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Selecting site characteristics at different spatial 
and thematic scales for shrubby cinquefoil 
(Potentilla fruticosa L.) distribution mapping
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Abstract. The largest natural population of shrubby cinquefoil (Potentilla fruticosa) in 
the Baltic States was observed in the fi eld to reveal the scale-dependent explanatory 
value of site characteristics for subsequent spatial distribution modelling of the spe-
cies. About 700 km was crossed during fi eld observations in 2008–2014. Thinning of 
the raw fi eld records to ensure a distance of at least 50 metres between each point 
yielded 1459 presences and 7327 absences. These occurrence data were related to pres-
ent and historical land cover, soil, elevation, human population density, the propor-
tion of presence sites, and P. fruticosa mean coverage in the neighbourhood. Boosted 
classifi cation tree models were used to compare the value of 60 individual site features 
at thematically and spatially different levels of generalization as indicators of the spe-
cies’ presence or absence. P. fruticosa presence is signifi cantly non-random regard-
ing most of the studied site features but only a few of these are valuable predictors. 
The proportion of presences in the neighbourhood had the highest indicative value. 
P. fruticosa occurrence also coincides with moist thin calcareous soils according to the 
soil map, with larger scrubland patches according to the topographical database, and 
with tussock areas according to a topographical map from the 1930s. The explanatory 
value of nominal site characteristics primarily drops when the most indicative cat-
egory is merged with other classes to form a more general category. Site characteristics 
calculated at the observation point are not always the most effective predictors for 
P. fruticosa occurrence – features of the neighbourhood are related to the occurrence as 
well. The study area was classifi ed into: confi rmed absence area, unclear presence/ab-
sence area and probable presence area. Subsequent distribution modelling in the un-
clear area should be targeted on a species presence/absence, while abundance could 
be the priority within the probable presence area.
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Introduction

The general approaches for species and 
habitat distribution mapping can be out-
lined as 1) direct fi eld observations, 2) 
remote detection by remote sensing and 
telemetry techniques, or 3) indirect esti-
mation by experts, using indicators from 

statistical models or from similarity-based 
reasoning. Direct observation by an expert 
can be reliable, but covering any larger area 
by direct observation is labour-intensive. 
Therefore, indirect estimations are inevita-
bly required to create a detailed distribu-
tion map for a larger area. Site characteris-
tics related to the occurrence of the target 



18

species and its potential habitat, are used 
to estimate the likely absence, presence or 
abundance of the species.

For the application of numerical meth-
ods, detailed formal elementary features 
(e.g. site elevation above sea level or land 
cover/land use type according to a given 
classifi cation) are extracted from data lay-
ers representing environmental conditions 
in the study area. Among these, neigh-
bourhood effects, i.e. features representing 
the site neighbourhood (e.g. proportion 
of suitable habitat or the existence of ear-
lier presence records of the species within 
a certain radius), have confi rmed to be 
equally useful as the focal feature values 
(Mack & Harper, 1977; Guisan & Thuiller, 
2005; Latimer et al., 2006).

The selection of the appropriate spatial 
and thematic resolution is one of the cen-
tral issues in land cover and habitat map-
ping using remote sensing data (Ju et al., 
2005) and also in landscape ecology (Turn-
er et al., 1989; Wiens, 1989) and in distri-
bution mapping. The predictive ability of 
spatial models depends on scale, as species 
expectedly have characteristic scales of re-
sponse to their environment (Thuiller et al., 
2003; Holland et al., 2004; Graf et al., 2005; 
Boscolo & Metzger, 2009). Vale et al. (2014) 
found that fi ne resolution models are more 
accurate at selecting marginal habitats, and 
distribution models with coarse resolution 
tended to overestimate species distribution 
at the edge of distribution area. However, 
the limited availability of high resolution 
data precludes its frequent use. As a rule, 
abiotic variables (e.g. climate) tend to be 
more important in continental or global 
models, while variables representing habi-
tat and biotic interactions can be more im-
portant at fi ner spatial scales (Boulangeat 
et al., 2012).

Scale has spatial and thematic aspects. 
Spatial scale is described by grain size and 
spatial extent (O’Neill et al., 1986; Wiens, 
1989). Grain is the resolution or minimum 
mapping unit of the data, while extent is 
the size of a mapped area. In addition, local 

extent has been defi ned as the radius or 
area of a kernel around each focal point 
(Thompson & McGarigal, 2002), whereas 
distance-dependent neighbourhood effects 
are related to scale by the neighbourhood 
extent. Thematic resolution is often lim-
ited by the available datasets. In the case 
of a nominal variable, the thematic resolu-
tion refers to the level of detail in the cat-
egories (categorical scale); in the case of a 
continuous variable, the thematic scale is 
expressed by measurement precision. The 
reliability of spatial predictions affected by 
thematic resolution has been paid much 
less attention than the effect of the spatial 
scale (Liang et al., 2013; Zhou et al., 2014).

By combining different data layers: 
their spatial scale and thematic generaliza-
tion, kernels covering different extent from 
the surrounding area, and statistics calcu-
lated locally from these kernels, the num-
ber of possible numerical features for any 
geographical location approaches infi nity. 
However, it is not reasonable to include 
excessive number of features to prediction 
models because since irrelevant explana-
tory variables add noise to the predictions 
and increase the risk of model over-fi tting 
(Remm, 2004; Dormann, 2011; Ficetola et 
al., 2014), and also because the pre-pro-
cessing of each characteristic to a numeri-
cal format is a time-consuming task. It is 
not always easy to identify a priori how 
many (and which) site features are actually 
relevant and should be used in predictive 
models.

In this experiment, comprehensive fi eld 
observation data of shrubby cinquefoil 
Potentilla fruticosa were used to fi nd out 
which site characteristics in which spatial 
and thematic scale are the best predictors 
of the species’ presence and absence in the 
study region. These spatial features should 
be involved to distribution models in sub-
sequent studies as explanatory factors, ap-
plied for creating detailed full-cover pre-
dictive distribution maps, and considered 
when planning protection measures for the 
species.

K. Remm
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Material and Methods

Study area
The study area covering 819 km² is located 
in north-western Estonia and is bounded 
by the Baltic Sea to the north. The capital of 
Estonia, Tallinn, lies on its eastern bound-
ary (Figure 1). 

Figure 1.  Location of the study area (black rect-
angle).

Joonis 1.  Uurimisala (must ristkülik) paiknemine.

The elevation above sea level (asl) of natural 
ground in the study area is up to 60 m. The 
most frequent soil types according to the 1: 
10 000 soil map are Sapric Histosol (96 km²), 
Mollic Gleysol (94 km²), Gleysol (78 km²), 
Calcaric Regosol (75 km²), Molli-Histic 
Gleysol (43 km²) and Endogleyic Cambisol 
(43 km²). According to the Estonian Na-
tional Topographic Database (ENTD), for-
est covers 369 km², cultivated land 176 km², 
natural grassland 103 km², private yards 44 
km², unmanaged open land (in this region 
mainly alvar grassland) 34 km², scrubland 
13 km² and inland waters 8 km².

The study area contains the Vääna 
Land scape Reserve (4.09 km²), created to 
protect, inter alia, the largest natural pop-
ulation of P. fruticosa in the Baltic States. 
Similar alvar sites can be found elsewhere 
in western and northern Estonia, but the 
species does not grow there.

Shrubby cinquefoil habitat demands
Shrubby cinquefoil (Potentilla fruticosa L. 
syn. Dasiphora fruticosa (L.) Rydb.) (Rosa-
ceae) is a perennial fl owering shrub mainly 
known as a decorative cultivar. Its natu-
ral populations are widespread in Asian 
mountains and in North America. Its dis-
tribution in Europe is sporadic (Elkington 
& Woodell, 1963). Shrubby cinquefoil is a 
protected plant in Estonia, where the only 
sustainable population is between Tallinn, 
Keila and Paldiski. Here, mainly on alvar 
grasslands situated on Middle and Upper 
Ordovician limestone, grows the largest 
natural population in the Baltic States.

P. fruticosa prefers open sites, although 
resists moderately dense scrub and can 
survive for decades under a young for-
est canopy. However, shade is considered 
the main limiting factor (Gorchakovskiy, 
1960; Elkington & Woodell, 1963). Moder-
ate grazing seems to be benefi cial for the 
species, suppressing potential competi-
tors – lush herbs and bushes. The species’ 
attitude to soil characteristics is not clear. 
According to current knowledge, at least 
northern European populations grow 
mainly in moist base-rich soil, although 
the plant is tolerant of slightly acid soils, 
drought and temporal fl ooding (Gorcha-
kovskiy, 1960; Elkington & Woodell, 1963; 
Roland & Smith, 1969; Reier & Leht, 1999; 
Lonati et al., 2014).

Data and methods
The methodological framework of this 
study consists of the following stages. The 
relations between data pre-processing, 
data processing stages and intermediate 
results are given in the data fl ow diagram 
(Figure 2):
1. Field observation of the P. fruticosa 

cover age at a possibly large number of 
locations.

2. Evening out the observation density 
by thinning out closely neighbouring 
locations.

3. Calculating site features for the retained 
locations.

Selecting site characteristics at different spatial and thematic scales for shrubby cinquefoil (Potentilla fruticosa L.) distribution mapping
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Figure 2.  Connections between calculated items (rectangles) and methods used in this investigation. See 
text for explanation.

J oonis 2.  Seosed arvutustulemuste (ristkülikud) ja toimingute vahel. 

K. Remm
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4. Relating single site features to the 
species presence/absence to fi nd the 
best predictors.

5. Estimating intervals of feature values 
that exclude the species occurrence for 
certain.

6. Estimating intervals of feature values 
that, in most cases, indicate the species 
occurrence.

7. The study area was classifi ed into three 
categories according to the critical 
values of the most indicative site 
features: 1) area where site features 
clearly exclude the species presence; 
2) area, where the species occurrence 
is probable; 3) area where the species 
occurrence is unclear.

Field observations
Field observations were made when P. 
fruticosa was in bloom in the summers of 
2008–2014 by conducting walking tours 
across the terrain. The sites for fi eld ob-
servations were dynamically planned ac-
cording to the accumulating experience 
on P. fruticosa distribution and its habitat 
preferences. The survey was focused on 
sites that should be relatively suitable for 
the species, but where it had not been re-
corded. Locations characterized by site fea-
tures excluding the species (e.g. currently 
cultivated fi elds and the south-west part 
of the study area) were paid less attention. 
Dynamic planning of observation tracks 
enabled to increase the species detection 
to the sampling effort ratio and to prevent 
collecting superfl uous amount of absence 
data, which is inevitable in case of regular 
and random sampling.

The coordinates of P. fruticosa presence 
locations, the movement track, and select-
ed typical absence locations were recorded 
using a Garmin Vista HC + GPS receiver. 
The total length of the observation tracks 
during 82 observation days was 700 km. 
The coordinates of a presence location 
were measured when standing on a shrub-
by cinquefoil bush; the species was not vis-
ible within about 20 m in actively selected 

typical absence locations. The relative area 
covered by the species at each presence site 
was recorded but not used in this study as 
a dependent variable.

The density of observations was not 
equal throughout the study area, since the 
areal proportion of habitat types, ground 
visibility, terrain roughness, restricted ar-
eas and probability of species occurrence 
were also considered when planning fi eld 
tours and moving across terrain. Private 
and industrial yards (43 km²), a gunnery-
practice ground (7 km²), and the territory of 
a military air fi eld (9 km²) were the largest 
restricted parts of the study area. Private 
lands were generally not an obstacle for the 
fi eld survey, as it is permitted to access un-
restricted private property in Estonia, un-
less the owner forbids it. Field movement 
was not restricted to tracks, since following 
roads and paths causes unequal likelihood 
of locations to be observed (sampling bias) 
(Kadmon et al., 2004; Albert et al., 2010). 
Moreover – intentional dodges were fre-
quent when moving along a vehicle track.

Thinning
The raw fi eld data contained 58 842 track 
points automatically recorded by the GPS 
receiver and 5687 intentionally recorded 
observations (2854 presence and 2833 ab-
sence sites) in locations considered typical 
by the observer. A method for reducing 
the effect of uneven sampling, removing 
redundant points and evening the obser-
vation density is spatial thinning (Remm et 
al., 2009; Boria et al., 2014). The raw records 
were thinned using an online spatial data 
calculator (SDC) (Remm & Kelviste, 2014) 
to ensure at least 50 m distance between 
each accepted location in order to even 
out the density of observations, reduce the 
share of automatically recorded absences, 
and avoid spatially close records. Aiello-
Lammens et al. (2015) published a thinning 
function spThin in R. Thinning in the SDC 
differs from it by: 1) enabling different 
source and target points, 2) enabling dif-
ferent types of input (including 1D, 2D and 

Selecting site characteristics at different spatial and thematic scales for shrubby cinquefoil (Potentilla fruticosa L.) distribution mapping
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3D), 3) by starting from the fi rst point in a 
list, not from  the location with the greatest 
number of neighbouring occurrences.

The thinning in the SDC was a step-by-
step process implemented in the following 
order:
1. Removal of intentionally recorded ab-

sence sites less than 50 m from presence 
sites.

2. Thinning of retained absence sites to 
ensure intervals of at least 50 m.

3. Removal of track points less than 50 m 
from the retained absence sites.

4. Removal of track points less than 50 m 
from the presence sites.

5. Thinning of retained absence points to 
ensure intervals of at least 50 m.

6. Thinning of presence sites to ensure 
intervals of at least 50 m.

The retained intentionally observed and 
automatically recorded absence sites gave 
a total of 8317 absence exemplars, which, 
together with the 1480 retained presence 
sites (total = 9797), were used in the calcu-
lations (Figure 3). The species cover esti-
mations in the thinned locations are freely 
available as an archived dataset (Remm, 
2016). The dataset advantages are the re-
corded absences; all observations made 
during the same season, during a relatively 
short period of years and predominantly 
by one person; data thinning reduced 
pseudoreplication and disproportion be-
tween the number of recorded presence 
and absence locations.
The mean density of thinned records per 
terrestrial study area is 0.12 points per 
hectare (0.09 in forests and 0.08 on fi elds), 
while being higher in the typical P. fruti-
cosa habitats: scrubland 0.44, natural grass-
land 0.27 and in open swampy ground 0.24 
records per hectare.

Data layers
Areal categories from the Estonian Na-
tional Topographic Database (ENTD) were 
used to describe present land cover and 
land use. The spatial resolution of this da-
tabase corresponds to a 1: 10 000 map; data 

were from the year 2013. The areal cat-
egories used at different levels of thematic 
generalization are listed in the Supplement 
(Remm, 2015). The most detailed level in-
cludes 48 categories, the medium level, 15 
and the most generalized level, 6 catego-
ries.

In addition to the present land cover, 
the main areal categories from a 1: 50 000 
topographical map surveyed in the second 
half of the 1930s were included, since the 
present P. fruticosa distribution is presum-
ably related to previous land use. This his-
torical map is more generalized than the 
ENTD data; land cover and land use is fl ex-
ibly depicted by different combinations of 
topographical symbols, which were classi-
fi ed into 18 categories at the most detailed 
level. These categories were digitized 
from scanned map sheets as vector poly-
gons. The meaning of categories included 
from the historical topographical map and 
their number does not correspond to the 
classifi cation used in the ENTD, since the 
scale and mapping principles of these data 
sources do not match. E.g. the historical 
map includes a special symbol for tussocks, 
used either as a separate areal category or 
in combination with grassland, marshland 
or shrub symbols. Unfortunately, tussock 
areas are not represented by any single 
ENTD land cover category nor by a combi-
nation of categories.

Soil data were obtained from the Es-
tonian 1: 10 000 soil map and land eleva-
tion from digital elevation models derived 
from detailed LiDAR measured raw data. 
The soil types with their names according 
the original map and the closest World 
Reference Base for Soil Resources (WRB) 
taxonomic unit are listed in the Supple-
ment (Remm, 2015), since categories used 
in the Estonian soil map are not directly 
transferable to the WRB soil system. The 
above-mentioned land cover, soil and el-
evation data were obtained from the Esto-
nian Land Board, and human population 
data from Statistics Estonia (Ministry of Fi-
nance). The human population data layer 

K. Remm
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had a 1000 m grid interval, the other layers 
were rasterized to 10 m grids.

Site features
The recorded sites were described using 
60 site characteristics (features) calculated 
from data layers representing land cover, 
soil and terrain properties, human popu-
lation density and also P. fruticosa obser-
vation results from the vicinity (Table 1). 
A site feature was defi ned by: 1) the data 
layer and its thematic detail (resolution), 
2) spatial scale, as the radius limiting the 
inclusion extent of the values, 3) a statistic 
calculated from the values within the ra-
dius in the layer.

The values of the site features at the 
thinned locations were calculated us-
ing the SDC. Radii of 0 (local value), 100, 
200, 500 and 1000 m were used to derive 

features corresponding to different spa-
tial scales, except for the human density 
layer, which has an original grid interval 
of 1 km. The statistics calculated within a 
given radius were the mean of values in 
a numerical layer and the most frequent 
(modal) category in the case of a nominal 
data layer. For local features, the closest 
value was read from the data layer. Land 
elevation was included as the mean eleva-
tion and as the relative elevation compared 
to the mean in a given radius. Different 
thematic resolutions were represented by 
merging initial detailed categories into a 
smaller number of more generalized units, 
as given in Remm (2015). 

The proportion of presences among re-
cords from the neighbourhood represents 
spatial continuity of the distribution (auto-
covariance). The proportion of presences 

Figure 3.  P. fruticosa generalized records from this investigation (presences fi lled, absences empty circles). 
One circle represents about 6 thinned locations.

Joonis 3.  Põõsasmarana vaatluskohad üldistatud kujul. Täidetud ringide kohas on leiukohad, tühjade kohas 
puudumiskohad. Üks ring joonisel vastab keskmiselt kuuele harvendatud vaatluskohale.

Selecting site characteristics at different spatial and thematic scales for shrubby cinquefoil (Potentilla fruticosa L.) distribution mapping
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per number of records applied within dif-
ferent radii, instead of the raw number of 
presences, was used to reduce the effect 
of variable survey intensity. The focal re-
cord was not included when calculating 
the proportion of presences in the neigh-
bourhood of an observation site. The use 
of proportions instead of the number of 
presences minimizes the effect of different 
observation density

Estimating predictive values of features
The explanatory value of site features was 
compared by: 1) looking for feature values 
that directly indicate P. fruticosa presence 
or absence, 2) by the correctness of predic-
tions using this single variable (Figure 2).

Feature values excluding species pres-
ence or excluding absence were tested for 

both categorical and numerical features. 
For categorical features, this is simple ex-
amination of presence and absence fre-
quency in the categories. In the case of nu-
merical features, value intervals including 
at least 1% of observations (100 cases) and 
containing no recorded presences were con-
sidered as excluding species presence. The 
opposite is an absence excluding interval, 
which should include ≥ 1% of cases and no 
absences. For fi nding the excluding inter-
vals, a gradual search algorithm is available 
in the SDC (Regions of frequency → Code).

The algorithm works as follows:
1. Sort cases according to values.
2. Mark the fi rst case in each group of 

equal values.
3. Check correspondence to pre-deter-

mined proportion and frequency crite-

Table 1.  Data layers and site features calculated at different thematic and spatial resolutions. PLC – pres-
ent land cover, HLC – historical land cover, PP – proportion of presence locations among observed 
locations, HPD – human population density per km², LV – local value, RV – relative value (com-
pared to the mean), N – number of categories, R – radius in metres.

Tabel 1.  Andmekihid ja nendest arvutatud kohatunnused erinevas temaatilises ja ruumilises mõõtkavas. PLC – 
kaasaegne maakate, HLC – ajalooline maakate, soil – muld, elevation – maapinna kõrgus, PP – 
leiukohtade osa vaatluskohtadest, HPD – alaliste elanike arv ruutkilomeetril, LV – lokaalväärtus, 
RV – suhteline väärtus võrreldes keskmisega, N – kategooriate arv, mode – mood, mean – keskmine, 
R – raadius meetrites.

Layer
Kiht

N Statistic
Statistik

R Layer
Kiht

N Statistic
Statistik

R Layer
Kiht

N Statistic
Statistik

R Layer
Kiht

Statistic
Statistik

R

PLC 48 LV HLC 18 LV Soil 59 LV Eleva- LV

Mode 100 Mode 100 Mode 100 tion Mean 100

200 200 200 200

500 500 500 500

1000 1000 1000 1000

15 LV 6 LV 25 LV RV 100

Mode 100 Mode 100 Mode 100 200

200 200 200 500

500 500 500 1000

1000 1000 1000 PP 100

6 LV 2 LV 10 LV 200

Mode 100 Mode 100 Mode 100 500

200 200 200 1000

500 500 500 HPD LV

1000 1000 1000 Mean 1000

K. Remm
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ria while extending the value interval 
starting from a fi rst case. Groups of 
equal values are always included to-
gether.

When looking for a simple but effective 
and universal model applicable for a bi-
variate dependent variable, where the fre-
quency of categories (presence/absence) is 
unequal, using single numerical and cat-
egorical predictors, the boosted classifi ca-
tion tree (BCT) method was preferred since 
it is highly resistant to over fi tting (since 
subsampling is included to model calibra-
tion) and has confi rmed to be among the 
most effective prediction methods (Elith et 
al., 2006; Elith & Graham, 2009; Zurell et al., 
2009). The predicted presence or absence 
was calculated from a BCT model per each 
feature at each spatial and thematic scale. 
Interactions of site characteristics were not 
studied, as the aim of this investigation 
was to compare the explanatory value of 
features one by one. 

The modelling results were compared 
in three aspects: 1) goodness-of-fi t between 
observed and model-predicted presences 
and absences, 2) the proportion of true 
positive predictions among model-predict-
ed presences, and 3) statistical signifi cance 
of the difference in feature values between 
P. fruticosa presence and absence sites. 
The True Skill Statistic (TSS) – also called 
Hanssen-Kuipers Skill Score (Hanssen & 
Kuipers, 1965) – was used as the objective 
function to compare the predictive ability 
of the BCT models. The TSS value is cal-
culated as the proportion of true positive 
cases plus the proportion of true negative 
cases minus one. The TSS statistic is prefer-
able as it does not depend on the propor-
tion of categories, and integrates correct 
prediction of both presences and absences 
(McPherson et al., 2004).

Another statistic for the comparison 
of site features was indicator precision or 
positive predictive value (PPV), which is 
the proportion of true positives among all 
positive predictions. The PPV enables both 
feature-level estimates and the comparison 

of single categories of a nominal feature. 
In the case of a single category, PPV is the 
proportion of the presence sites among ob-
served sites characterized by this particu-
lar presence-indicating category.

The statistical signifi cance of the pre-
dictors was estimated using the SDC, by 
comparing the frequency distribution of 
explanatory categories in presence sites 
and absence sites using the χ² test, and by 
comparing mean values of numerical vari-
ables using the Mann-Whitney U test.

Results

Predictive values of site features
Although all the 60 explanatory variables 
were statistically signifi cantly (p < 0.001) 
related to the occurrence of P. fruticosa, as 
the number of observations is large and 
species occurrence does not correspond 
randomly to different feature values, most 
of them were found to be weak predictors 
(Table 2). P. fruticosa presence is character-
ized fi rst of all by a higher density of pres-
ences in the vicinity, especially within the 
nearest 100 m (TSS = 0.85, PPV = 0.70). The 
best single categories of land cover and 
soil, which predict the species presence 
sites correctly in most cases (PPV ≥ 0.5) 
if they are the modal category within the 
given radius, were: 1) land cover type scru-
bland (indicative in all radii, the highest 
PPV = 0.88 if radius = 200 m), 2) tussock 
surface according to the historical map (all 
radii, PPV = 0.85 if combined with grass-
land) and 3) relatively thin gleyic soil lay-
ing on limestone bedrock in the study area: 
(Gleyic Rendzic Leptosol Gh, PPV = 0.53 
locally and Endogleyic Leptosol Khg, PPV 
= 0.52 if radius = 1000 m) (Table 3).

The area where at least one of these four 
predictors is favourable covers 38.4 km². 
However, a single favourable predictor 
may be occasional, so, for this species, it is 
preferable to delineate the favourable area 
by the presence of at least two favourable 
conditions. The area where at least two of 

Selecting site characteristics at different spatial and thematic scales for shrubby cinquefoil (Potentilla fruticosa L.) distribution mapping
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Table 2.  Predictive ability of the BCT models according to the true skill statistic (TSS) and positive predic-
tive value (PPV). Thematic resolution: D – detailed, M – medium, G – generalized; other abbrevia-
tions as in the Table 1. Values > 0.5 are in bold.

Tabel 2.  BCT mudelite prognoosiv võime Hanssen-Kuipersi skoori (TSS) ja positiivse prognoosiväärtuse (PPV) 
järgi. Temaatiline üldistustase: D – üksikasjalik, M – keskmine, G – üldine; teised lühendid nagu 
tabelis 1. Väärtused > 0,5 on rasvases kirjas.

Layer
Kiht

Detail
Üldistus

Statistic
Statistik

R TSS PPV
Layer
Kiht

Detail
Üldistus

Statistic
Statistik

R TSS PPV

PLC D LV 0.396 0.297 Soil D LV 0.582 0.353

Mode 100 0.359 0.309 Mode 100 0.569 0.347

200 0.334 0.332 200 0.551 0.351

500 0.263 0.358 500 0.515 0.338

1000 0.164 0.221 1000 0.460 0.301

M LV 0.396 0.297 M LV 0.583 0.367

Mode 100 0.361 0.311 Mode 100 0.570 0.363

200 0.361 0.311 200 0.554 0.358

500 0.264 0.361 500 0.504 0.353

1000 0.163 0.220 1000 0.438 0.331

G LV 0.154 0.202 G LV 0.214 0.185

Mode 100 0.186 0.202 Mode 100 0.192 0.181

200 0.182 0.197 200 0.180 0.179

500 0.135 0.183 500 0.144 0.172

1000 0.090 0.164 1000 0.132 0.185

HLC D LV 0.441 0.291 Elevation LV 0.419 0.263

Mode 100 0.438 0.278 Mean 100 0.423 0.261

200 0.416 0.268 200 0.400 0.249

500 0.330 0.240 500 0.417 0.255

1000 0.209 0.189 1000 0.427 0.265

M LV 0.438 0.289 RV 100 0.244 0.207

Mode 100 0.422 0.270 200 0.203 0.201

200 0.393 0.257 500 0.085 0.166

500 0.310 0.441 1000 0.123 0.189

1000 0.204 0.430 PP 100 0.851  0.703

G LV 0.251 0.735 200 0.845 0.605

Mode 100 0.239 0.724 500 0.801 0.559

200 0.223 0.726 1000 0.773 0.568

500 0.134 0.718 HPD LV 0.317 0.235

1000 0.016 0.833 Mean 1000 0.304 0.253
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these four predictors are favourable, cov-
ers 1.4% (11.4 km²) of the terrestrial study 
area and has a density of fi nd sites of 92.4% 
of all observed sites.

Alternative categories of the same fea-
tures cover larger parts of the study area 
but are weak predictors. E.g. modal land 
cover category “scrubland” coincides with 
P. fruticosa presences to a great extent but 
the predictive value of land cover data 
layer, if all categories are included, was 
weak at all spatial and thematic scales (TSS 
≤ 0.40) (Table 2). The binary variable Domi-
nating historical land cover within 1000 m is 
tussock area is even more specifi c, having a 
high PPV = 0.83, but has a low TSS = 0.016. 
That means P. fruticosa can likely be found 
in large alvar patches mapped as tussock 
areas, but the feature is practically useless 
as an explanatory variable in all other re-
gions of the study area.

There are also some less confi dent nu-
merical predictors. P. fruticosa presence 
was recorded most often at altitudes of 
19–35 m asl and in places where other 
presence sites occur within 1 km (Figure 
4). More than a half (54%) of all recorded 

presences are located in square kilometres 
with no permanent habitants.

Excluding values
No landscape feature defi nes P. fruticosa 
presence for certain (excludes absence), 
that is, the species is not constantly present 
at any values of site features. The absence 
excluding feature values are possible only 
in case of an extremely abundant species 
since whatever current or previous limit-
ing factor can exclude the species despite 
optimal conditions concerning other site 
features. 

Regardless of the large number of ob-
servations, species absence is also rarely 
confi rmed by map categories. Only a few 
of them meet the >1% of observations and 
no presences condition. P. fruticosa was 
never found where water is the most com-
mon land cover category within 100 m – 
it avoids sea coasts and does not occur 
at lake shores. More frequent sandy soil 
types were also found to exclude P. frutico-
sa. As site features, these are Umbric Gley-
sol (LkG) and Endogleyic Umbric Podzol 
(Lkg) in all radii and Haplic Podzol (L) in 

Table 3.  Single indicative categories of nominal data layers that indicate P. fruticosa presence correctly in 
most cases (PPV > 0.5) if they are the most frequent spatial unit. Categories are listed in their 
best predictive radius (R). LV – local value.

Tabel 3.  Nominaalsete andmekihtide üksikkategooriad, mis näitavad põõsasmarana esinemist õigesti enami-
kus kohtades (PPV > 0,5), kus see kategooria on sagedaseim raadiuses R. LV – lokaalväärtus (R = 
0). Present land cover – kaasaegne maakate, soil map – mullakaart, historical map – ajalooline 
kaart, scrubland – põõsastik, Gleyic Rendzic Leptosol – paepealne gleimuld, Endogleyic Leptosol – 
gleistunud paepealne muld, all tussock areas – mätlik ala (ka koos teiste märkidega), tussocks with 
grassland – mätlik ala koos rohumaa märkidega, pure tussock area – vaid mätliku ala märgid, tus-
socks with scrubland – mätlik ala koos võsa märkidega.

Data layer
Andmekiht

R [m] Category
Kategooria

PPV

Present land cover 200 Scrubland 0.88

Soil map LV Gleyic Rendzic Leptosol 0.53

1000 Endogleyic Leptosol 0.52

Historical map 1000 All tussock areas 0.83

LV Tussocks with grassland 0.85

200 Pure tussock area 0.78

1000 Tussocks with scrubland 0.65

Selecting site characteristics at different spatial and thematic scales for shrubby cinquefoil (Potentilla fruticosa L.) distribution mapping
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radii up to 200 m. These excluding catego-
ries cover 5.1% (41.3 km²) of the terrestrial 
study area (Figure 5).

There are other map categories that 
never coincided with P. fruticosa sites, but 
the number of observations matching these 
areal categories did not meet the 1% fre-
quency criterion. E.g. a few observations 
are recorded as being located in the sea ac-
cording to the maps, but this is because of 
coast line drift due to sand movement and 

sediment deposition. The species was pre-
dominantly not found in places where no 
presences were recorded in the neighbour-
hood but, unexpectedly, only absence re-
cords in the vicinity are not a fi rm absence 
indicator, since there are exclusions – fi ve 
solitary presence locations have only ab-
sence records within 1 km.

Among values of the numerical vari-
ables, 53 excluding intervals, often dis-
rupted by occasional presences, were de-

Figure 4.  Range of values of numerical site features indicative of P. fruticosa presence or absence. Bars mark 
value intervals that contain at least 1% of all observations and match the following proportion of 
presences (PP): PP ≥ 0.5 (black), PP = 0.25–0.49 (dark grey), PP = 0.1–0.24 or < 1% of records 
(thin line), PP = 0 (empty box), light grey intervals contain no records.

Joonis 4.  Põõsasmarana esinemist või puudumist näitavate numbriliste kohatunnuste väärtusvahemikud. Eri-
statud vahemikes on vähemalt 1% kõigist vaatluskohtadest ja need vastavad leiukohtade osale (PP) 
järgmiselt: PP ≥ 0.5 (must), PP = 0,25–0,49 (tumehall), PP = 0,1–0,24 või < 1% vaatlustest (peen 
joon), PP = 0 (seest valge ristkülik). Helehallides vahemikes andmed puuduvad.
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limited (Figure 4). In general, P. fruticosa is 
absent in the lowest parts the study area 
(coastal plains) and in the highest altitude 
regions at the southern boundary of the 
area. Extreme values of relative elevation 
also exclude species presence. P. fruticosa 
was not found growing naturally in square 
kilometres where the human population 
exceeded 1575 inhabitants.

The occurrence of P. fruticosa remains 
undetermined in most (93.5%) of the study 
area (Figure 5) due to: 1) spatially close 
presence and absence records, 2) missing 
direct observations nearby or 3) low pre-
dictive value of the site features.

Spatial and thematic resolution
According to the TSS, thematically and 
spatially more detailed features are by and 
large more useful in predicting P. frutico-
sa occurrence than more generalized site 

characteristics (Table 4). Although this is 
not always the case, e.g. scrubland as the 
modal category has the highest predictive 
value when applied at a radius of 200 m, 
but not focally and not within 100 m (Fig-
ure 6). That means that species presence 
is statistically related to larger scrubland 
patches dominating in land cover within 
some hundreds of metres, rather than to 
single small groves.

Spatial generalization of the histori-
cal map increases the proportion of false 
negative predictions, as the PPV values 
tend to be higher at more generalized 
spatial and thematic scales (Table 4). This 
trend in mean values is mainly based on 
the historical map – more general versions 
of the map highlight the largest tussock 
areas, which coincide with the P. fruticosa 
populations, while most of the P. fruticosa 
sites remain unrecognized. Consequently, 

Figure 5.  Area covered by feature values excluding P. fruticosa (dark grey), area where two of the indicative 
site features predict P. fruticosa presence (black), and undetermined area (light grey).

Joonis 5.  Põõsasmarana esinemist välistavate kohatunnuste ala (tumehall), põõsamarana tõenäoline 
esinemis ala vähemalt kahe kõrge indikaatorväärtusega tunnuse järgi (must) ja määratlemata ala 
(helehall).
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Table 4.  Mean TSS and PPV fi t of single explanatory variable BCT models predicting the presence/absence 
of P. fruticosa depending on spatial scale and detail of the categorical explanatory variables. 
PLC – present land cover, HLC – historical land cover. The highest values in each subdivision are 
in bold.

Tabel 4.  Kohatunnuseid ükshaaval sisaldavate BCT mudelite keskmine vastavus TSS ja PPV statistikute järgi 
põõsasmarana esinemise või puudumise prognoosimisel. Rasvases kirjas on kõrgeim väärtus igas 
alajaotuses. Tabeli ülemises osas on kolm temaatilise üldistuse taset kategooriate arvu järgi (üksi-
kasjalik, keskmine ja üldine), alumises osas ruumiline detailsus tunnuse arvutamise ulatuse järgi 
meetrites. Muu tähistus nagu tabelis 1.

Mean PLC HLC Soil

TSS PPV TSS PPV TSS PPV TSS PPV

Thematic 
resolution as 
the number of 

categories

Detailed 0.402 0.289 0.303 0.303 0.367 0.253 0.535 0.338

Medium 0.397 0.331 0.309 0.300 0.353 0.337 0.530 0.354

General 0.165 0.372 0.149 0.190 0.173 0.747 0.172 0.180

Spatial scale as 
kernel radius [m]

LV 0.384 0.335 0.315 0.265 0.377 0.438 0.460 0.302

100 0.371 0.328 0.302 0.274 0.366 0.424 0.444 0.297

200 0.355 0.326 0.292 0.280 0.344 0.417 0.428 0.296

500 0.289 0.354 0.221 0.301 0.258 0.466 0.388 0.288

1000 0.208 0.310 0.139 0.202 0.143 0.484 0.343 0.272

Figure 6.  The predictive value of site features in recognizing P. fruticosa occurrence locations depending on 
the radius. Variables are compared at their medium level of thematic resolution.

Joonis 6.  Kohatunnuse indikaatorväärtus positiivse prognoosiväärtuse (PPV) järgi sõltuvalt tunnuse arvu-
tamise raadiusest. Nominaalseid tunnuseid on võrreldud keskmise temaatilise üldistuse tasemel, 
antud kategooria on selles raadiuses kõige sagedasem üksus selles andmekihis.
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spatial generalization of the historical map 
increases the proportion of false negative 
predictions.

By virtue of a more generalized scale 
and lower planar precision, the charac-
teristics derived from the historical map 
are less sensitive to spatial generalization 
compared to category merging (thematic 
generalization) (Table 4). P. fruticosa distri-
bution largely matches the historical map 
tussock areas, a land cover category that 
was kept separate from other categories 
at all generalization levels. The explana-
tory value of the soil map drops abruptly 
when Gleyic Rendzic Leptosol is merged 
with other gleyic soils, and the value of the 
land cover decreases when merging scru-
bland with forest categories. A rule can be 
summarized, that the change in indicative 
value of a categorical layer, when altering 
the thematic detail, depends on how the 
most indicative single categories have been 
merged during generalization.

Discussion

P. fruticosa preference for Endogleyic Lep-
tosol and Gleyic Rendzic Leptosol in our 
data confi rms the notion that the natural 
populations of the species in northern Eu-
rope prefer thin calcareous soils (alvars), 
although, according to previous authors 
and our observations of cultivars, the spe-
cies is tolerant of different soil conditions 
and the main limiting factor is shade (Elk-
ington & Woodell, 1963; Marosz, 2004).

The limiting role of shade is confi rmed 
by this study, as two of the best predictive 
site features (tussock signs in the histori-
cal map and scrubland as the present land 
cover) represent non-forest areas, since the 
tussock signs are on some occasions com-
bined with grassland and bushes but never 
with signs of a forest area. The scrubland 
and forest categories are mutually exclu-
sive categories also in the current land 
cover data. In nature, the undergrowth in 
forests is shaded by canopy but in alvar 

scrublands there is suffi cient light for P. 
fruticosa to grow, as the shade from juni-
pers in most places is not as dense as from 
the forest canopy.

P. fruticosa’s preference for alvar soils 
in natural and semi-natural habitats can 
be explained by a weaker competition for 
light, since soil at these sites has been un-
suitable for the establishment of dense for-
est in the period after the last glaciation. 
According to this, the main natural threat 
to P. fruticosa in the study area is affores-
tation of alvar grasslands, and to a lesser 
extent, competition with junipers, decidu-
ous bushes and herbaceous species. Even 
a reduction in browsing and the closing 
down of a cattle farm near the population 
core area will probably have a long-term 
negative effect due to the gradual affores-
tation of the pastures.

Several methodological problems are 
related to distribution monitoring, includ-
ing the selection and critical assessment of 
data sources. For example, the tussock ar-
eas on the historical map largely match the 
current distribution of P. fruticosa, but not 
everywhere. The fi rst reason for this – a 1: 
50 000 topographical map is spatially more 
generalized than the view of a fi eld map-
per; secondly – according to the experience 
from fi eld observations, a mapped tussock 
area does not necessarily indicate P. fru-
ticosa dwarf bushes, but can also denote 
Vaccinium uliginosum, Betula nana, Calluna 
vulgaris bushes or Molinia caerulea Carex 
cespitosa tussocs. There are tussock areas 
according to the historical map, where it 
is currently hard to assess whether P. fru-
ticosa grew there 80 years ago or not (e.g 
built-up areas).

A number of studies indicate that a 
major source of sampling bias in the fi eld 
mapping of animals and plants is imperfect 
detection, which leads to under estimated 
occurrence of the study object (Kéry et al., 
2005, 2010; Bornand et al., 2014; Lahoz-Mon-
fort et al., 2014), especially if its abundance is 
low (McCarthy et al., 2012). The detectabil-
ity of even common, persistent vegetation 
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species is far below 100% (Kéry et al., 2006; 
Clarke et al., 2012). The recorded absence of 
a focal species is likely a false absence where 
the environment is conducive and the spe-
cies was observed in the neighbourhood 
(Manceur & Kühn, 2014); however, data 
gathering using prior expert knowledge 
and relationships between existing occur-
rence data and environmental variables 
improves detection rate of rare objects (Al-
bert et al., 2010). Although recognition of P. 
fruticosa in summer is mostly easy, as the 
plants reach above the dense grass layer 
and are blossoming, a few false absence re-
cords presumably occur in the original fi eld 
records, but their share was presumably 
minimized by higher observation density at 
major distribution patches, combined with 
thinning out the excess absences and track 
points within 50 m of presence sites.

If we consider the width of the on-foot 
observed track to be approximately 10 m 
and ignore the partial overlap of the ob-
served belt, the directly observed area still 
comprises only about 1% of the study area, 
showing that fi eld surveys alone cannot 
completely cover any larger study area 
in detail. Consequently, the distribution 
pattern of a species has to be modelled, 
not only in the case of global and regional 
studies, but also if landscape complexity 
and mapping resolution makes it unrealis-
tic to cover the total study area with direct 
observations.

Sites that were relatively suitable for 
the species but where it had not been reg-
istered were preferably observed in order 
to increase detection relative to the time 
spent. Preferential sampling based on a 
priori knowledge is a frequent decision to 
maximize discovery and cover the target-
specifi c site variability (Luoto et al., 2001; 
Roleček et al., 2007; Giljohann et al., 2011; 
Steege et al., 2011). If we had applied a spa-
tially random or regular sampling schema, 
most of our time in the fi eld would have 
been spent on sites unsuitable for the spe-
cies, the proportion of absence records 
would have been higher, and many occur-

rence sites would have remained undiscov-
ered. The results of preferential sampling 
can better represent the species occurrence 
than most data in natural history museums 
and species occurrence registers common-
ly used in ecological and methodological 
studies. In this case, as: 1) the species ab-
sences were recorded; 2) all observations 
are made during the same season and 
during a relatively short period; 3) obser-
vations were made predominantly by one 
person; 4) data thinning reduced pseudo-
replication and disproportion between the 
number of recorded presence and absence 
locations; 5) the use of proportions instead 
of the number of presences minimizes the 
effect of different observation density.

A special effort was made in this study 
to extract absence sites from recorded 
moving tracks. A species may absent in 
a location due to: 1) currently unsuitable 
environment; 2) dispersal limitations, his-
torical factors, local extinctions or 3) due to 
incomplete and biased samples (Lobo et al., 
2010). Some authors (Jiménez-Valverde et 
al., 2008; Gogol-Prokurat, 2011) even sug-
gest discarding records on species’ absence 
because of the high risk of false negative 
records. According to other authors, direct 
recording of absence sites reduces biases in 
predicted presence/absence (Phillips et al., 
2009; Václavík & Meentemeyer, 2009; Phil-
lips & Elith, 2013). If absence locations are 
not recorded in addition to presence sites, 
these should be generated as pseudo-ab-
sences, extracted at random from the sites 
in the study area where the species has not 
been recorded (Elith & Leathwick, 2007).

Registering absences during surveying 
can result in so-called zero-infl ated data 
dominated by absence records. A high over-
all prediction fi t is easy to obtain if a large 
part of the study area is clearly unsuitable 
for the species. To avoid the obscuring ef-
fect of surplus absences, eliminating surely 
expected absence areas has been suggested 
as the fi rst step in distribution modelling 
(Mullahy, 1986; Heilbron, 1994; Welsh et 
al., 1996; Barry & Welsh, 2002), although it 
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is still not a common practice (Titeux et al., 
2007). Another means to reduce the excess 
of absence records is spatial thinning as 
proposed in this study.

Site features for the recognition of P. 
fruticosa sites derived from topographi-
cal data layers at the most detailed spatial 
resolution were the most effi cient accord-
ing to TSS, but not following PPV (Table 
2 and 4). Relatively low values of the PPV 
statistic compared to the TSS point to pre-
vailing false positive predictions – which 
means, the spatially detailed site features 
tend to over-estimate species occurrence. 
Spatially smoothed features (except eleva-
tion asl) are not able to distinguish small 
patches, but are more reliable in species 
occurrence predictions. The spatially most 
detailed remote sensing data layer has also 
not been the best indicator for identifi ca-
tion of vegetation units according to some 
other authors (Marceau et al., 1994; Ghosh 
et al., 2014). Supposedly, the optimal spa-
tial scale has to be estimated empirically 
according to the dependent variable and 
the properties of explanatory data layers.

The predictive power of a categorical 
explanatory feature may depend remark-
ably on the order of merging the detailed 
categories. Formal merging of highly in-
dicative categories of a categorical feature, 
while reducing thematic resolution, may 
increase or decrease the predictive value. 
The best option would be to reduce the 
only predictor to categories statistically 
matching the dependent variable. Unfortu-
nately, such a perfect match cannot usually 
be found in real data.

In this study, categories of explanatory 
variables were merged according to prior 
knowledge about their meaning, which 
might not yield the best classifi cation for 
the particular prediction task. A statisti-
cal algorithm for merging categories of a 
predictive variable is Exhaustive CHAID 
(Chi-squared Automatic Interaction Detec-
tor), which tests all pairs of categories and 
merges the categories according to the sta-
tistical signifi cance to the classifi cation of 

the dependent variable until a single split-
ting pair remains (Kass, 1980). Exhaustive 
CHAID may require signifi cant computing 
time if the number of categories is large. 
Categories merged purely according to 
statistical signifi cance for a particular tar-
get may not be easy to interpret meaning-
fully and applicable for other data.

In this study, several excluding values 
of categorical site features were found. Set-
ting value intervals that exclude the spe-
cies occurrence on the axis of a continu-
ous feature assumes splitting the axis and 
checking if any of the intervals meet the 
given frequency and data density prem-
ises. The task would be a trivial braking 
data to quantiles if splitting only accord-
ing to the number of records is needed, 
or production of a histogram if the class 
boundaries were given. The combination 
of the two conditions complicates the issue 
as the number of possible (split) points on 
a continuous axis is infi nite. The proposed 
regions of frequency algorithm starts from 
data ordering and checks split points only 
at existing values.

Overlaying the spatial distribution of 
excluding and presence-predicting site fea-
tures does not result in a detailed predic-
tive distribution map, but outlines regions 
for further fi eld survey and special model-
ling effort. Delimiting the species-exclud-
ing area enables attention to be focussed on 
the unclear presence/absence area and on 
the likely presence area when creating and 
calibrating predictive distribution models 
in subsequent studies on detailed distri-
bution of the species. Presence/absence 
modelling or more fi eld observations are 
needed for the undetermined area, while 
species abundance modelling could be a 
priority in the probable presence area. 

Conclusions

1. All site features were signifi cantly relat-
ed to the occurrence of P. fruticosa but 
most of them are weak predictors.
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2. The best predictors of P. fruticosa occur-
rence are 1) the proportion of presences 
in the neighbourhood, 2) moist thin cal-
careous soils according to the soil map, 
3) larger scrubland patches according 
to the topographical database, and 4) 
tussock areas according to the topo-
graphical map from the 1930s.

3. Thematically and spatially the most de-
tailed site features are not always the 
best indicators. 

4. The change in indicative value of a cat-
egorical layer, when altering the the-
matic detail, depends on how the most 
indicative single categories have been 
merged during generalization.

5. Restricting a species distribution mod-
elling by excluding the area where the 
species surely cannot be found could 
support the modelling effort, although, 
in this case, the species occurrence re-
mains undetermined in most (93.5%) 
of the study area. Combination of dif-
ferent predictors at different scales is 
needed for detailed distribution model-
ling.

6. Innovative algorithms and tools for pre-
processing distribution modelling data 
were applied for: 1) delimiting the spe-
cies confi rmed absence, probable and 
unclear occurrence area; 2) thinning of 
observed locations; 3) fi nding intervals 
in values of a numerical variable which 
match given ratio between states of a 
Boolean variable.
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Erinevas ruumilises ja temaatilises mõõtkavas kohatunnuste 
valimine põõsasmarana (Potentilla fruticosa L.) leviku 
kaardistamiseks

Kalle Remm

Kokkuvõte

Uuriti kohatunnuste indikaatorväärtust ja 
selle sõltuvust üldistustasemest põõsasma-
rana (Potentilla fruticosa L. sün. Dasiphora 
fruticosa (L.) Rydb.) leviku detailseks kaar-
distamiseks selle liigi Baltimaade suurima 
loodusliku asurkonna piirkonnas Loode-
Eestis. Välivaatlustel aastatel 2008–2014 
läbiti jalgsi umbes 700 km. Vaatluspunktid 
harvendati vahemaale vähemalt 50 m, et 
ühtlustada vaatluste tihedust ruumilises 
ning esinemise ja puudumise vahekorra 
mõttes. Harvendamise järel jäi kasutusse 
1459 leiukohta and 7327 puudumiskohta. 
Liigi esinemist/puudumist nendes kohta-
des seostati kohta kirjeldavate tunnuste-
ga, mis arvutati maakatte üksustest Eesti 
topograafi lises andmekogus ja 1930ndate 
aastate 1: 50 000 kaardil ning mullakaar-
di, maapinna kõrguse, alaliste elanike ti-
heduse, liigi leidude tiheduse ja keskmise 
katvuse andmetest erinevas raadiuses. Sel-
gitamaks leviku kaardistamisel võimalike 
kohatunnuste indikaatorväärtust, võrreldi 
seose tugevust ja olulisust liigi esinemise 
puudumise ja 60 üksiku erineval temaa-
tilisel ja ruumilisel üldistustasemel koha-
tunnuse vahel BCT (boosted classifi cation 
tree) mudeli abil. Lisaks tunnuste indikaa-
torväärtuste mõõtmisele on hinnangulise 
levikukaardistamise eeltöö jaoks uudsete 
metoodiliste võtetena esitatud vaatluste 
harvendamise ja binaarse muutuja klassi-

de etteantud sageduskriteeriumitele vasta-
vate numbrilise tunnuse väärtusvahemike 
leidmise algoritmid.

Uuringus selgus, et paljudest võimali-
kest kohatunnustest on liigi leviku kaar-
distamisel märkimisväärse indikaator-
väärtusega vaid üksikud. Põõsasmarana 
leviku detailseks kaardistamiseks selle uu-
ringu alal on need tunnused: leiukohtade 
osakaal ümbruses olevates vaatlustes, pae-
pealne gleimuld või gleistunud paepeal-
ne muld mullakaardi, suuremad põõsas-
tikualad topograafi lise andmekogu järgi 
ja mättalise ala märgid ajaloolisel kaardil. 
Kohatunnuste andmekihtide ühte ja ain-
sat kõige tõhusamat üldistuse taset ei ole. 
Enamasti seostuvad detailsemad kohatun-
nused liigi esinemise või puudumisega 
paremini, kuid mitte alati. Liigi leviku mo-
delleerimisel tasuks kombineerida erineva 
üldistustasemega andmeid. Nominaalse 
andmekihi indikaatorväärtuse muutus te-
maatilisel üldistamisel sõltub eelkõige kõr-
gema indikaatorväärtusega üksikkategoo-
ria teiste kategooriatega liitmisest.

Mingi nähtuse leviku hinnangulist kaar -
  distamist toetab muuhulgas uurimis ala 
osadeks jagamine. Kohatunnuseid üks-
haaval kasutades õnnestus eristada ala, 
kus liigi esinemine on mõne tunnuse ja 
olemasolevate andmete järgi välistatud (le-
viku modelleerimisel võib selle osa uuris-
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alast välja jätta) ja ala, kus liigi esinemine 
on tõenäoline. Selles piirkonnas on liigi esi-
nemiskohti rohkem, mis võimaldab detail-
semalt kirjeldada liigi paiknemismustrit 
ja ohtrust. Paraku enamikul uurimisalast 
(93,5%) ei ole koha tunnuseid ükshaaval 

kasutades liigi esinemine või puudumine 
selge. Seega on leviku modelleerimisel es-
maseks ülesandeks leida liigi esinemist või 
puudumist kõige tõhusamalt prognoosi-
vad kohatunnuste komplektid.

Received May 5, 2016, revised August 3, 2016, accepted August 30, 2016

K. Remm


