Forestry Studies | Metsanduslikud Uurimused, Vol. 61, Pages 47-68

DE GRUYTER
OPEN

Estimation of standing wood volume and species
composition in managed nemoral multi-layer
mixed forests by using nearest neighbour
classifier, multispectral satellite images and
airborne lidar data

Mait Lang??", Tauri Arumde?, Tonu Liikk12 and Allan Sims?

Lang, M., Arumde, T., Liikk, T., Sims, A. 2014. Estimation of standing wood volume
and species composition in managed nemoral multi-layer mixed forests by using
nearest neighbour classifier, multispectral satellite images and airborne lidar data. -
Forestry Studies | Metsanduslikud Uurimused 61, 47-68. ISSN 1406-9954. Journal
homepage: http:/ /mi.emu.ee/forestry.studies

Abstract. Nearest neighbour techniques are useful for constructing maps of forest
inventory variables based on sample plot and auxiliary data from remote sensing.
The most problematic issue of the nearest neighbour technique is possible systematic
bias in the estimated values. In this study a 15 by 15 km test site in nemoral multi-
layer mixed forests was established in Laeva, Estonia. A set of 444 circular sample
plots was used as reference set. Airborne lidar data and Landsat-8 Operational Land
Imager image were used to construct five different feature variable sets consisting
of original variables and alternatively principal components. The response variables
were wood volume of first tree layer, wood volume of the second tree layer and main
species code. A special test was carried out where a substantial amount of Silver birch
dominated plots were removed from the reference set. The wood volume prediction
validation was carried out on 89 forest growth sample plots and on 2290 forest stands.
Species composition prediction was validated on 986 forest stands. As in many previ-
ous studies the results confirmed superiority of airborne lidar variables over spectral
variables for wood volume estimation. The first three principal components of air-
borne lidar variables and first five principal components of all possible original feature
variables contained over 99% of the information and performed well in imputations.
The imputed wood volume at small values was overestimated and underestimated at
large values regardless of used reference set. The feature variable sets containing spec-
tral data performed better for species composition imputation. There was a forest age
dependent discrepancy in predicted species proportions: birch and spruce propor-
tions were underestimated in young stands and overestimated in older stands while
proportion of aspen had exactly the opposite errors. The lack of fit depended slightly
on the feature variable sets. The birch dominated plot partial removal from the refer-
ence set changed the predicted proportion of species but did not remove the forest age
dependent lack of fit. The result can be important for the studies in which bootstrap
samples are used to estimate error statistics for nearest neighbour technique based
forest inventory variable maps.
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Introduction

Sustainable forest management and forest
policy implementation can only be based
on timely updated and accurate estimates
of forest resources. The elementary obser-
vation units can be forest stands which are
homogeneous parts of forest delineated for
common silvicultural treatments or instru-
mentally measured sample plots which
are further used to produce statistical esti-
mates for a stand, a small area, a region or
a country (Krigul, 1972). Such a regularly
distributed plots based sampling is used
for National Forest Inventories in many
countries including Estonia (Tomppo et al.,
2010; Adermann, 2010). Several data link-
ing methods and sampling designs have
been tested to incorporate remote sensing
data i.e. aerial photos, multi spectral satel-
lite images, radar data and airborne laser
scanning data to improve the accuracy of
regional estimates and to construct up-
dated maps of forest inventory variables
(Poso et al., 1990; Howard, 1991; McRoberts
& Tomppo, 2007). One of the most popular
techniques has been nearest neighbour im-
putation (Fazakas et al., 1999; Holmgren et
al., 2000; Huiyan et al., 2006; McRoberts &
Tomppo, 2007; Packalén & Maltamo, 2007;
Chirici et al., 2008; Kajisa et al., 2008; McIn-
erney & Nieuwenhuis, 2009; Breidenbach et
al., 2010; McRoberts, 2012; Fassnacht et al.,
2014; Zald et al., 2014). In Estonia, Tamm &
Remm (2009) used stand-wise forest inven-
tory data and nearest neighbour technique
based machine learning algorithms to con-
struct forest maps of inventory variables.
The k nearest neighbour imputation
(kNN) for forest inventory is based on the
assumption that the response variables
i.e. the variables measured on elementary
observation units in a reference set can be
assigned to a target set by using a similar-
ity measure based on auxiliary predictor
variables i.e. feature variables which are
obtained mainly from remote sensing. The
elementary sampling units of feature vari-
ables are usually raster image pixels. The
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reference set elements are instrumentally
measured and georeferenced sample plots
with location coordinates linking the plot
data to the observations of feature vari-
ables. In nearest neighbour imputation the
target set pixels are assigned weighted av-
erages of response variables of k nearest ob-
servations from reference set where for each
observation both the response variables and
feature variable values are known (Fazakas
et al., 1999; McRoberts, 2012). The Euclidean
distance is the most common metric for es-
timating similarity of a target set pixel to a
reference set observation.

According to McRoberts (2012) the
nearest neighbour techniques are appeal-
ing since they can be used for map con-
struction, they can handle continuous and
categorical response variables, there are no
assumptions regarding the distributions of
response or predictor variables, and they
can be applied for a wide range of data sets.
On the other hand, the main concern about
spectral feature variables based nearest
neighbour techniques for forest inventory
is the possible bias in estimates (Poso et al.,
1990; Holmgren et al., 2000) which is caused
by the nonlinear and saturating relation-
ships of the feature variables to response
variables, e.g. age and spectral reflectance
of forest (Nilson & Peterson, 1993), and the
fact that all weights are positive (Fazakas
et al., 1999). When the observations of se-
lected nearest neighbours are near their
smallest or largest values under- or over-
estimation can occur. However, if the tar-
get set estimates are aggregated for an area
of several hundreds of hectares the mean
values are assumed to be unbiased and the
root mean square error of estimates de-
creases (Fazakas et al., 1999). Holmgren et
al. (2000) describe a systematic lack of fit in
multispectral satellite images based kNN (k
= 5) imputed stem wood volume estimates
at stand level (overestimation at small val-
ues and underestimation at large values)
and propose a linear correction model to
decrease the estimation error. Kajisa et al.
(2008) used kNN in conifer plantations in
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Japan and also indicated similar systematic
lack of fit in the imputed stem volumes at
sample plot level when 5 < k <10. Howev-
er, McRoberts (2008, 2012) shows that for-
est stand level estimates of wood volume,
basal area and number of trees per unit
area can be obtained with reasonable accu-
racy if optimal set of feature variables is se-
lected and k value is optimized during the
imputation procedure. On the other hand,
Gilichinsky et al. (2012) propose histogram
matching of kNN imputed wood volume
to the corresponding statistics from field
inventory to decrease the lack of fit and re-
duce estimation errors. However, Gilichin-
sky et al. (2012) did not study the impact of
this procedure on other response variables.

The nearest neighbour methods can
handle arbitrary set of feature variables, but
the unrelated ones to the response variables
increase uncertainty of estimates (McRob-
erts, 2008). Reduction of feature variable
space can be accomplished by using genetic
algorithms to select the most informative
set of feature variables (McRoberts, 2008;
Tomppo et al., 2009), cluster analysis (Tamm
& Remm, 2009), principal components or
spectral variable transformation to vegeta-
tion indices (Chirici et al., 2008), or an ex-
pert guess (Zald et al., 2014). Latifi & Koch
(2012) used evolutionary genetic algorithm
to select 12 covariates from initial 68 predic-
tor variables calculated from full-wave ALS
data and four band multi spectral line scan-
ner data. The estimates of biomass, number
of stems per unit area and standing volume
for target area were imputed by using re-
gression tree method and kNN with the ca-
nonical correlation analysis distance metric
(kMSN) which basic principle principle was
described by Moeur & Stage (1995). The re-
gression tree imputation method was sug-
gested in case of large number of well cor-
related predictor variables. However, the
kMSN imputed stem volume estimates had
smaller overall bias. Latifi & Koch (2012)
also showed that both imputation methods
have systematic lack of fit in stand level es-
timates of stem volume.

One important issue regarding the near-
est neighbour techniques is related to the
number of nearest neighbours, i.e. the val-
ue of k. Based on earlier studies, Fazakas
et al. (1999) conclude that increase in k im-
proves wood volume estimation accuracy
up to 5 < k < 10 spectral neighbours, with
the price of artificially improved correla-
tion between response and feature vari-
ables compared to the field measurements.
It is the characteristic of kNN that increase
in k shifts the estimated values towards the
sample mean and the rate of decrease of
prediction errors can be used to select op-
timal k value. Chirici et al. (2008) indicate
that increase of k over 5 does not substan-
tially decrease estimation errors. However,
McRoberts (2008, 2012) shows that genetic
algorithm based optimization can yield
values of 25 < k < 47 and McRoberts (2012)
shows that k is related to the distance-
based weight t imposed on the neighbours
used in the calculation of predictions.

The aim of the study was to test the
performance of a simple kNN imputation
technique in managed nemoral multi-layer
mixed forests to estimate 1) standing wood
volume for first (dominant) and second
(lower) tree layer, and 2) to estimate main
species for target pixels and species com-
position for forest stands. The feature vari-
ables were extracted from Landsat-8 OLI
image and from airborne laser scanning
data. Five combinations of feature vari-
ables were tested. The reference set consist-
ed of 444 sample plots and validation was
carried out on exclusive 89 forest growth
network plots and on 2290 forest stands. A
special test was carried out where 70% of
Silver birch dominated reference plots re-
moved from the reference set to study the
stability of species composition prediction.

Material and methods
Test site

The 15 by 15 km test site (Figure 1) is lo-
cated in southern Estonia (centre coordi-
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nates in EPSG:3301 projection: 6490854 N;
642472 E) and the area is mostly dominated
by mixed multi-layered deciduous forests.
Dominating tree species are Trembling
aspen, Silver birch, Norway spruce, Grey
alder and Black alder. There are also Scots
pine stands growing on some less fertile
sites. The second i.e. the lower layer in the
deciduous forests is usually dominated by
shade tolerant Norway spruce. The Padus
avium Mill. or Corylus avellana L. dominat-
ed forest understory had canopy cover in
many plots over 20% (Appendix 1). There
are mainly two different forest site types
according to Lohmus (2004) - Aegopodium
(AG) and Filipendula (FP). The soil types
are according to FAO-UNESCO mainly
either Calci Eutric Gleysols or Eutri Histic
Gleysols. Most of the forests are managed
actively.

22:5° EFinIand 27.0°E
59.5°N .
Estonia
Laeva test sitg
57.5°N Latvia ™
Figure 1. Test site location map.

Joonis 1. Testala asukoht.

Sample plots and forest inventory data

First step to create kNN reference set was to
use stand-wise forest registry data to find
the most frequently occurring dominant
tree species in Laeva test site area. Then
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500 stands were randomly chosen to rep-
resent species and age distribution (young,
middle aged, old-grown) of the test site.
Only the stands with area over 1 ha were
sampled. The radius for reference sample
plots was 10 m and the plots were placed
in a homogeneous and representative area
in each selected stand, with at least 20 m in-
side from the edge. All the trees with diam-
eter at breast height larger than 4 cm were
measured with calliper and a minimum of
15 trees was selected for height measure-
ments. In very young stands the stand
density, canopy cover, mean tree diameter
at breast height and forest height were es-
timated in the field. Table 1 provides the
general description and the distribution of
the reference set plots according to domi-
nant species. A set of treeless (Nfo) refer-
ence plots from forest land was added to
improve estimates of small wood volume
values. The “Nfo” sample plots had only
some seed trees detectable from lidar
height data. The majority of the reference
plots are dominated by Silver birch, Nor-
way spruce or Trembling aspen. The birch
and spruce dominated reference plots are
distributed over all possible stand ages but
there are only few aspen dominated plots
in the age range of 20 < A < 50 (Figure 2).
In this study 444 reference plots were used
in kNN imputations.

For the validation of kNN imputations
we used data from the network of perma-
nent forest growth research plots (FGN
plots) which covers the whole Estonia
(Kiviste & Hordo, 2002). The FGN plots in
Laeva were established during the period
1995-2004. A circular FGN plots may have
a radius of 15, 20, 25 or 30 meters following
the rule that at least 100 trees of the first
tree layer are contained within the sample
plot area. Sample plot radius is increased
when this criterion is not fulfilled. On each
plot, the polar-coordinates (azimuth and
distance from the plot centre), the diameter
at breast height, and defects are assessed
for each tree. The tree height and height
to crown base are measured on every fifth
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Figure 2. The distribution of training (reference) plots according to forest age and dominant species of the
three most widespread species.
Joonis 2. Kolme enamlevinud puuliigi puistute épetusalade arv vanuse jdrgi.
Table 1. The reference plot count, average wood volume of the first tree layer (M,) and average species
composition by dominant species.
Tabel 1. Treeningproovitiikkide arv, keskmine esimese rinde tiivemaht (M,) ja liigiline koosseis enamuspuu-
liigi jdrgi.
Plot Average species composition /
Dominant species / Code / count/ Keskmine koosseis
Enamuspuuliik Tahis F;rls?/:)lz- ! HB KS KU LM LV MA SA TL
Populus tremula L. / Haab HB 50 262 79 15 3 2 1 0 0 O
Betula pendula Roth / Kaask KS 182 215 8 72 8 7 3 0 0 2
Picea abies (L.) Karst. / Kuusk KU 123 208 2 15 78 1 2 1 0 1
Alnus glutinosa (L.) Gaertn. / Sanglepp LM 19 188 0 23 6 66 4 0 0 1
Alnus incana (L.) Moench / Hall lepp Lv 11 68 6 23 2 0 63 0 0 6
Pinus sylvestris L./ Mdnd MA 12 293 0 5 13 0 0 8 0 O
Fraxinius excelsior L. / Saar SA 1 278 0 0 22 0 0 0 28 50
Other / Teised TL 3 70 7 17 14 12 8 0 0 42
Treeless / Lagedad alad Nfo 43 - - - - - - - - -

tree and also on dominant and rare tree
species. The sample plots have measure-
ment interval of five years. The subset of 89
sample plots used in this study was mea-
sured on years 2010 and 2011. The wood
volume was predicted for the year 2013
based on the increment of the last measure-
ment interval.

The kNN predictions were also validat-
ed on the stand-wise forest inventory data.
The database and digital stand maps were
obtained from Estonian State Forest Man-
agement Centre. The database had notes
about thinnings and field estimates of main
inventory variables for each species in each
layer (stand elements) for all stands. The
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kNN predicted stem volume was validated
on a subset of 2290 stands which had 1)
size over 2 ha, 2) had no treatments or had
treatment date earlier than inventory, and
3) were not outliers in the wood volume
to spectral reflectance relationship due to
disturbances. The wood volume in data-
base was incremented to the year 2013 us-
ing algebraic difference model of volume
growth (Kangur et al., 2007). This subset
was further restricted to 986 stands for the
species composition analysis by setting the
minimum number of 20 m pixels within
stand to n,,> = 37.

Spectral data and lidar data

A cloud free Landsat-8 Operational Land
Imager (OLI) image from 03.08.2014 was
downloaded from USGS archive and
projected to Estonian coordinate system
EPSG:3301. Pixel size was set to 20 m for
compatibility with lidar metrics feature
space. The pixel values in digital numbers
(DN) of downloaded image were used in
calculations.

The lidar point cloud height statistics -
mode, height percentiles, and standard
deviation (Table 2) - were calculated from
point clouds with 1.3 m height filter to re-
move near ground reflections in FUSION/
LDV (v3.42) software (McGaughey, 2014)
by using 20 m cell size for sampling. Fil-
tering was done to reduce the influence of
the dense understory vegetation as found
out in previous studies (Lang et al., 2012;
Arumde & Lang, 2013). The digital terrain
model (DTM) for point cloud height nor-
malization was created using FUSION/
LDV modules Groundfilter and GridSur-
faceCreate with cell size set to 4 m.

The sets of feature variables

The characteristic relationships of wood
volume (M,,) and Lorey’s height of the for-
est in the reference plots (H,) with some
spectral bands of Landsat-8 OLI image and
airborne lidar metrics are shown in Figure
(3). Spectral reflectance of the forests de-
creases with increase in wood volume non-
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linearly and in near infrared (OLI5) and
shortwave infrared (OLI6) bands the rela-
tionship depends on tree species composi-
tion (Figure 3 a-c). There are some outliers
in the Lorey height to lidar Hy, relationship
(Figure 3 d) which were the training plots
with tall seed trees and substantially lower
young tree layer of both the layers having
similar basal area. Some reference plots
with only tall seed trees were also outliers
in stem wood volume to lidar H,, relation-
ship (Figure 3e) thus, canopy cover (CaC)
must be included to feature variables for
correct estimates of wood volume in such
target set pixels.

Many authors emphasize the impor-
tance of feature variable selection for kNN
imputation. We did not have a genetic al-
gorithm interface or bootstrapping inter-
face on the used kNN implementation, but
constructed five sets of feature variables
(Table 2). Two sets consisted of original
spectral bands or lidar variables and three
sets were based on principal components
of the first two sets to reduce dimensional-
ity of feature space and reduce the number
of redundant variables Table 1 in McRob-
erts, 2012. The first set of features consisted
of first seven Landsat-8 OLI optical bands
and the set is further in the text indicated
by L8. The second set (L8c,) of feature
variables was the first three principal com-
ponents of the set L8. The principal compo-
nents described 60.8%, 36.8% and 1.7% of
the total variation in the L8. The third set
of feature variables (ALS) was based sole-
ly on airborne lidar data and consisted of
90t and 25t percentiles (H,, and H,; corre-
spondingly) of point cloud height distribu-
tion, canopy cover (Lang 2010) at reference
height h,, = 3m, and pulse split variable
R1,,., = count(return = 1) / count(all). The
variables performed well for stem volume
estimation in previous study in Aegviidu
test site, Estonia (Lang et al., 2012). Fourth
set of feature variables (ALS;.,) consisted
of the first three principal components of
all lidar metrics and the three components
described 92.4%, 6.1% and 1.2% of the to-
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Figure 3. Relationships between some main remote sensing variables and forest inventory variables in the
training reference plots. The relationships with wood volume (M,) are nonlinear, dominant spe-
cies dependent and often saturating. Species codes are given in Table 1.
Joonis 3. Ménede kaugseiretunnuste ja metsa takseertunnuste seoseid Gpetusaladel. Seosed tivemahuga

(M,,) on mittelineaarsed, liigiomased ja tihti kiillastuvad. Lorey kérguse (Htr) joonisel (d) eristuvad
seosest sarnase rinnaspindalaga kérge (larinde ja oluliselt madalama esimese rindega proovitiikid.

Puuliikide koodid on tabelis 1.

tal variation leaving only about 0.3% of
the lidar data variability undescribed. The
fifth feature variable set (PCA) consisted
of the first five principal components of all
L8 and lidar variables combined. The five
principal components described 93.6%,
43%, 1.0%, 0.5% and 0.3% of total varia-
tion. IDRISI Taiga (Clark Labs, Worcester,
MA, USA) was used to extract principal
components.

kNN imputation of wood volume and
dominant species

The weighted k-nearest neighbour algo-
rithm used in this study was implemented
according to method outlined by Franco-
Lopez et al. (2001). First, Euclidean distance
measured in feature space between pixel

to be estimated p and pixels with reference
data p; is calculated:

y
2 2
d,,, = Z,aj(sp,]-—spi,j) / 1)
.

where s, ; = digital number of pixel to be
estimated, s, ;= digital number of pixel
with known reference data, ny= number of
dimensions of feature space used and 4; =
weight of dimension j. The 4; was fixed to
1 in most of the tests in this study, how-
ever, a a;sensitivity study was carried out
on ALS feature variable set.

The reference set pixels are ordered ac-
cording to their distance from pixel to be

estimated soas d, ,<d, <d <

ppp= oy p= Ypypr o = Yy p
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is probably related to the errors in scaling
Using the selected number of nearest
neighbours k and previously calculated

distances d, , the weight of each pixel
with known reference data in pixel to be

estimated p is calculated:

1 Lo
wp,-,p:d;;p Zdt 4 (2)

where t is reference observation weight.
Finally, arbitrary variable m of interest for
pixel p is imputed as:

k
mlﬂ = privpmpi 4 (3)

where m, = attribute value for pixel p;. For
categorical type of variables, mode value
is used instead of weighted average. For
pixel level error estimation, leave-one-out
cross validation method (LOOC) is car-
ried out, where validation data set is con-
structed so that for estimating a pixel with
known attribute data, the point’s own data
is omitted from the calculations (Katila et
al., 2001).

For each target set pixel the wood vol-
ume for the first and second tree layer
(MIiy M24y), and dominant species
code was predicted by using the five sets
of feature variables (L8, L8,-,, ALS, AL-
Spcas PCA). The number of tested nearest
neighbours was k € (1, 2, 3). The sensitiv-
ity of the kNN imputed wood volume to
feature-based weight a; was carried out on
ALS feature variable set by assigning the
a; values given in Table 3. In the test setup
values k = 3 and t = 2 were used. The sensi-
tivity of the kNN imputed wood volume to
distance-based neighbour weight t (Eq. 2)
was tested on feature variable sets L8, ALS
and PCA by using values of t € (1, 2, 3).
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Table 2. The variables in feature variable sets. The
principal component feature variable sets
were based on the included variables. H,
are the lidar point cloud height distribu-
tion percentiles. CaC, are the lidar data
based canopy cover estimates at refer-
ence height shown in subscript. Stdev is
standard deviation and Mode is the mode
value. RZ1,, is calculated from point
cloud as count(return=1)/count(all). OLI
corresponds for Landsat-8 Operational
Land Imager.

Tabel 2. Kokkuvéte kNN ennustustes kasutatud
tunnuste komplektidest. Peakomponenti-
dest koosnevate tunnuste komplektid
pbhinevad ndidatud tunnustele. H, on
punktiparve kérgusjaotuse vastavad prot-
sentiilid. CaC,on punktiparvest alaindeksis
nédidatud  referentskérgusel  arvutatud
katvus. Stdev ja Mode tdhendavad stan-
dardhilbe ja moodvddrtuse arvutamist.
R1,., arvutatakse punktiparvest seosega
arv(peegeldus=1)/peegeldusi. OLI tdhen-
dab Landsat-8 Operational Land Imager
vastava numbriga spektraalkanaleid.

Variable / The feature variables /

Tunnus Kirjeldavate tunnuste komplektid
L8 ALS L8,, ALS,, PCA

Hy.Hep Hy O 0 0 1 1

H,s 0o 1 0 1 1

Hyp 0o 1 0 1 1

caC, 5, 0 0 0 1 1

ac, o, 0 0 0 1 1

CaC, o 0 1 0 1 1

Stdev(H,;s) 0 0 0 1 1

Mode(H,;s) 0 0 0 1 1

R, 0o 1 0 0 0

OLI1..0LI7 1 0 1 0 1

A special test was carried out with fea-
ture variable sets L8, ALS and PCA with
the number of birch dominated reference
plots substantially decreased. In the forest
age range 10 < A <20 50% of the available
reference plots were included while in the
forest age range 20 < A <70 only 30% of the
available plots were included by random
selection. The number of neighbours in the
special test was k = 3.
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Validation of the predictions

A simple method for validation of the kNN
imputation results is the leave-one-out
cross validation where the validation sta-
tistics are calculated on the imputed values
for the reference plots. The plot for which
the values are imputed is always excluded
from the reference set. However, Tomppo
et al. (2009) warn that LOOC does not al-
ways produce realistic error estimates.
Therefore, in addition to LOOC we carried
out a validation on two independent datas-
ets: 1) 89 forest growth network plots (FGN
plots), and 2) stand-wise forest inventory
database (IDB records).

The imputed wood volume for FGN
plots was extracted from raster by us-
ing the areas of intersections of pixels
(squares) and FGN plot geometry (circle)
as weights on pixel values (Lang et al.,
2005). This approach was preferred over
the whole pixel extraction, since the radius
of the FGN plots ranged from 20 m to 30
m and pixel size was 20 m. For each forest
stand the pixels from kNN imputed wood
volume maps were extracted according
to the pixel centre location. For each IDB
stand the average wood volume includ-
ing both the first and second layer over all
extracted pixels was calculated. The IDB
wood volume is known to be underesti-
mated (Raudsaar et al., 2014) compared to
sample plot based estimates e.g. National
Forest Inventories (NFI). Therefore the IDB
wood volume was scaled by using linear
regression on wood volume (M,,) of the ref-
erence plots (Figure 4).

The imputed dominant species compo-
sition was validated only on IDB stands
which were sufficiently large. The species
composition for each IDB stand was calcu-
lated from the imputed dominant species
map based on the relative share of pixels
with particular tree species codes. So, for a
stand with 50% spruce and 50% birch the
correct number of pixels with main species
code corresponding to spruce was expect-
ed to be 50% of all pixels within the stand

polygon.

Root mean square error (RMSE) was
calculated as:

where y; = attribute value, §j; = attribute
value estimated by kNN method, #n = num-
ber of observations. Bias was estimated as:

Zl(]?i_yi)

=izt )
n

- - y=27.8+0.603 x
=3 R® = 0.726%**
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Figure 4. The linear regression between total wood
volume given in the stand wise forest
inventory database (M) and the wood
volume (M,) from corresponding refer-
ence plots was used to scale the My, to
M, range. The RSE is the model residual
error given by lm procedure in R software
(R Core Team, 2015).

Takseerandmebaasis olev puistu tiivemaht
M, teisendati lineaarse regressiooni-
mudeliga 6petusproovitiikkidel méodetud
tivemahu M, skaalasse. RSE on tarkvara
R (R Core Team, 2015) protseduuriga Im
ldhendatud mudeli jddkhdlve.

Joonis 4.
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Results

Here we present only results from k = 3 im-
putations based on L8, ALS and PCA fea-
ture datasets since there were only small
differences in the results if k was changed
or L8, was used instead of L8 or ALS,q,
was used instead of ALS feature variable
set. The decrease of RMSE and overall bias
estimate obtained from LOOC validation
of imputed wood volume showed that in-
clusion of airborne lidar variables did sub-
stantially improve the predictions for the
dominant tree layer (Figure 5 a-c). Similar
results are obtained by other authors. The
PCA feature variable set performed best
and most of the increase of estimation accu-
racy was gained on aspen stands which had
the largest wood volume compared to other
forests. The predicted wood volume for the

second layer of trees had substantial scat-
ter independent from the feature variable
set (Figure 5 d-f). The well-known system-
atic overestimation of small volumes and
systematic underestimation of large wood
volumes was also present in our imputation
results. This lack of fit has been assumed to
be a linear function of wood volume (Hol-
mgren et al., 2000); however, in our results
the lack of fit for the upper tree layer wood
volume first starts to increase at small val-
ues, then reaches its positive maximum and
then starts constantly to decrease crossing
the zero value near to the mean of mea-
sured wood volume.

The imputed wood volume validation
on forest growth network plot data pro-
duced similar results to LOOC (Figure 6).
The overall lack of fit for the first tree layer
wood volume was negligible when using
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Figure 5. The leave-one-out cross validation of imputed wood volume for the first layer (M,) and second
layer (M,) of trees (in rows) using three feature datasets (in columns). The symbols are explained

in Figure 3.
Joonis 5.

Opetusalade andmetel jita-iiks-vilia meetodil tehtud kNN ennustuste valideerimise tulemused. Ri-

dades on eraldi esimese- ja teise rinde tiivemahtud (M, M,) ja tulpades on aluseks olnud erinevad
andmekomplektid. Siimbolid on samad mis joonisel 3.
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kNN tiivemahu valideerimise tulemused metsa kasvukdigu vérgustiku proovitiikkidel. Ridades on

eraldi esimese ja teise rinde tiivemahtud (M,, M,) ja tulpades on aluseks olnud erinevad andme-
komplektid. Siimbolid on samad mis joonisel 3.

ALS or PCA feature variable sets. Since
the small and large wood volumes were
not present in the FGN plots, the system-
atic overestimation or underestimation
was not apparent. The difference in results
based on ALS or PCA feature variable sets
was small according to RMSE and overall
bias and was probably influenced mainly
by random errors inherent in georefer-
encing and other technical aspects in data
processing chain. The predicted volume
of wood for second layer had much less
scatter compared to that found in the refer-
ence set LOOC. The reason for more stable
estimates may be related to bigger size of
FGN plots which cover several 20 m pixels
whereas single pixel values were used for
the reference set LOOC in our kNN imple-
mentation. However, larger wood volume

values of the second tree layer were sys-
tematically underestimated (Figure 6 d-f).

In validation of imputed wood volume
against forest inventory database records,
the PCA feature variable dataset, which
was based on all possible remote sensing
variables, ranked the best (Figure 7). Con-
sidering the mean total wood volume 134.6
m?3 ha? of the validation forest stands the
relative RMSE for the PCA feature vari-
able dataset based wood volume estima-
tion was 44%. The second best was ALS
feature variable set based wood volume
estimate with larger bias (18.9 m? ha1) and
RMSE (61.9 m3 ha-t) while the only spectral
information (L8) based estimate had the
largest bias (20.6 m3 ha) and RMSE (89.9
m3 hat). All predictions had overestima-
tion at small and underestimation at large
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wood volumes. The overall positive bias
of sample plot based kNN estimates into
stand-wise estimates (Figure 4).

In feature-based weight a; influence test
the smallest RMSE of wood volume esti-
mates according to LOOC was obtained
at a; for canopy cover CaC;,, and weights
of other ALS variables fixed to values giv-
en in Table 3. The optimal 4; apparently
scaled the estimates of canopy cover and
canopy height 90t percentile into the same
range. Either the increasing or decreasing
of a; made estimation errors larger. Valida-
tion of the wood volume estimates on IDB
data however, showed a slight increase in
bias (24.7 m? ha1) and a marginal decrease
in RMSE (60.1 m3 ha?) compared to un-
weight case.

Table 3.  The feature weighting parameter a; (Eq.
1) values which were used in the sensi-
tivity study on ALS feature variable set.
The ALS variables values were scaled to
integer numbers to decrease required data
storage space. The values were input into

(Eq. 1) and further modified by a,

Kirjeldavate tunnuste kaalu a; (1) mdju
tiivemahu ennustusele uuriti ALS andme-
komplektil. ALS tunnuste vddrtused ska-
leeriti tdisarvudeks andmemahu kokku-
hoiuks. Neid vddrtusi kasutati sisendina
valemis (1) ja muudeti edasi kaaluga a;.

Tabel 3.

Feature variable / Range / a;
Kieldav tunnus Haare

CaCs 0..10000 0.01..1.0
Hyp 0..3769 1.0
H,s 0..2791 0.2
R1 0..100 1.0

ratio

The change in distance-based neighbour
weight ¢ value from 0 to 3 resulted only in
a small, but still detectable improvements
in estimation accuracy as found for for-
est stands. The bias estimate and RMSE of
wood volume decreased about 1.5 m3 ha-
when t was increased from zero to three.
Similar trend was detectable by validation
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of estimates on FGN plots, except for first
tree layer wood volume estimate based on
L8 feature variable set.
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Figure 7. The validation of PCA feature variable set

based wood volume (M;+M,) estimate on
stand-wise forest inventory data.

Joonis 7. Peakomponentide andmestikul (PCA) p6hi-
neva tiivemahu (M,+M,) hinnangu vali-
deerimise tulemused metsakorralduse
andmetel.

The second important response variable
was the dominant species code. In Figure
8 the dependence of the predicted propor-
tions of birch, spruce and aspen are shown
based on feature variable sets L8, ALS and
PCA. The overall predicted proportion of
birch had about 10% positive overall bias
(Figure 8 a, d, g). The proportion of birch
trees was underestimated in young stands
and overestimated in old stands, regardless
of the feature variable set used. The propor-
tion of spruce trees was underestimated, be-
ing the smallest for the ALS feature variable
set at the price of much larger random er-
rors. Visual inspection of the maps revealed
substantial noise in the ALS feature variable
set based dominant species maps. The pre-
dicted proportion of spruce trees had also
notable but less pronounced discrepancy
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Figure 8. The difference of species composition between stand-wise forest inventory data and kNN imputed
value in age classes using three different feature datasets (columns). Stdev is the standard devia-
tion of the difference between predicted proportion and the measured value.

Joonis 8. Metsaeraldistele kNN abil ennustatud kase, kuuse ja haava osakaalude vérdlus takseeritud osakaalu-
dega vanusriihmade kaupa. Stdev on ennustatud osakaalu ja andmebaasis antud osakaalu erinevuse
standardhdilve.

from observed value depending on forest present in the reference set. In the same
age (Figure 8 b, e, h). The difference of pre- age classes also the predicted proportion
dicted and observed share of aspen trees, of aspen was the smallest (Figure 8 c, f, i).
however, showed exactly the opposite The comparison of species composition in
trend compared to the prediction error of the reference plots with the corresponding
birch proportion. The smallest discrepancy  forest stand records in the inventory data-
of aspen proportion was in the age classes  base did not reveal such forest age depen-
in which aspen dominated plots were not  dent lack of fit (Figure 9). Hence, the cause
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is rather in the kNN imputation procedure
than a possible systematic error in the forest
inventory database.

The birch dominated reference plot re-
moval decreased also the predicted propor-
tion of birch dominated pixels but did not
always correct for the previously described
opposite to birch proportion trend in the
share of aspen (Figure 10). The partial re-
moval of birch dominated reference plots
caused also the predicted share of spruce
to increase. We repeated the birch plot
partial removal test with random selection
several times and always reached the same
general changes in predicted species com-
position. This can be partially explained
by the fact that many reference plots were
mixed stands and the spruce dominated
plots had also birch and other deciduous
trees, which had an influence on the fea-
ture variables too. The results also expose
the dependence of nearest neighbour tech-
nique on the distribution of the reference
plots in respect to response variables and
feature variables. An explanation here is
that the probability of a reference observa-
tion to be used as nearest neighbour in im-
putation increases with the count of such
plots which have similar vectors of feature
variable values. Similar note is given in the
manual of kNN implementation in IDRISI
Taiga (Clark Labs, Worcester, MA, USA).

Discussion

In this study we were not able to repeat
the kNN imputation of wood volume for
forest stands with accuracy reported by
Packalén & Maltamo (2007) concerning the
estimation bias at small or large predicted
values. Packalén & Maltamo (2007) carried
out their tests in boreal forests which were
dominated by Norway spruce and Scots
pine and the share of deciduous was in av-
erage only about 10%. Another reasons for
the good accuracy statistics achieved in the
study of Packalén & Maltamo (2007) who
report 10% relative RMSE for average stem

volume at stand level, are the stand level
leave-one-out cross validation which tends
to produce more optimistic figures (Tomp-
po et al., 2009), and the use of airborne im-
ages as spectral feature variables which
provide much finer spatial resolution
compared to Landsat-8 OLI images used
in this study. Concerning the feature vari-
able selection, we can confirm that already
a few informative variables e.g. principal
components of original feature variable set
perform sufficiently well as pointed out by
Packalén & Maltamo (2007) for canonical
components used in kKMSN.

The inclusion of airborne lidar met-
rics did improve the accuracy of kNN pre-
dicted wood volume compared to spectral
feature variables but did not remove the
underestimation of the wood volumes at
larger values for the lower layer of trees.
Neither did the ALS feature variable set
nor PCA feature variable set, which both
included information from lidar metrics,
entirely remove the well-known (Fazakas
et al., 1999) overestimation of small values
and underestimation of large values in the
predicted wood volume in the upper tree
layer. While airborne lidar data are still
quite expensive for large area applications,
the medium spatial resolution multi spec-
tral satellite images still remain one of the
main feature variable sources. The spectral
information from airborne or space borne
measurements must be used in addition to
lidar data if tree species composition is tar-
get in kNN imputation. Tree species com-
position can be predicted in some extent
based on lidar data only (e.g. Breidenbach
et al., 2010), since the airborne topographic
lidar emit pulses in the near infrared part
of electromagnetic spectrum where the
spectral reflectance of coniferous and de-
ciduous forests is different (Nilson & Pe-
terson, 1993). The different spectral reflec-
tance impacts the formulation of the pulse
reflection positions and the relationships
between lidar metrics and forest height or
wood volume will be species dependent.
Recent studies (Zald ef al., 2014) show that
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time series of Landsat-5 TM and Landsat-7
ETM+ type satellite images may further
improve the accuracy of species composi-
tion prediction. Strategic forest inventory
data and multitemporal Landsat images
can also be used for basal area prediction
and the estimates may provide an alterna-
tive to expensive sample plot based for-
est management inventories (McRoberts,
2008). However, in practical applications a
careful validation of the imputed maps of
forest inventory variables is required to de-
cide if the accuracy of the maps is suitable
for decision making.

The accuracy estimation of the kNN im-
puted maps is not a trivial task and may
be related to many difficulties. The sim-
plest method is the leave-one-out cross
validation on the reference set but this may
produce unrealistically optimistic results
(Tomppo et al., 2009). An alternative is to
split the reference set into training and
validation sets which will have a negative
impact on the final estimation accuracy
(Chirici ef al., 2008). McRoberts (2012) pro-
poses bootstrapping with replacement to
construct a large number alternative refer-
ence sets based on the original reference
set. For each bootstrap sample the nearest
neighbour technique is to be then used to
calculate predictions for each population
unit. Variability and bias will be then esti-
mated using the bootstrap samples based
predictions (McRoberts, 2012). In this study
we conducted a test where large propor-
tion of birch dominated reference plots was
removed to equalize forest reference plot
distribution of different deciduous forests
according to forest age. This treatment ful-
filled partially its purpose and the overes-
timation of birch proportion decreased in
forest stands, however, it also caused posi-
tive bias in the spruce proportion which
was predicted unbiased for most of the age
classes in case of using full reference set.
This experience indicates that if target set
forests in an area of interest, e.g. within a
Landsat image frame, have systematically
different characteristics by regions then a
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bootstrap sample dominated by the refer-
ence set units from one region may pro-
duce unfavourable estimates for the other
region. A solution could be the application
of kNN techniques and bootstrapping re-
gionally based on some stratification crite-
rion in similar to Tomppo et al. (2009) who
used separate reference sets for mineral
soils and peat land soils.

The kNN procedure does not require
any assumptions regarding the distribu-
tions of response or predictor variables,
instead, user has to select the best perform-
ing feature variables, make the choice of
distance metric, and find appropriate val-
ues for k, t, and a;. In our study the selec-
tion of feature variables (mainly inclusion
of airborne lidar metrics) had the largest
impact on results while varying the num-
ber of neighbours or distance-based neigh-
bour weight t or feature-based weight
a; had much smaller influence. By using
fewer neighbours the lack of fit close to the
minimum and maximum values to be es-
timated decreased in some extent but was
still apparent. The increase in f from 0 to
3 decreased both RMSE and bias estimate
at forest stand level by about 1.5 m3 hat
independent from feature variable set. On
the FGN plots the improvement was up
to 5 m3 ha for PCA feature variable set,
but smaller for other feature variable sets.
The problem of selecting appropriate val-
ues k, t, and a; and the best set of features
for a regional kNN application can prob-
ably be solved by adding an optimization
routine to kNN implementation similar to
McRoberts (2008, 2012) and McRoberts et
al. (2015). However, the optimization may
have to be carried out separately for wood
volume estimation and for species com-
position estimation, since wood volume is
related to forest height and canopy cover,
but species separation is better based on
spectral reflectance. Inclusion of spectral
feature variables to ALS feature variable
set may increase redundancy and wood
volume estimation errors. On the other
hand, if species composition is calculated
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from shares of the tree species wood vol-
ume in target set sampling units then the
optimization routine can be adopted for
both by keeping attention also to the other
important measures e.g. species composi-
tion in different age classes.

Optimization may tune kNN for a cer-
tain region, for a particular set of features
or for a set of response variables based on
validation observations exclusive to refer-
ence set. However, such exclusive valida-
tion datasets are not always available or
require additional field measurements
increasing the project cost. In this study
stand-wise forest inventory data and for-
est growth network sample plots from
Laeva test site were used as the exclusive
validation information. Both the validation
datasets had their positive and negative
aspects. Stand-wise forest inventory covers
most of the forests in test site, but the in-
ventory variables have bigger random and
systematic errors due to the applied inven-
tory method. The FGN sample plots are
instrumentally measured, but the count is
small and the dataset lacks observations
from young stands and there are only few
sample plots from spruce stands. Both da-
tasets required updating to predict stem
volume information to the reference set
plots measurement time. Hence, neither of
the validation datasets was perfect to study
the causes of under and over-estimation of
wood volume. The solution for such gen-
eral study can be an artificial dataset with
controlled shape of relationships between
response and feature variables, adjustable
distribution of reference observations in
respect to response variables and simu-
lated noise. Forest reflectance models and
empirical models may be used to create
such datasets for kNN studies.

Conclusions
Our study confirmed that in forests similar

to Laeva test site the k nearest neighbour
imputed wood volume may be overesti-

mated at small values and underestimated
at large values. This lack of fit was present
for the wood volume in upper and lower
tree layer. Inclusion of airborne lidar data
did decrease but not remove this lack of fit.
We also found that a few principal compo-
nents of the original feature variable set al-
ready contain enough information for kNN
imputation.

There was no substantial difference in
results when using principal components
instead of original feature variables, which
shows the principal component analysis as
an efficient tool for feature space dimen-
sionality reduction. The kNN predicted
species composition had a forest age depen-
dent lack of fit at species level and the dis-
crepancy was dependent also on the num-
ber of reference plots with similar dominant
species. This finding can be important for
next studies which use bootstrap samples
with replacement for error estimation and
for confidence limits construction of the
kNN imputed values over study areas con-
sisting of regionally different forests. Con-
sidering the very basic and not optimized
kNN implementation used in this study the
results are still encouraging, since the forest
in Laeva test site are far more complex than
used in many other studies.
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Appendix 1. Some examples of plots from different forest types in Laeva test site (photos M. Merendkk).

Lisa 1. Ndited erinevatest naadi (a, ¢, d, f) ja angervaksa (b, e) kasvukohatiiiibi proovitiikkidest Laeva
testalalt (fotod M. Merendkk).

a) 55 years old AG site type birch stand with b) 30 years old FP site type birch dominated stand
second layer spruces. with 20% grey alder in the first layer.

c) 50 years old AG site type birch and spruce mixed  d) 70 years old AG site type birch stand with dense
forest stand. understory vegetation.

e) 55 years old FP site type birch stand with dense f) 45 years old AG site type spruce dominated stand
understory vegetation. with sparse second layer spruce.
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Puistute liigilise koosseisu ja tiivemahu hindamine k-lihima
naabri meetodil mitmerindelistes majandatavates segametsades

Mait Lang, Tauri Arumde, Tonu Liikk ja Allan Sims

Kokkuvote

Jatkusuutlik metsamajandus ja seda toetav
metsapoliitika peab tuginema objektiivse-
tele ja piisavalt sagedasti uuendatud eelis-
tatult kogu kasitletavat ala katvatele tak-
seerandmetele. Uksikvaatlusteks on kas
puistud v6i proovitiikid, mille pdhjal saab
soovi korral teha tildistusi piirkonniti (Kri-
gul, 1972). Suurtel aladel takseerandmes-
tiku uuendamiseks on paljudes maades
kasutamist leidnud niinimetatud k ldhima
naabri klassifitseerimismeetod (KNN), mis
seob puistu takseerimisel vdi proovitiiki
mootmisel saadud andmed satelliitidelt
voi lennukitelt tehtud spektraalsete moot-
miste voi kolmemodtmeliste punktiparve-
dega vdimaldades niimoodi koostada tile-
pinnalisi takseertunnuste kaarte (Fazakas
et al., 1999, Holmgren et al., 2000; Huiyan et
al., 2006; McRoberts & Tomppo, 2007; Pac-
kalén & Maltamo, 2007; Chirici et al., 2008;
Kajisa et al., 2008; McInerney & Nieuwen-
huis, 2009; Breidenbach et al., 2010; McRo-
berts, 2012; Fassnacht et al., 2014; Zald et
al., 2014). Eestis on varem kNN meetodit
kasutanud masindppe ithe osana metsade
takseertunnuste ennustamiseks lausmetsa-
korralduse andmete jargi Tamm & Remm
(2009).

Takseertunnuste kaartide koostamiseks
kasutatava kNN t66pohimote on lihtne.
Eeldatakse, et nididisteks on olemas teatud
hulk proovititkke voi puistuid, millel on
meid huvitavad tunnused méddetud. Nei-
le niidistele arvutatakse asukohakoordi-
naatide jargi satelliidipiltidelt, aerofotodelt
voi aerolidari modtmistest tunnusvektorid,
mis sisaldavad spektraalset heledust voi
selle teisendusi ning aerolidari punktipilve
korgusjaotuse statistikuid. Tunnusvektoris
voib olla {ihe tunnusena ka geograafiline
asukoht. Seejarel hakatakse kaugseireand-

mestikku pikselhaaval ldbi vaatama ning
igale pikslile otsitakse tunnusvektori jar-
gi k koige sarnasemat ndidist. Sarnasuse
modtmiseks koige lihtsamal juhul arvuta-
takse ndidise ja vaadeldava piksli tunnus-
vektorite vaheline Eukleidiline kaugus (1).
Vaadeldavale pikslile omistatakse k kodige
ldhema néidise andmetest voetud soovitud
takseertunnuse véartus (ttivemaht M, met-
sa korgus H) kas aritmeetilise keskmisena
voi eelnevalt arvutatud kaugusega poord-
vordeliselt kaalutuna (2, 3) (Fazakas et al.,
1999; McRoberts, 2012). Nominaaltunnuste
korral nagu néiteks puuliigi kood kasuta-
takse moodvaartust. Uheks olulisimaks
probleemiks kNN meetodi puhul on saa-
davate hinnangute nihe (Poso et al., 1990;
Holmgren et al., 2000) ehk siistemaatiline
erinevus tegelikust védartusest, mille poh-
justeks peetakse kaugreiretunnuste ja maa-
peal moddetud takseerandmete vahelisi
mittelineaarseid ja kiillastuvaid seoseid
(joonis 3) ning seda, et enamasti on koiki-
de tunnuste kaalud positiivsed (Fazakas et
al., 1999). Lahima naabri klassifitseerimis-
tehnika puhul on uuritud nii véimaliku
naabrite arvu kui ka tunnusvektorite di-
mensionaalsuse vihendamist ning saadud
ennustuste vigade hindamist. Enamik au-
toreid pakub naabrite arvuks 3 <k <10, aga
néditeks McRoberts (2008, 2012) saab kogu
protsessi optimeerimise jdrel tldiselt k >
25. Kaugseiretunnuste valiku osas on ka-
sutatud geneetilisi algoritme (McRoberts,
2008; Tomppo et al., 2009), klasteranalitisi
(Tamm & Remm 2009), peakomponentide
meetodit (Chirici et al., 2008) ja ekspertar-
vamust (Zald et al., 2014).

Laeva-Kursi piirkonda rajati 2013. aas-
tal 15 x 15 km katseala (joonis 1) eesmargiga
uurida kNN meetodi abil mitmerindelistes
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segapuistutes rinnete tiivemahu ja puistu
koosseisu hindamist. Ndidistena kasutati
444 proovitiikki (tabel 1, joonis 2), tiivema-
hu hinnangute kontrollimiseks oli 89 met-
sa kasvukdigu proovitiikki ja 2290 puistut
metsakorralduse andmebaasist. Kontrol-
landmestikus ennustati ttivemaht mude-
lite abil 2013. aasta kohta, millal tehti len-
nukilt laserskanneerimine. Siistemaatilise
allahindamise tottu (Raudsaar et al., 2014)
skaleeriti metsaregistri takseerkirjelduste
tivemaht (M,p;) proovititkkidel modde-
tud ttivemahu (M,) vahemikku (joonis 4).
Ennustustes testiti viit tunnusvektorite
komplekti (tabel 2), mis koostati originaal-
tunnustest voi nende peakomponentidest.
Testiti naabrite arvu ja leiti, et vorreldes
k = 3 on teiste variantide puhul saadud hin-
nangute erinevused véikesed. Uuriti kirjel-
dava tunnuste kaalu g; (1) moju tiivemahu
ennustustele ALS andmekomplektil pohi-
neva tiivemahu ennustusele andes kaalule
a; tabelis (3) toodud viartused. Korraldati
ka puistute koosseisu ennustamise katse,
milles ndidisalade hulgast eemaldati kuni
70% kaseenamusega proovitiikidest.
Tulemustest selgus sarnaselt paljude-
le varasematele uuringutele, et aerolidari
andmete kaasamine parandab ttivemahu
ennustamise tdpsust ning vidhendab en-
nustatava tiivemahu vaddrtusest sdltuvat
nihet nii esimese kui ka teise rinde puhul
(joonised 5, 6, 7). Samas ei dnnestunud tihe-
gi kaugseiretunnuste komplekti puhul siis-
temaatilist nihet ttivemahu hinnangutest
korvaldada. Ilmnes ka, et tunnuste ruumi
modtmete vdhendamine peakomponen-
tide meetodi abil on tdhus vdte, sest nii-

teks koikide sisendtunnuste (tabel 2) viis
esimest peakomponenti sisaldasid 99,7%
kogu informatsioonist ning ennustatud
tiivemahud v&i puistute koosseis oli sama
tdpne voi isegi tdpsem originaaltunnus-
te kasutamisega vorreldes. Usna uudseid
tulemusi saadi puistute liigilise koosseisu
ennustuse analtitisimisel seoses puistute
vanusega. Selgus, et ennustatud koossei-
sus esineb siistemaatiline viga puuliigiti
soltuvalt puistute vanusest (joonis 8) ning
kaskede osakaalu hinnatakse nooremates
puistutes alla ja vanemates stistemaatiliselt
tile, aga haabade osakaalu puhul on tépselt
vastupidi. Kuna niidisalade ja neid sisal-
davate metsaeraldiste andmete vordlemi-
sel sarnast seaduspara ei ilmnenud (joo-
nis 9), siis tuleb sellise stistemaatilise vea
pohjuseks pidada kNN tehnika omapéra,
mis on seotud tunnusvektorite info kat-
tumisega segapuistutes. Kui ndidisalade
hulgast eemaldati vanusklassiti kuni 70%
kaseenamusega proovitiikkidest, et muuta
haava ja kaseenamusega niidiste jagune-
mist vanuse jargi vérdsemaks, muutusid
ka puuliikide ennustatud osakaalud, kuid
nihked hakkasid tekkima ka eelnevalt pi-
gem tdpselt ennustatud kuuskede osakaa-
lus (joonis 10). Selline vea timberpaiknemi-
ne soltuvalt ndidisproovitiikkide jaotusest
koosseisu voi vanuse jdrgi voib osutuda
oluliseks neis uuringutes, kus kasutatakse
tagasipanekuga bootstrap valimit (McRo-
berts, 2012) kNN ennustuste usalduspiiri-
de konstrueerimiseks aladel, kus tihe pildi
ulatuses esineb piirkonniti erinevaid metsi.
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