
cover maps, (4) fraction of APAR (fAPAR) 
from MODIS and MERIS products that 
were used, and (5) distance from the Baltic 
Sea coast. We used regression modelling to 
analyse the relationships between the long 
term mean NPPSAT and the explanatory 
variables in the database.

Material and Methods

Soils of Estonia 
Located in the transition area between con-
tinental and marine climates in mild and 
wet pedo-climatic conditions of the tem-
perate zone, mixed forests are characteris-
tic of the naturally developed areas of the 
Estonian land cover. In the course of inten-
sifi ed agricultural activity during the last 
two centuries the most productive soils 
(suitable for crop cultivation and grass-
lands) were turned into arable, pastured or 
hay-lands.

At present the forests cover approxi-
mately half of the Estonian land surface 
(Raudsaar et al., 2016). A remarkably large 
part (36.9%) of forest soils form Histosols 
(classifi cation system: IUSS (2014)), where-
as among them sapric and fi bric soil subdi-
visions in fens and bogs are dominating. 
The Gleysols form approximately 35.7% of 
forest soils, while half of them are charac-
terized as eutric (calcareous) and a quarter 
as dystric. Also Histic Podzols belong to this 

wet (epigleyic) mineral soil group (forming 
~3% of forest soils). The share of automor-
phic mineral soils is only 24.3% of forest: 
subdivisions of Retisols (7.9%), Cambisols 
(6.5%) and Podzols (6.0%) are dominating 
(Kõlli et al., 2009).

The dominating texture of forest soils 
is peat (37%) and sand (35%). The share of 
loams, which have the highest forest grow-
ing potential, is only 16% of the forest land. 
The share of loamy sands and clays is 9% 
and 3%, respectively, of the forest land. 
With respect to moisture conditions 39% of 
forest soils are characterized as wet miner-
al (epigleyic), 37% – wet peaty (histic), 13% – 
automorphic fresh, 9% – moist (endogleyic) 
and 2% – dry, aridic.

Soil map and database
The results of preliminary soil survey of 
Estonia from 1954 to 1980 are large scale 
(1:10,000) soil maps and the correspond-
ing database (Mullakaardi, 2001). The map 
covers entire terrestrial territory (43,432 
km2) of the Estonia. Later, these maps have 
been updated paying more attention to 
the fabric of humus profi les, particle size 
distribution, organic carbon and nitrogen 
content, and the main chemical and physi-
cal properties of topsoil. In 1998–2001 the 
large scale soil map of Estonia was digi-
tised by E.O. Map Ltd for reproduction of 
hardcopies of the map. This soil map is the 
property of the Estonian Land Board (Mus-
tamäe tee 51, 10621, Tallinn, Estonia). The 
database contains soil codes, formulae of 
soil texture and humus profi les, stoniness, 
soil quality and relative share of soil sub-
types within complex soil polygons. The 
percentages were used as weights for the 
mean productivity for each soil polygon.

Model of soil phytoproductivity
For characterizing the SPP the pedo-eco-
logical schema of normally developed 
mineral soils (i.e. soils which, at present, 
are not infl uenced by new sediments ac-
cumulation nor topsoil elimination) was 
used (see Figure 2 in Kõlli et al., 2004). This 
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schema categorizes soils according to their 
pedo-ecological conditions. It is character-
ized by two scalars: (1) a vertical eight-
stage litho-genetic scalar from rendzina to 
podzols, which arranges soils on the basis 
of parent materials’ properties, calcareous-
ness, processes of soil functioning and site 
trophicity, and (2) a horizontal six-stage 
moisture scalar from aridic or well-aerated 
to permanently wet or reducing condi-
tions. To estimate potential productivity 
for each soil in the soil map data base we 
used a simple model (Kõlli, 1988) which in 
principle is a look-up table relating the two 
scalars and above-ground SPP. No other 
input is required for the model.

The plant biomass measurement data-
based semi-empirical SPP model (Kõlli, 
1988) was initially created for quantita-
tive characterization of organic matter 
(organic carbon) fl ux throughout the soil, 
which started with litter fall on the sur-
face and subsequent phytomass transfer 
into the soil. As litter fall depends on plant 
cover productivity, the long period mean 
annual SPP (Mg ha–1 yr–1) for the main 
soil types had to be estimated. Two sub-
stantial aspects have to be mentioned: (1) 
soil productivity comprises not only the 
productivity of the plant cover (primary 
or phytomass productivity), but also the 
biomass productivity of meso- and mi-
crofauna, which is negative in relation to 
primary (phytomass) productivity, and (2) 
the mean annual SPP level was determined 
in relation to stabilized forest ecosystems 
when the tree storey has passed the fastest 
growing period, but the understory layers 
have stabilized. The forests in the phyto-
mass sampling sites had (1) the stand rela-
tive density in the range of 0.6–0.8, and (2) 
the mean age of stands in the range of 60–
100 years (Kõlli, 1988).

The above reveals that (1) in earlier 
growing periods of spruce, pine, birch, etc. 
forests the total annual SPP can be remark-
ably greater than estimated with our SPP 
model, and (2) the annual SPP is always 
smaller than the annual NPP (SPP < NPP), 

which is caused by secondary productivity 
and heterotrophic respiration (i.e. decay of 
attached dead branches) of the plant cover. 
Therefore the SPP may be treated as a per-
sisted (or survived) NPP at the end of the 
vegetation period. However, we assume 
that SPP characterizes adequately the dif-
ferences in productivity between different 
soil types.

Estimation of soil potential NPP
The SPP model was taken from Figure 3.2 
in Kõlli (1988), digitized and converted into 
a 80 × 80 units lookup table. The lookup 
table was based on soil genetic and mois-
ture coordinates which were also assigned 
for each soil patch in the soil database. The 
original SPP model was based mainly on 
empirical data from normally developed 
soils and estimates the potential above-
ground phytoproductivity (PSPP). For wa-
terlogged Gleysols and thin Sapric Histosols 
(M’) with characteristic horizons of the for-
est fl oor, raw-humus and peat indicating 
to stagnated growth conditions, an adjust-
ment based on the thickness of these layers 
was applied

PSPP(G) = PSPP – g (OHOR – OHOR)                    (1)

where OHOR is the total thickness (cm) of 
the layer of organic matter and peat, g = 
(PSPP (Go)-PSPP (M’))/40 = 0.12 is a param-
eter based on PSPP = 12.9 Mg ha–1 yr–1 for 
Mollic Gleysols (Go) and 8.2 Mg ha–1 yr–1 for 
M’ soil and their 40 cm difference in OHOR, 
and OHOR is the mean OHOR for each soil 
type in the soil database. An additional ad-
justment PSPP(GI) = 0.85 × PSPP(G) was applied 
to Luvic Gleysols (GI) based on clay, sand or 
fi ne sand.

LUE-type models estimate the total 
product of photosynthesis, i.e. above and 
below-ground. We scaled PSPP×(1+0.2) = 
NPPSPP to add an estimate of below-ground 
NPP to the model of Kõlli (1988). The fac-
tor 1.2 corresponds to IPCC (2006) guide-
lines for mature stands in the temperate 
forest zone. The factor 1.2 here also counts 
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for fi ne root turnover, since the SPP model 
includes litter fall which can be assumed 
similar to fi ne root turnover according 
Raich & Nadelhoffer (1989).

Forest management inventory database 
and calculation of stem volume 
increment-based NPP
The forest management inventory data-
base (FIDB) was obtained in March 2013 
from the State Register for Accounting of 
Forest Resource (IDB, 2016). The FIDB re-
cords are yearly updated only for state for-
ests and the age of the inventory records is 
usually not more than fi ve years, whereas 
data for private forests may be outdated, 
since updates are not obligatory after dis-
turbances including management. The 
FIDB consists of a 1:10,000 vector map of 
forest stands and a large set of stand specif-
ic inventory variables used for forest man-
agement planning issues. In this study, we 
used site fertility index H100 (m; predicted 
height when forest is 100 years old) and 
tree species composition as descriptive 
variables and stem volume increment iv 
(m3 ha–1 yr–1) to estimate NPP. The iv in the 
FIDB is used for forest management plan-
ning and is calculated with a model (Met-
sakorralduse, 2017) using forest age, stand 
relative density and H100. The net primary 
production NPPFIDB = iv×BCEFi+2 × mL for 
each forest stand was calculated by using 
the biomass conversion and expansion fac-
tor BCEFi = 0.6×(1+0.2) = 0.72 and yearly 
litter fall mL. The BCEFi was derived from 
IPCC (2006) guidelines for mature stands 
in the temperate forest zone and includes 
also the below-ground fraction. The fi ne 
root turnover was assumed to be equal to 
litter fall according to Raich and Nadelhof-
fer (1989).

The yearly litter fall mL (g m–2 yr–1) was 
estimated with a temperature (T) and pre-
cipitation (S) driven model from Liu et al. 
(2004) for deciduous broadleaf forests

(2)
mL(dec) = exp(2.643+0.726×ln(T+10)+0.181×ln(S))

and evergreen coniferous forests

(3)
mL(con) = exp(2.708+0.505×ln(T+10)+0.24×ln(S))

where T = 5.1º C and S = 700 mm yr–1 were 
used as climatological mean values for 
Estonia (Kliimaatlas, 1970).

Satellite data-based NPP estimates
Three data sources were used to obtain an-
nual estimates of NPPSAT. First was a Terra 
MODIS (Moderate-resolution Imaging 
Spectroradiometer) data-based GPP|NPP 
product (version 5.5) released by the Nu-
merical Terradynamic Simulation Group 
(NTSG; The University of Montana, USA). 
The GPP and NPP values are based on 
yearly reprocessed data to decrease the 
infl uence of missing data due to clouds 
(Zhao et al., 2011; Zhao et al., 2005). The 
second NPPSAT estimate was extracted from 
MODIS EURO product (Neumann et al., 
2016) and was also based on Terra MODIS 
data but using downscaled European 
climate data (Moreno & Hasenauer, 2016) 
instead of the global climate driver. The 
third productivity estimate was based on 
Envisat MERIS data and is described in 
more detail by Nilson et al. (2012) who de-
veloped a LUE-type model EST_PP. The 
EST_PP model was run using high spatial 
resolution meteorological data and a local 
land cover map (Nilson et al., 2012).

In this study we preferred the NPPSAT 
estimates derived directly from the GPP, if 
available, instead of using LAI-based auto-
trophic respiration-based NPPSAT. A simple 
scaling with a uniform ratio was applied to 
avoid errors inherent in LAI estimates and 
combined effects of land cover map-based 
model parameters.

The EST_PP GPP and NTSG MODIS 
GPP were converted to NPP using the ra-
tio of MODIS NPP/GPP=0.55 for mixed 
forests taken from Nilson et al. (2012). This 
factor is greater than that presented by 
Zhao et al. (2005) who show also a smaller 
NPP/GPP for deciduous broadleaf forests 
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compared to evergreen coniferous forests. 
We also tested NPP/GPP ratio weighting 
with the share of coniferous trees accord-
ing to the FIDB, since the share of conifer-
ous stands in our 50 ha sampling units var-
ies. The EST_PP-based NPP/GPP = 0.66 
was used for deciduous broadleaf forests 
and NPP/GPP = 0.45 for evergreen conif-
erous forests (Table 2 in Nilson et al., 2012). 
In total we had fi ve estimates of NPPSAT 
(Table 1) from the period of 2000–2012. 
Average value over the period of each 
NPPSAT estimate was used, since the soil 
fertility-based NPPSPP corresponds to a 
long term average value.

Table 1.  Description of NPP and fAPAR estimates 
used in this study.

Tabel 1.  Taimkatte primaarse produktsiooni ja fAPAR 
hinnangud.

Variable / 
Tunnus

Data source and description / 
Kirjeldus ja viited

NPPSPP Soil potential NPP based on the 
soil map and model of Kõlli (1988) 

NPPFIDB Stemwood volume increment 
scaled by the BCEFi plus an 
estimate of litter and production 
of fi ne roots (2, 3) according to 
tree species composition

NPPNTSG_GPP NTSG MODIS GPP (Zhao et al., 
2011) scaled using 
a 0.55 NPP/GPP ratio

NPPNTSG NTSG MODIS NPP (Zhao et al., 2011)

NPPEST_PP_GPP EST_PP MERIS GPP (Nilson et al., 
2012) scaled using 
a 0.55 NPP/GPP ratio

NPPEST_PP_GPP_sw EST_PP MERIS GPP (Nilson et al., 
2012) scaled using tree species’ 
weighted NPP/GPP ratio

NPPEURO MODIS EURO NPP (Neumann et al., 
2016)

fAPARME mean yearly (from April to 
October) sum of MERIS fAPAR

fAPARMO mean yearly (from April to 
October) sum of MODIS fAPAR

Data analysis
Data analysis was carried out in a grid 
similar to the Climate Modeling Grid used 
for MODIS products (Figure 1). The geo-
graphical coordinate system (latitude, lon-
gitude) was used. In Estonia the size of 
the grid pixels in a Cartesian coordinate 
system is about 1,000 × 500 m. Spatial que-
ries in the GIS were carried out to assign 
mean attribute values from all input data 
sets to the grid pixels. Since the landscape 
in Estonia is heterogeneous with respect to 
the 1,000 × 500 m sampling units and there 
are errors in raster data due to resampling 
in coordinate system transformation, only 
the pixels located at least 1 km inside forest 
patch borders were extracted. This was to 
decrease errors inherent from raster image 
resampling, gridding effects in MODIS im-
ages (Tan et al., 2006) and the infl uence of 
view geometry (Xin et al., 2013).

The FIDB stand map provides spa-
tially continuous information on forests 
and analyses can be carried out using in-
dividual pixels of the MODIS grid (Figure 
1) instead of aggregating the pixels by at 
least 0.066˚ resolution as found appropri-
ate for sample plot-based National Forest 
Inventory data by Moreno et al. (2016). To 
exclude pixels with outdated forest inven-
tory data we used disturbance maps based 
on Landsat images (Urmas Peterson, Tartu 
Observatory, personal communication). 
The Landsat dataset covers the period of 
1987–2013 with about a fi ve-year interval.

For the analysis we extracted pixels 
located more than 30 km away from the 
Baltic Sea coast to avoid artefacts caused 
by the VPD in LUE-type models in the Bal-
tic region (Eenmäe et al., 2011; Lang et al., 
2013). Next, the pixels which had a forest 
inventory data cover less than 75% of their 
area were eliminated from the evaluation. 
Finally, by selecting the pixels with less 
than 10% of the pixel area disturbed since 
2001 and after removing 84 outliers, the 
total number of mixed forest class pixels 
according to the MODIS land cover map 
(MCD12Q1, UMD (Type 2), year 2001) was 
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2,914, which corresponds roughly to 1 ,340 
km2.

The factor cf = 0.5 g C g–1 was used as 
the fraction of carbon in biomass for NPPSPP 
and NPPFIDB which were based on biomass 
estimates.

To analyse NPP and fAPAR estimates 
given in Table (1) we used a linear regres-
sion model

y = a0 + a1ZDAO + a2NPPSPP + a3K+β,            (4)

where ax are parameters, ZDAO indicates the 
global coarse spatial-scale meteorological 
data-caused longitudinal zones (Eenmäe 
et al., 2011) in NTSG MODIS NPPSAT esti-
mates, K (%) is the percent of coniferous 
trees (forests) calculated from FIDB and β 
is the error term. The value ZDAO = 2  was 
used for central Estonia (longitude 24.4˚–
26.5˚ E) and ZDAO = 3 for the Eastern part of 
Estonia. The number of observations was 
2,914.

Results and Discussion

Forest structure in the elementary 
sampling units
When the MODIS grid cells were used as 
observations the interquartile ranges of 
forest age, canopy cover (describes stand 
density) and the share of coniferous forests 
were 37−58 years, 53−70% and 31−69%. In 
most of the ESU-s the mean age of forests 
is less than was in the sample forests used 
for the SPP model, but the difference is not 
large. For this analysis we selected mixed 
forest class pixels from NPPSAT datasets 
according to MODIS land cover map. Ac-
cording to the forest inventory data only 
half of the sample corresponds do the defi -
nition indicating problems in the MODIS 
land cover map.

Ground data-based NPP estimates
Soil data-based NPP estimates were fi rst 
compared to the forest site index of the 
FIDB and NPPFIDB (Figures 2 and 3). As 
expected, the forest site index H100 was 

Figure  1.  A fragment of the MODIS grid showing borders of six sampling units. Each MODIS grid cell was 
assigned information from reference data sets.

Joonis 1.  Igale vaatlusühikuna kasutatud MODIS võrgustiku pikslile arvutati puistute keskmised takseertun-
nused ja keskmine mullaviljakus. Taustal on valevärvi ortofoto.
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positively correlated (0.63, p < 0.001) with 
the NPPSPP showing that the two terrestrial 
data sets are not confl icting. The NPPSPP 
described 28% of the wood volume in-
crement-based NPP estimate in a simple 
linear regression model. The mean value 
of NPPSPP (5.6 tC ha–1 yr–1) was greater (p 
< 0.001) than NPPFIDB (Table 2) and the in-
terquartile range of NPPSPP was also larger 
(2.34 tC ha–1 yr–1). It is not clear how well 
the factor 1.2 covered fi ne root production 
for NPPSPP. The mean value of fi ne root 
production as estimated with model of Liu 
et al. (2004) for the Estonia corresponded to 
1.5 tC ha–1 yr–1 which is similar to the mean 
value for temperate zone as reported by Fi-
nér et al. (2011) who show also a large vari-
ability of the estimate. Another reason for 
the difference is that we accounted only for 
the tree layer in NPPFIDB ignoring forest un-
derstory (regrowth, bushes, grass, mosses 
and lichens). However, in dense forest 
stands the relative share of forest understo-
ry in the total biomass production is small 
(Varik et al., 2009). Discrepancies between 
NPPSPP and NPPFIDB are also caused by the 
underestimation of stem volume incre-
ment by the model used in forest manage-
ment inventory according to a recent vali-

dation on repeated measurements of the 
Estonian National Forest Inventory sample 
plots (Allan Sims 2017, The Estonian Envi-
ronment Agency, personal communica-
tion). The correlation between NPPSPP and 
NPPFIDB could also be improved by using 
stand-specifi c biomass expansion fac-
tors. However, the relationships provide 
enough evidence that NPPSPP can be used 
to evaluate LUE-type model-based NPPSAT 
estimates, since the soil map covers whole 
of Estonia and the SPP model was based on 
biomass sampling data including litter fall.

There was a characteristic lack of fi t 
of the LUE-based NPPSAT along the soil 
fertility gradient (Figure 4a, 4b). To some 
extent the lack of fi t can be related to fi ne 
root production which was assumed to be 
a constant proportion of above-ground 
NPP in NPPSPP. The estimates of fi ne root 
production vary with different methods 
(Yuan & Chen, 2012a). The amount of fi ne 
roots depends on forest age and under-
story (Makkonen & Helmisaari, 2001). In 
fertile middle-aged spruce stands fi ne root 
production can be 13% of the total NPP 
(Ostonen et al., 2005). Fine root production 
tends to increase with soil fertility (Yuan & 
Chen, 2012b), but in less fertile soils plants 

Figure 2. Forest inventory-based site fertility index 
and soil potential NPP.

Joonis 2. Boniteet ja mulla potentsiaalne füto-
produktiivsus.

Figure 3. Wood volume increment-based NPP of 
trees and soil potential NPP.

Joonis 3. Tüvepuidu juurdekasvu järgi hinnatud 
puistu NPP ja mulla potentsiaalne füto-
produktiivsus.
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have to invest relatively more of the to-
tal NPP in their root system (Vanninen & 
Mäkelä, 1999). However, fi ne roots cannot 
explain the about three times smaller inter-
quartile range of LUE-based NPPSAT esti-
mates compared to NPPSPP (Table 2).

The infl uence of applied NPP/GPP ratio 
on the NPPSAT estimates
The small variability in the LUE-based 
NPPSAT of the sample can be caused to some 
extent by the constant NPP to GPP ratio that 
was used to calculate the NPP from GPP. 
This approach is similar to the production 
of global-scale LUE-based NPP estimates 
where one set of model parameters is used 
for the mixed forest class. In mixed forests, 
however, the NPP/GPP is related to the 
species composition and mainly to the ra-
tio of evergreen coniferous and deciduous 
broadleaf tree species. Based on MODIS 
GPP and NPP estimates Zhao et al. (2005) 
give NPP/GPP = 0.35 for deciduous broad-
leaf forests and 0.54 for evergreen conifer-
ous forests. DeLucia et al. (2007) show that 

in the temperate climate zone the NPP/GPP 
ratio is just the opposite. The NPP/GPP ra-
tio depends also on stand age (Mäkelä & 
Valentine, 2001; Tang et al., 2014), however, 
considering the mean stand size of 1.3 ha 
in Estonia (Raudsaar et al., 2016) and the 
50 ha observation units used in this study 
the age-dependent effects are probably not 
prevailing over the tree species-dependent 
infl uence on the NPP/GPP.

The share of coniferous forests was sig-
nifi cant in the model (Eq. 4). By excluding 
K from the model (Eq. 4) the variability 
described (R2) by the constant NPP/GPP-
based NPPEST_PP_GPP decreased from 0.30 to 
0.19. When K was used as the weight to 
convert the EST_PP GPP to NPPEST_PP_GPP_sw 
the model (Eq. 4) excluding K still described 
27% of variability in NPPEST_PP_GPP_sw and also 
the range of NPP values increased (Table 
2). The reason here is negative correlation 
(–0.47, p < 0.001) between the share of ever-
green coniferous forests in our individual 
observations and soil potential NPP. Poor 
soils in Estonia are usually dominated by 

Table 2.  Parameter estimates for the multiple linear regression model Equation (4). Dependent variables 
are described in Table (1). The IQR is the interquartile range of the NPP estimates. Statistically 
non-signifi cant values are in italics.

Tabel 2.  Regressioonmudeli võrrandi (4) parameetrite hinnangud. Statistiliselt mitteolulised väärtused on 
kursiivis. Funktsioontunnused on kirjeldatud tabelis (1). IQR on kvartiilhälve.

Dependent variable / 
Sõltuv muutuja

Mean / Keskväärtus
(kg C ha-1 yr-1)

IQR Model parameters / Mudel parameetrid

a0 a1 a2 a3 R2

NPPFIDB 4020 1124 235* 293 0.29000 –2.17 0.32

NPPNTSG_GPP 5512 362 5869 –215 0.00570 2.97 0.21

NPPNTSG 5451 491 6171 –371 –0.00630 4.88 0.43

NPPNTSG 5451 491 5234 – –0.01100 5.56 0.16

NPPEST_PP_GPP 4429 171 4358 20
0.02200

–2.06   
0.30**

NPPEST_PP_GPP_sw 4472 749 3306 85 0.17000 – 0.27

NPPEURO 5260 302 4878 107 –0.02300 4.91 0.39

fAPARME – – 175 –1.35 0.00049 –0.042 0.14

fAPARMO – – 154 1.68 0.00004 0.032 0.03

* the NPPFIDB for parameter estimation was without the litter and fi ne roots to avoid artifi cial correlation 
with the species composition variable (K) used also as weight for litter model equations (2, 3).

** R2 = 0.19 when the share of coniferous forests was excluded from the model argument list.
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Scots pine except in lowland fens where 
black alder and downy birch are the pre-
vailing species. With the increase in soil fer-
tility the share of Norway spruce increases 
on account of Scots pine and deciduous 
dominated mixed forests are in majority 
(Adermann, 2009). A weak negative corre-
lation (–0.31, p < 0.001) exi sts also between 
the share of coniferous forests and stem vol-
ume increment estimates in the pixels.

Evaluation of the NPPSAT estimates
By using the parameters from Table (2) of 
the model Eq. (4) for NPPFIDB as a reference 
the LUE-based NPP estimates can be anal-
ysed. Similarly to NPPFIDB the EST_PP NPP 

estimates had a positive correlation with 
the longitude of pixel position as well as 
with the SPP, but correlation with K was 
negative. The NPP estimate (NPPNTSG) 
from the standard global product had a 
negative correlation with the pixel posi-
tion longitude which is a similar relation-
ship to that found by Eenmäe et al. (2011) 
for the MODIS product. The correlation of 
NPPNTSG with NPPSPP was not signifi cant 
and correlation between NPPNTSG and K 
was positive which is the opposite of the 
correlation found with NPPFIDB. By exclud-
ing the variable ZDAO from the model, only 
16% of variation of NPPNTSG was described 
compared to the initial 43% (Table 2).

Figure 4.  LUE-based NPPSAT estimates (a, b; see Table 1) depend more on fAPAR (c, d) than on the potential 
NPP of the soil. Numeric symbols correspond to the proportion of evergreen coniferous forests, 
“D” stands for 100% deciduous broadleaf forest class, and symbol size corresponds to the number 
of pixels.

Joonis 4.  LUE-mudelil põhinevad NPP hinnangud ei reageeri oluliselt mulla viljakusele Eestis (a, b), vaid neid 
mõjutab pigem mudeli sisendis olev fAPAR (c, d). Numbersümbolid näitavad okaspuude osakaalu, 
„D“ tähistab 100% lehtpuumetsa klassi. Sümbolid on skaleeritud vastavalt pikslite arvule klassis. 

M. Lang et al.

2000 4000 6000 8000

30
00

40
00

50
00

60
00

70
00

ES
T_

PP
 G

PP
*0

.5
5 (

kg
C 

ha
-1

yr
-1

) 1:1

a)

2000 4000 6000 8000

30
00

40
00

50
00

60
00

70
00

Potential NPP of soil (kgC ha-1 yr-1)

NT
SG

 M
OD

IS
 G

PP
*0

.5
5 (

kg
C 

ha
-1

yr
-1

)

1:1

b)

4000 5000 6000 7000

16
5

17
0

17
5

18
0

Su
m

 o
f 

M
ER

IS
 f

AP
AR

 p
er

 y
ea

r

Zone 2 (Central Estonia)
Zone 3 (East Estonia)

c)

4000 5000 6000 7000

15
5

16
0

16
5

17
0

Potential NPP of soil (kgC ha-1yr-1)

Su
m

 o
f 

M
OD

IS
 f

AP
AR

 p
er

 y
ea

r

Zone 2 (Central Estonia)
Zone 3 (East Estonia)

d)

Potential NPP of soil (kgC ha-1 yr-1) Potential NPP of soil (kgC ha-1yr-1)



59

The MODIS data and downscaled meteo-
rological data-based NPPEURO had a posi-
tive correlation with the pixel location lon-
gitude similarly to NPPFIDB which indicates 
successful use of European downscaled 
climate data by Neumann et al. (2016). Al-
though the relationship with NPPSPP was 
negative and signifi cant in the model, 
NPPSPP described only 2% of the variation 
in NPPEURO. For comparison: when only K 
was included in the model (Eq. 4) still 32% 
of variation in NPPEURO was described, but 
the correlation was positive, i.e. opposite 
to the correlation between NPPFIDB and 
NPPSPP and also between NPPSPP and EST_
PP-based NPP. NPPEURO was calculated 
from the GPP by subtracting autotrophic 
respiration and growth losses based on the 
LAI (Neumann et al., 2016). The problems 
must therefore be looked for in LAI esti-
mates or in fAPAR which strongly corre-
lated (R2 > 0.43) with the derived NPPSAT in 
all the corresponding Envisat MERIS and 
Terra MODIS data-based estimates.

The estimates of the fraction of absorbed 
photosynthetically active radiation
The model (Eq. 4) described 14% of fAPARME 
but only 3% of fAPARMO variability (Table 
2). The relationship between NPPSPP and 
fAPARME was close to linear, but with 
fAPARMO the relationship was nonlinear 
with the shape somewhat depending on the 
proportion of evergreen coniferous forests 
in the pixels (Figure 4c, 4d). It also appears 
that fAPAR from MERIS and MODIS have 
the opposite correlation with pixel location 
longitude (Table 2) and also with the share 
of evergreen coniferous forests in the pixels. 
However, the models describe only a small 
part of fAPAR variability and a fAPAR tar-
geted study based on an independent ref-
erence measurement of fAPAR is required 
to explain the co-relations. For example, 
Kuusk et al. (2016) found that landscape al-
bedo from MODIS data is underestimated 
due to small clouds which can have similar 
effect on the fAPAR measured using coarse 
spatial resolution sensors.

Land cover maps as the source of errors
D’Odorico et al. (2014) found that the differ-
ences between MODIS and MERIS fAPAR 
products may be related to land cover 
maps used for determining radiative trans-
fer model parameters from look-up tables 
or the assumptions made for the estima-
tion procedure. Errors in land cover types 
infl uence GPP estimates through fAPAR 
estimates. Wrong light use effi ciency fac-
tors and growth limiting functions infl u-
ence also NPP estimates. For example, for 
NPPNTSG and MODIS fAPAR different land 
cover maps are used – Type 2 and Type 3. 

We extracted a set of pixels with a big 
productivity potential (NPPSPP > 5 t C ha–1 
yr–1) and a small yearly sum of fAPARMO 
and found that the mixed forests accord-
ing to the MODIS Type 2 land cover map 
belong to the class “Evergreen Needleleaf 
forest” in the Type 3 land cover map and 
according to the ground truth data from 
the FIDB there are deciduous broadleaf-
dominated forests. With another query a 
set of pixels with the biggest fAPARMO was 
extracted along the NPPSPP range. In the 
Type 3 land cover map the pixels belonged 
to the “Evergreen Broadleaf forest” class 
which does not exist in Estonia. Accord-
ing to orthophotos and the FIDB the pix-
els were from pine stands in transitional 
sphagnum bogs or coniferous dominated 
forests. There is no mixed forest class in the 
Type 3 land cover map. The 2,914 mixed 
forest class pixels in the Type 2 land cover 
map were distributed between the “Ever-
green Broadleaf forest” (172), “Deciduous 
Broadleaf forest” (454) and “Evergreen 
Needleleaf forest” (2,288) classes in the 
Type 3 land cover map. While the EST_PP 
NPP estimates were based on local land 
cover maps and were in agreement with 
the FIDB data and SPP, similar improve-
ments can be expected in the MODIS 
GPP|NPP when thematically more accu-
rate land cover data is used.

Assessment of MODIS NPP algorithm-based estimates using soil fertility and forest inventory data in mixed hemiboreal forests
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Conclusions

The Estonian soil map and forest manage-
ment inventory database provided valu-
able information for evaluation of satel-
lite data-based NPP estimates. The two 
terrestrial estimates showed smaller NPP 
for poor soils and greater NPP for fertile 
soils. This was in contrast to the LUE-type 
model estimated NPP that had mean value 
similar to the terrestrial estimates, whereas 
almost no reaction to change in soil fertility 
in Estonia. The main reason for the lack of 
fi t was apparently the estimate of fraction 
of absorbed photosynthetically active ra-
diation which is the main input variable of 
LUE-type NPP models. A validation of the 
Type 2 land cover map showed that clas-
sifi cation of 50% of the mixed forest class 
pixels is not correct. Land cover maps are 
used in the estimation of fAPAR and NPP. 
Improved land cover maps following the 
classifi cation schema of the current global 
maps can be constructed regionally by local 
institutions that have access to high resolu-
tion data (both thematically and spatially). 
Subsets of the global land cover maps could 
then be updated to obtain more consistent 
fAPAR, GPP and NPP estimates locally and 
globally. We also see a need for improved 
methods for the fAPAR estimation for 
hemiboreal mixed forests.
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Kiirguse kasutamise efektiivsuse põhimõttele tuginevate 
taimkatte neto-produktsiooni hinnangute analüüs muldkatte 
fütoproduktiivsuse mudeli abil

Mait Lang, Raimo Kõlli, Maris Nikopensius, Tiit Nilson, Mathias Neumann ja 
Adam Moreno

Kokkuvõte

Taimkatte neto-produktsiooni (NPP) pi-
dev seire on oluline nii elukeskkonda mõ-
ju tavate tegurite kui ka muldkatte produk-
tiivsuse jälgimiseks. Metsade fütoprodukt-
siooni saab hinnata statistilise valimhin-
nanguga kogutud andmeid kasutades 
(sta tistiline metsainventuur) (Tomppo et 
al., 2010; GFOI, 2013; Bontemps & Bou-
riaud, 2014) või teisalt satelliitkaugseire 
abil mõõdetud fotosünteetiliselt aktiivse 
kiirguse suhtelise neeldunud osa (fAPAR), 
valguse kasutamise tõhususe (LUE) ja fo-
tosünteesi piiravate tegurite (veeauru de-
fi tsiit ja õhutemperatuur) kaudu (Zhao et 
al., 2005). Uuringu eesmärgiks oli kasutada 
Eesti mullakaardi infot satelliitseirele tugi-
nevate NPP hinnangute analüüsimiseks. 
Töös kasutati 2914 vaatlusala, mis vastasid 
ristkoordinaatide süsteemis 500 × 1000 m 
suurustele MODIS NPP produkti pikslitele 
(joonis 1) ja olid 1) üle 30 km Läänemere 
rannikust sisemaa suunas, 2) kaetud vähe-
malt 75% ulatuses metsaeraldiste andme-
tega, 3) alla 10% pindalast mõjutatud tuge-
vatest häiringutest alates 2001. aastast, ja 4) 
metsandike piiridest 1 km seespool.

Mullakaardi andmebaasi igale mulla-
kontuurile arvutati Kõlli (1988) töös jooni-
sel 3.2 esitatud mudeli abil taimkatte maa-
pealse osa potentsiaalse fütoproduktiivsu-
se (SPP) hinnang. Gleimuldadel kasutati 
turba tüsedusest sõltuvat korrektsiooni (1) 
ja lisaks rakendati peenliiva ja liiva lõimi-
sega leetjatel gleimuldadel faktorit 0,85. 
Taimkatte maa-aluse osa NPP hinnang li-
sati faktori 1,2 abil, mis vastab keskmiselt 
parasvöötme keskealistele ja vanematele 
metsadele IPCC (2006) järgi ja saadi mulla 
viljakusele tuginev NPPSPP. Metsaregistri 

andmetest võetud puidu juurdekasvul 
põhineva NPP hinnangu (NPPFIDB) arvuta-
miseks kasutati biomassi laiendustegurit 
BCEFi = 0,72 (IPCC 2006) ja lisati ka varise 
hinnangud (2, 3). Peenjuurte juurdekasvu 
hinnang võeti võrdseks varise toodangu-
ga. Mullakaardi ja metsaregistri andmetele 
tuginevad NPP hinnangud olid omavahel 
loogilises kooskõlas (joonised 2 ja 3).

Andmestike (tabel 1) analüüsiks kasu-
tati regressioonmudelit (4), mille argumen-
tideks olid Eenmäe et al. (2011) kirjeldatud 
Eesti territoriaalsed tsoonid (ZDAO) (teki-
vad globaalsetes NPP hinnangutes väikese 
ruumilahutusega ilmastikuandmete tõttu), 
NPPSPP ja metsaregistri andmetest arvuta-
tud okasmetsa osakaal K (%). Mudeli (4) 
parameetrite hinnangutest (tabel 2) selgus, 
et NPPFIDB suureneb Eestis läänest itta nagu 
NPPSPP ja kahaneb koos okaspuistute osa-
kaalu kasvuga, sest Eestis domineerivad 
väheviljakatel muldadel enamasti männi-
kud (madalsoodes siiski ka lehtpuupuis-
tud). Kõikide LUE-tüüpi mudelite puhul 
ilmnes selgelt hinnangute oluliselt kitsam 
haare IQR (tabel 2) võrreldes mulla po-
tentsiaalse fütoproduktiivsusega. Globaal-
setele ilmaandmetele tuginevate NPPNTSG 
ja NPPNTSG_GPP seos NPPSPP väärtustega oli 
äraspidine ja tähtsaimaks teguriks osutus 
hoopis ZDAO. Ruumiliselt parema lahutu-
sega ilmaandmete kasutamise tulemuse-
na Neumann et al. (2016) saadud NPPEURO 
kasvas läänest ida suunas nagu ka NPPSPP. 
NPPEURO puhul oli NPP aga saadud lehe-
pinnaindeksiga seotud kasvu- ning säili-
tushingamise arvestamise kaudu fotosün-
teesi üldisest produktist (GPP). Arvatavas-
ti nende lisaparameetrite vigade tõttu jäi 
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NPPEURO ja NPPSPP seos siiski negatiivseks. 
Kõige sisukama kooskõla mulla fütopro-
duktiivsusega andsid Eesti andmetel põ-
hinevale maakattekaardile ja kõrge ruu-
milise lahutusega ilmaandmetele tuginev 
Nilson et al. (2012) töös avaldatud NPP 
hinnangud (tabel 1), mille sisendiks kasu-
tatud fAPAR-i ja NPPSPP vahel oli samuti 
positiivne korrelatsioon (joonis 4, tabel 2). 

Kokkuvõtteks järeldati, et rutiinselt toode-
tavate üleilmsete NPP hinnangute vigade 
vähendamiseks tuleks võtta kasutusele 
lokaalselt parandatud maakattekaardid 
ja suurendada fAPAR-i mõõtmistäpsust. 
Eesti mullakaart ja metsade takseerkir-
jeldused osutusid unikaalseteks referent-
sandmestikeks satelliitseirele tuginevate 
NPP hinnangute headuse analüüsimisel.
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