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Abstract. Nearest neighbour techniques are useful for constructing maps of forest 
inventory variables based on sample plot and auxiliary data from remote sensing. 
The most problematic issue of the nearest neighbour technique is possible systematic 
bias in the estimated values. In this study a 15 by 15 km test site in nemoral multi-
layer mixed forests was established in Laeva, Estonia. A set of 444 circular sample 
plots was used as reference set. Airborne lidar data and Landsat-8 Operational Land 
Imager image were used to construct fi ve different feature variable sets consisting 
of original variables and alternatively principal components. The response variables 
were wood volume of fi rst tree layer, wood volume of the second tree layer and main 
species code. A special test was carried out where a substantial amount of Silver birch 
dominated plots were removed from the reference set. The wood volume prediction 
validation was carried out on 89 forest growth sample plots and on 2290 forest stands. 
Species composition prediction was validated on 986 forest stands. As in many previ-
ous studies the results confi rmed superiority of airborne lidar variables over spectral 
variables for wood volume estimation. The fi rst three principal components of air-
borne lidar variables and fi rst fi ve principal components of all possible original feature 
variables contained over 99% of the information and performed well in imputations. 
The imputed wood volume at small values was overestimated and underestimated at 
large values regardless of used reference set. The feature variable sets containing spec-
tral data performed better for species composition imputation. There was a forest age 
dependent discrepancy in predicted species proportions: birch and spruce propor-
tions were underestimated in young stands and overestimated in older stands while 
proportion of aspen had exactly the opposite errors. The lack of fi t depended slightly 
on the feature variable sets. The birch dominated plot partial removal from the refer-
ence set changed the predicted proportion of species but did not remove the forest age 
dependent lack of fi t. The result can be important for the studies in which bootstrap 
samples are used to estimate error statistics for nearest neighbour technique based 
forest inventory variable maps.
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Introduction

Sustainable forest management and forest 
policy implementation can only be based 
on timely updated and accurate estimates 
of forest resources. The elementary obser-
vation units can be forest stands which are 
homogeneous parts of forest delineated for 
common silvicultural treatments or instru-
mentally measured sample plots which 
are further used to produce statistical esti-
mates for a stand, a small area, a region or 
a country (Krigul, 1972). Such a regularly 
distributed plots based sampling is used 
for National Forest Inventories in many 
countries including Estonia (Tomppo et al., 
2010; Adermann, 2010). Several data link-
ing methods and sampling designs have 
been tested to incorporate remote sensing 
data i.e. aerial photos, multi spectral satel-
lite images, radar data and airborne laser 
scanning data to improve the accuracy of 
regional estimates and to construct up-
dated maps of forest inventory variables 
(Poso et al., 1990; Howard, 1991; McRoberts 
& Tomppo, 2007). One of the most popular 
techniques has been nearest neighbour im-
putation (Fazakas et al., 1999; Holmgren et 
al., 2000; Huiyan et al., 2006; McRoberts & 
Tomppo, 2007; Packalén & Maltamo, 2007; 
Chirici et al., 2008; Kajisa et al., 2008; McIn-
erney & Nieuwenhuis, 2009; Breidenbach et 
al., 2010; McRoberts, 2012; Fassnacht et al., 
2014; Zald et al., 2014). In Estonia, Tamm & 
Remm (2009) used stand-wise forest inven-
tory data and nearest neighbour technique 
based machine learning algorithms to con-
struct forest maps of inventory variables.

The k nearest neighbour imputation 
(kNN) for forest inventory is based on the 
assumption that the response variables 
i.e. the variables measured on elementary 
observation units in a reference set can be 
assigned to a target set by using a similar-
ity measure based on auxiliary predictor 
variables i.e. feature variables which are 
obtained mainly from remote sensing. The 
elementary sampling units of feature vari-
ables are usually raster image pixels. The 

reference set elements are instrumentally 
measured and georeferenced sample plots 
with location coordinates linking the plot 
data to the observations of feature vari-
ables. In nearest neighbour imputation the 
target set pixels are assigned weighted av-
erages of response variables of k nearest ob-
servations from reference set where for each 
observation both the response variables and 
feature variable values are known (Fazakas 
et al., 1999; McRoberts, 2012). The Euclidean 
distance is the most common metric for es-
timating similarity of a target set pixel to a 
reference set observation.

According to McRoberts (2012) the 
nearest neighbour techniques are appeal-
ing since they can be used for map con-
struction, they can handle continuous and 
categorical response variables, there are no 
assumptions regarding the distributions of 
response or predictor variables, and they 
can be applied for a wide range of data sets. 
On the other hand, the main concern about 
spectral feature variables based nearest 
neighbour techniques for forest inventory 
is the possible bias in estimates (Poso et al., 
1990; Holmgren et al., 2000) which is caused 
by the nonlinear and saturating relation-
ships of the feature variables to response 
variables, e.g. age and spectral refl ectance 
of forest (Nilson & Peterson, 1993), and the 
fact that all weights are positive (Fazakas 
et al., 1999). When the observations of se-
lected nearest neighbours are near their 
smallest or largest values under- or over-
estimation can occur. However, if the tar-
get set estimates are aggregated for an area 
of several hundreds of hectares the mean 
values are assumed to be unbiased and the 
root mean square error of estimates de-
creases (Fazakas et al., 1999). Holmgren et 
al. (2000) describe a systematic lack of fi t in 
multispectral satellite images based kNN (k 
= 5) imputed stem wood volume estimates 
at stand level (overestimation at small val-
ues and underestimation at large values) 
and propose a linear correction model to 
decrease the estimation error. Kajisa et al. 
(2008) used kNN in conifer plantations in 
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Japan and also indicated similar systematic 
lack of fi t in the imputed stem volumes at 
sample plot level when 5 ≤ k ≤ 10. Howev-
er, McRoberts (2008, 2012) shows that for-
est stand level estimates of wood volume, 
basal area and number of trees per unit 
area can be obtained with reasonable accu-
racy if optimal set of feature variables is se-
lected and k value is optimized during the 
imputation procedure. On the other hand, 
Gilichinsky et al. (2012) propose histogram 
matching of kNN imputed wood volume 
to the corresponding statistics from fi eld 
inventory to decrease the lack of fi t and re-
duce estimation errors. However, Gilichin-
sky et al. (2012) did not study the impact of 
this procedure on other response variables.

The nearest neighbour methods can 
handle arbitrary set of feature variables, but 
the unrelated ones to the response variables 
increase uncertainty of estimates (McRob-
erts, 2008). Reduction of feature variable 
space can be accomplished by using genetic 
algorithms to select the most informative 
set of feature variables (McRoberts, 2008; 
Tomppo et al., 2009), cluster analysis (Tamm 
& Remm, 2009), principal components or 
spectral variable transformation to vegeta-
tion indices (Chirici et al., 2008), or an ex-
pert guess (Zald et al., 2014). Latifi  & Koch 
(2012) used evolutionary genetic algorithm 
to select 12 covariates from initial 68 predic-
tor variables calculated from full-wave ALS 
data and four band multi spectral line scan-
ner data. The estimates of biomass, number 
of stems per unit area and standing volume 
for target area were imputed by using re-
gression tree method and kNN with the ca-
nonical correlation analysis distance metric 
(kMSN) which basic principle principle was 
described by Moeur & Stage (1995). The re-
gression tree imputation method was sug-
gested in case of large number of well cor-
related predictor variables. However, the 
kMSN imputed stem volume estimates had 
smaller overall bias. Latifi  & Koch (2012) 
also showed that both imputation methods 
have systematic lack of fi t in stand level es-
timates of stem volume.

One important issue regarding the near-
est neighbour techniques is related to the 
number of nearest neighbours, i.e. the val-
ue of k. Based on earlier studies, Fazakas 
et al. (1999) conclude that increase in k im-
proves wood volume estimation accuracy 
up to 5 ≤ k ≤ 10 spectral neighbours, with 
the price of artifi cially improved correla-
tion between response and feature vari-
ables compared to the fi eld measurements. 
It is the characteristic of kNN that increase 
in k shifts the estimated values towards the 
sample mean and the rate of decrease of 
prediction errors can be used to select op-
timal k value. Chirici et al. (2008) indicate 
that increase of k over 5 does not substan-
tially decrease estimation errors. However, 
McRoberts (2008, 2012) shows that genetic 
algorithm based optimization can yield 
values of 25 ≤ k ≤ 47 and McRoberts (2012) 
shows that k is related to the distance-
based weight t imposed on the neighbours 
used in the calculation of predictions.

The aim of the study was to test the 
performance of a simple kNN imputation 
technique in managed nemoral multi-layer 
mixed forests to estimate 1) standing wood 
volume for fi rst (dominant) and second 
(lower) tree layer, and 2) to estimate main 
species for target pixels and species com-
position for forest stands. The feature vari-
ables were extracted from Landsat-8 OLI 
image and from airborne laser scanning 
data. Five combinations of feature vari-
ables were tested. The reference set consist-
ed of 444 sample plots and validation was 
carried out on exclusive 89 forest growth 
network plots and on 2290 forest stands. A 
special test was carried out where 70% of 
Silver birch dominated reference plots re-
moved from the reference set to study the 
stability of species composition prediction.

Material and methods

Test site
The 15 by 15 km test site (Figure 1) is lo-
cated in southern Estonia (centre coordi-
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nates in EPSG:3301 projection: 6490854 N; 
642472 E) and the area is mostly dominated 
by mixed multi-layered deciduous forests. 
Dominating tree species are Trembling 
aspen, Silver birch, Norway spruce, Grey 
alder and Black alder. There are also Scots 
pine stands growing on some less fertile 
sites. The second i.e. the lower layer in the 
deciduous forests is usually dominated by 
shade tolerant Norway spruce. The Padus 
avium Mill. or Corylus avellana L. dominat-
ed forest understory had canopy cover in 
many plots over 20% (Appendix 1). There 
are mainly two different forest site types 
according to Lõhmus (2004) – Aegopodium 
(AG) and Filipendula (FP). The soil types 
are according to FAO-UNESCO mainly 
either Calci Eutric Gleysols or Eutri Histic 
Gleysols. Most of the forests are managed 
actively.

Figure 1.  Test site location map.

Joonis 1.  Testala asukoht.

Sample plots and forest inventory data
First step to create kNN reference set was to 
use stand-wise forest registry data to fi nd 
the most frequently occurring dominant 
tree species in Laeva test site area. Then 

500 stands were randomly chosen to rep-
resent species and age distribution (young, 
middle aged, old-grown) of the test site. 
Only the stands with area over 1 ha were 
sampled. The radius for reference sample 
plots was 10 m and the plots were placed 
in a homogeneous and representative area 
in each selected stand, with at least 20 m in-
side from the edge. All the trees with diam-
eter at breast height larger than 4 cm were 
measured with calliper and a minimum of 
15 trees was selected for height measure-
ments. In very young stands the stand 
density, canopy cover, mean tree diameter 
at breast height and forest height were es-
timated in the fi eld. Table 1 provides the 
general description and the distribution of 
the reference set plots according to domi-
nant species. A set of treeless (Nfo) refer-
ence plots from forest land was added to 
improve estimates of small wood volume 
values. The “Nfo” sample plots had only 
some seed trees detectable from lidar 
height data. The majority of the reference 
plots are dominated by Silver birch, Nor-
way spruce or Trembling aspen. The birch 
and spruce dominated reference plots are 
distributed over all possible stand ages but 
there are only few aspen dominated plots 
in the age range of 20 < A < 50 (Figure 2). 
In this study 444 reference plots were used 
in kNN imputations.

For the validation of kNN imputations 
we used data from the network of perma-
nent forest growth research plots (FGN 
plots) which covers the whole Estonia 
(Kiviste & Hordo, 2002). The FGN plots in 
Laeva were established during the period 
1995–2004. A circular FGN plots may have 
a radius of 15, 20, 25 or 30 meters following 
the rule that at least 100 trees of the fi rst 
tree layer are contained within the sample 
plot area. Sample plot radius is increased 
when this criterion is not fulfi lled. On each 
plot, the polar-coordinates (azimuth and 
distance from the plot centre), the diameter 
at breast height, and defects are assessed 
for each tree. The tree height and height 
to crown base are measured on every fi fth 
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Figure 2.  The distribution of training (reference) plots according to forest age and dominant species of the 
three most widespread species.

Joonis 2.  Kolme enamlevinud puuliigi puistute õpetusalade arv vanuse järgi.

Table 1.  The reference plot count, average wood volume of the fi rst tree layer (M1) and average species 
composition by dominant species. 

Tabel 1.  Treeningproovitükkide arv, keskmine esimese rinde tüvemaht (M1) ja liigiline koosseis enamuspuu-
liigi järgi. 

Dominant species /
Enamuspuuliik

Code /
Tähis

Plot 
count /
Proovi-
tükke

M1

Average species composition /
 Keskmine koosseis

HB KS KU LM LV MA SA TL

Populus tremula L. / Haab HB 50 262 79 15 3 2 1 0 0 0

Betula pendula Roth / Kaask KS 182 215 8 72 8 7 3 0 0 2

Picea abies (L.) Karst. / Kuusk KU 123 208 2 15 78 1 2 1 0 1

Alnus glutinosa (L.) Gaertn. / Sanglepp LM 19 188 0 23 6 66 4 0 0 1

Alnus incana (L.) Moench / Hall lepp LV 11 68 6 23 2 0 63 0 0 6

Pinus sylvestris L./ Mänd MA 12 293 0 5 13 0 0 82 0 0

Fraxinius excelsior L. / Saar SA 1 278 0 0 22 0 0 0 28 50

Other / Teised TL 3 70 7 17 14 12 8 0 0 42

Treeless / Lagedad alad Nfo 43 - - - - - - - - -

tree and also on dominant and rare tree 
species. The sample plots have measure-
ment interval of fi ve years. The subset of 89 
sample plots used in this study was mea-
sured on years 2010 and 2011. The wood 
volume was predicted for the year 2013 
based on the increment of the last measure-
ment interval.

The kNN predictions were also validat-
ed on the stand-wise forest inventory data. 
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kNN predicted stem volume was validated 
on a subset of 2290 stands which had 1) 
size over 2 ha, 2) had no treatments or had 
treatment date earlier than inventory, and 
3) were not outliers in the wood volume 
to spectral refl ectance relationship due to 
disturbances. The wood volume in data-
base was incremented to the year 2013 us-
ing algebraic difference model of volume 
growth (Kangur et al., 2007). This subset 
was further restricted to 986 stands for the 
species composition analysis by setting the 
minimum number of 20 m pixels within 
stand to npix> = 37.

Spectral data and lidar data
A cloud free Landsat-8 Operational Land 
Imager (OLI) image from 03.08.2014 was 
downloaded from USGS archive and 
projected to Estonian coordinate system 
EPSG:3301. Pixel size was set to 20 m for 
compatibility with lidar metrics feature 
space. The pixel values in digital numbers 
(DN) of downloaded image were used in 
calculations. 

The lidar point cloud height statistics – 
mode, height percentiles, and standard 
deviation (Table 2) – were calculated from 
point clouds with 1.3 m height fi lter to re-
move near ground refl ections in FUSION/
LDV (v3.42) software (McGaughey, 2014) 
by using 20 m cell size for sampling. Fil-
tering was done to reduce the infl uence of 
the dense understory vegetation as found 
out in previous studies (Lang et al., 2012; 
Arumäe & Lang, 2013). The digital terrain 
model (DTM) for point cloud height nor-
malization was created using FUSION/
LDV modules Groundfi lter and GridSur-
faceCreate with cell size set to 4 m.

The sets of feature variables
The characteristic relationships of wood 
volume (Mtr) and Lorey’s height of the for-
est in the reference plots (Htr) with some 
spectral bands of Landsat-8 OLI image and 
airborne lidar metrics are shown in Figure 
(3). Spectral refl ectance of the forests de-
creases with increase in wood volume non-

linearly and in near infrared (OLI5) and 
shortwave infrared (OLI6) bands the rela-
tionship depends on tree species composi-
tion (Figure 3 a–c). There are some outliers 
in the Lorey height to lidar H90 relationship 
(Figure 3 d) which were the training plots 
with tall seed trees and substantially lower 
young tree layer of both the layers having 
similar basal area. Some reference plots 
with only tall seed trees were also outliers 
in stem wood volume to lidar H90 relation-
ship (Figure 3e) thus, canopy cover (CaC) 
must be included to feature variables for 
correct estimates of wood volume in such 
target set pixels.

Many authors emphasize the impor-
tance of feature variable selection for kNN 
imputation. We did not have a genetic al-
gorithm interface or bootstrapping inter-
face on the used kNN implementation, but 
constructed fi ve sets of feature variables 
(Table 2). Two sets consisted of original 
spectral bands or lidar variables and three 
sets were based on principal components 
of the fi rst two sets to reduce dimensional-
ity of feature space and reduce the number 
of redundant variables Table 1 in McRob-
erts, 2012. The fi rst set of features consisted 
of fi rst seven Landsat-8 OLI optical bands 
and the set is further in the text indicated 
by L8. The second set (L8PCA) of feature 
variables was the fi rst three principal com-
ponents of the set L8. The principal compo-
nents described 60.8%, 36.8% and 1.7% of 
the total variation in the L8. The third set 
of feature variables (ALS) was based sole-
ly on airborne lidar data and consisted of 
90th and 25th percentiles (H90 and H25 corre-
spondingly) of point cloud height distribu-
tion, canopy cover (Lang 2010) at reference 
height href = 3m, and pulse split variable 
R1ratio = count(return = 1) / count(all). The 
variables performed well for stem volume 

M. Lang et al.

estimation in previous study in Aegviidu 
test site, Estonia (Lang et al., 2012). Fourth 
set of feature variables (ALSPCA) consisted 
of the fi rst three principal components of 
all lidar metrics and the three components 
described 92.4%, 6.1% and 1.2% of the to-
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Figure 3.  Relationships between some main remote sensing variables and forest inventory variables in the 
training reference plots. The relationships with wood volume (Mtr) are nonlinear, dominant spe-
cies dependent and often saturating. Species codes are given in Table 1.

Joonis 3.  Mõnede kaugseiretunnuste ja metsa takseertunnuste seoseid õpetusaladel. Seosed tüvemahuga 
(Mtr) on mittelineaarsed, liigiomased ja tihti küllastuvad. Lorey kõrguse (Htr) joonisel (d) eristuvad 
seosest sarnase rinnaspindalaga kõrge ülarinde ja oluliselt madalama esimese rindega proovitükid. 
Puuliikide koodid on tabelis 1.

tal variation leaving only about 0.3% of 
the lidar data variability undescribed. The 
fi fth feature variable set (PCA) consisted 
of the fi rst fi ve principal components of all 
L8 and lidar variables combined. The fi ve 
principal components described 93.6%, 
4.3%, 1.0%, 0.5% and 0.3% of total varia-
tion. IDRISI Taiga (Clark Labs, Worcester, 
MA, USA) was used to extract principal 
components.

kNN imputation of wood volume and 
dominant species
The weighted k-nearest neighbour algo-
rithm used in this study was implemented 
according to method outlined by Franco-
Lopez et al. (2001). First, Euclidean distance 
measured in feature space between pixel 

to be estimated p and pixels with reference 
data pi is calculated:
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where sp, j = digital number of pixel to be 
estimated, spi, j = digital number of pixel 
with known reference data, nf = number of 
dimensions of feature space used and aj = 
weight of dimension j. The aj was fi xed to 
1 in most of the tests in this study, how-
ever, a aj sensitivity study was carried out 
on ALS feature variable set.

The reference set pixels are ordered ac-
cording to their distance from pixel to be 
estimated so as dp1, p ≤ dp2, p ≤ dp3, p , ..., ≤ dpk, p. 
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distances dpi., p, the weight of each pixel 
with known reference data in pixel to be 
estimated p is calculated:

,              (2)

where t is reference observation weight. 
Finally, arbitrary variable m of interest for 
pixel p is imputed as:

(3)

where mpi 
= attribute value for pixel pi. For 

categorical type of variables, mode value 
is used instead of weighted average. For 
pixel level error estimation, leave-one-out 
cross validation method (LOOC) is car-
ried out, where validation data set is con-
structed so that for estimating a pixel with 
known attribute data, the point’s own data 
is omitted from the calculations (Katila et 
al., 2001).

For each target set pixel the wood vol-
ume for the fi rst and second tree layer 
(M1kNN, M2kNN), and dominant species 
code was predicted by using the fi ve sets 
of feature variables (L8, L8PCA, ALS, AL-
SPCA, PCA). The number of tested nearest 
neighbours was k . The sensitiv-
ity of the kNN imputed wood volume to 
feature-based weight aj 

was carried out on 
ALS feature variable set by assigning the 
aj 

values given in Table 3. In the test setup 
values k = 3 and t = 2 were used. The sensi-
tivity of the kNN imputed wood volume to 
distance-based neighbour weight t (Eq. 2) 
was tested on feature variable sets L8, ALS 
and PCA by using values of t .

Table 2.  The variables in feature variable sets. The 
principal component feature variable sets 
were based on the included variables. Hx 

are the lidar point cloud height distribu-
tion percentiles. CaCx are the lidar data 
based canopy cover estimates at refer-
ence height shown in subscript. Stdev is 
standard deviation and Mode is the mode 
value. R1ratio is calculated from point 
cloud as count(return=1)/count(all). OLI 
corresponds for Landsat-8 Operational 
Land Imager.

Tabel 2.  Kokkuvõte kNN ennustustes kasutatud 
tun  nuste komplektidest. Peakomponenti-
dest koosnevate tunnuste komplektid 
põ  hi nevad näidatud tunnustele. Hx on 
punkti parve kõrgusjaotuse vastavad prot-
sentiilid. CaCx on punktiparvest alaindeksis 
näidatud referentskõrgusel arvutatud 
kat vus. Stdev ja Mode tähendavad stan-
dardhälbe ja moodväärtuse arvutamist. 
R1ratio arvutatakse punktiparvest seosega 
arv(peegeldus=1)/peegeldusi. OLI tähen-
dab Landsat-8 Operational Land Imager 
vastava numbriga spektraalkanaleid.

Variable /
Tunnus

The feature variables /
Kirjeldavate tunnuste komplektid

L8 ALS L8PCA ALSPCA PCA

H10 ..H80, H99 0 0 0 1 1

H25 0 1 0 1 1
H90 0 1 0 1 1
CaC1.3m 0 0 0 1 1
CaC2.0m 0 0 0 1 1
CaC3.0m 0 1 0 1 1
Stdev(HALS) 0 0 0 1 1
Mode(HALS) 0 0 0 1 1
R1ratio 0 1 0 0 0

OLI1..OLI7 1 0 1 0 1

A special test was carried out with fea-
ture variable sets L8, ALS and PCA with 
the number of birch dominated reference 
plots substantially decreased. In the forest 
age range 10 ≤ A < 20  50% of the available 
reference plots were included while in the 
forest age range 20 ≤ A < 70 only 30% of the 
available plots were included by random 
selection. The number of neighbours in the 
special test was k = 3.
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Validation of the predictions
A simple method for validation of the kNN 
imputation results is the leave-one-out 
cross validation where the validation sta-
tistics are calculated on the imputed values 
for the reference plots. The plot for which 
the values are imputed is always excluded 
from the reference set. However, Tomppo 
et al. (2009) warn that LOOC does not al-
ways produce realistic error estimates. 
Therefore, in addition to LOOC we carried 
out a validation on two independent datas-
ets: 1) 89 forest growth network plots (FGN 
plots), and 2) stand-wise forest inventory 
database (IDB records).

The imputed wood volume for FGN 
plots was extracted from raster by us-
ing the areas of intersections of pixels 
(squares) and FGN plot geometry (circle) 
as weights on pixel values (Lang et al., 
2005). This approach was preferred over 
the whole pixel extraction, since the radius 
of the FGN plots ranged from 20 m to 30 
m and pixel size was 20 m. For each forest 
stand the pixels from kNN imputed wood 
volume maps were extracted according 
to the pixel centre location. For each IDB 
stand the average wood volume includ-
ing both the fi rst and second layer over all 
extracted pixels was calculated. The IDB 
wood volume is known to be underesti-
mated (Raudsaar et al., 2014) compared to 
sample plot based estimates e.g. National 
Forest Inventories (NFI). Therefore the IDB 
wood volume was scaled by using linear 
regression on wood volume (Mtr) of the ref-
erence plots (Figure 4).

The imputed dominant species compo-
sition was validated only on IDB stands 
which were suffi ciently large. The species 
composition for each IDB stand was calcu-
lated from the imputed dominant species 
map based on the relative share of pixels 
with particular tree species codes. So, for a 
stand with 50% spruce and 50% birch the 
correct number of pixels with main species 
code corresponding to spruce was expect-
ed to be 50% of all pixels within the stand 
polygon.

Root mean square error (RMSE) was 
calculated as:

,              (4)

where yi = attribute value, ŷi = attribute 
value estimated by kNN method, n = num-
ber of observations. Bias was estimated as:

.                            (5)

Figure 4. The linear regression between total wood 
volume given in the stand wise forest 
inventory database (MIDB) and the wood 
volume (Mtr) from corresponding refer-
ence plots was used to scale the MIDB to 
Mtr range. The RSE is the model residual 
error given by lm procedure in R software 
(R Core Team, 2015).

Joonis 4.  Takseerandmebaasis olev puistu tüvemaht 
MIDB teisendati lineaarse regressiooni-
mudeliga õpetusproovitükkidel mõõdetud 
tüvemahu Mtr skaalasse. RSE on tarkvara 
R (R Core Team, 2015) protseduuriga lm 
lähendatud mudeli jääkhälve.
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Results

Here we present only results from k = 3 im-
putations based on L8, ALS and PCA fea-
ture datasets since there were only small 
differences in the results if k was changed 
or L8PCA was used instead of L8 or ALSPCA 
was used instead of ALS feature variable 
set. The decrease of RMSE and overall bias 
estimate obtained from LOOC validation 
of imputed wood volume showed that in-
clusion of airborne lidar variables did sub-
stantially improve the predictions for the 
dominant tree layer (Figure 5 a–c). Similar 
results are obtained by other authors. The 
PCA feature variable set performed best 
and most of the increase of estimation accu-
racy was gained on aspen stands which had 
the largest wood volume compared to other 
forests. The predicted wood volume for the 

second layer of trees had substantial scat-
ter independent from the feature variable 
set (Figure 5 d–f). The well-known system-
atic overestimation of small volumes and 
systematic underestimation of large wood 
volumes was also present in our imputation 
results. This lack of fi t has been assumed to 
be a linear function of wood volume (Hol-
mgren et al., 2000); however, in our results 
the lack of fi t for the upper tree layer wood 
volume fi rst starts to increase at small val-
ues, then reaches its positive maximum and 
then starts constantly to decrease crossing 
the zero value near to the mean of mea-
sured wood volume.

The imputed wood volume validation 
on forest growth network plot data pro-
duced similar results to LOOC (Figure 6). 
The overall lack of fi t for the fi rst tree layer 
wood volume was negligible when using 

Figure 5.  The leave-one-out cross validation of imputed wood volume for the fi rst layer (M1) and second 
layer (M2) of trees (in rows) using three feature datasets (in columns). The symbols are explained 
in Figure 3.

Joonis 5.  Õpetusalade andmetel jäta-üks-välja meetodil tehtud kNN ennustuste valideerimise tulemused. Ri-
dades on eraldi esimese- ja teise rinde tüvemahtud (M1, M2) ja tulpades on aluseks olnud erinevad 
andmekomplektid. Sümbolid on samad mis joo nisel 3.
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ALS or PCA feature variable sets. Since 
the small and large wood volumes were 
not present in the FGN plots, the system-
atic overestimation or underestimation 
was not apparent. The difference in results 
based on ALS or PCA feature variable sets 
was small according to RMSE and overall 
bias and was probably infl uenced mainly 
by random errors inherent in georefer-
encing and other technical aspects in data 
processing chain. The predicted volume 
of wood for second layer had much less 
scatter compared to that found in the refer-
ence set LOOC. The reason for more stable 
estimates may be related to bigger size of 
FGN plots which cover several 20 m pixels 
whereas single pixel values were used for 
the reference set LOOC in our kNN imple-
mentation. However, larger wood volume 

values of the second tree layer were sys-
tematically underestimated (Figure 6 d–f).

In validation of imputed wood volume 
against forest inventory database records, 
the PCA feature variable dataset, which 
was based on all possible remote sensing 
variables, ranked the best (Figure 7). Con-
sidering the mean total wood volume 134.6 
m3 ha-1 of the validation forest stands the 
relative RMSE for the PCA feature vari-
able dataset based wood volume estima-
tion was 44%. The second best was ALS 
feature variable set based wood volume 
estimate with larger bias (18.9 m3 ha-1) and 
RMSE (61.9 m3 ha-1) while the only spectral 
information (L8) based estimate had the 
largest bias (20.6 m3 ha-1) and RMSE (89.9 
m3 ha-1). All predictions had overestima-
tion at small and underestimation at large 

Figure 6.  The validation of imputed wood volume for the fi rst layer (M1) and second layer (M2) of trees (in 
rows) using three feature datasets (in columns) on forest growth plots. The symbols are explained 
in Figure 3.

Joonis 6.  kNN tüvemahu valideerimise tulemused metsa kasvukäigu võrgustiku proovitükkidel. Ridades on 
eraldi esimese ja teise rinde tüvemahtud (M1, M2) ja tulpades on aluseks olnud erinevad andme-
komplektid. Sümbolid on samad mis joonisel 3.
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of sample plot based kNN estimates into 
stand-wise estimates (Figure 4).

In feature-based weight aj  infl uence test 
the smallest RMSE of wood volume esti-
mates according to LOOC was obtained 
at aj  

for canopy cover CaC3.0m and weights 
of other ALS variables fi xed to values giv-
en in Table 3. The optimal aj  apparently 
scaled the estimates of canopy cover and 
canopy height 90th percentile into the same 
range. Either the increasing or decreasing 
of aj  made estimation errors larger. Valida-
tion of the wood volume estimates on IDB 
data however, showed a slight increase in 
bias (24.7 m3 ha-1) and a marginal decrease 
in RMSE (60.1 m3 ha-1) compared to un-
weight case.

Table 3.  The feature weighting parameter aj (Eq. 
1) values which were used in the sensi-
tivity study on ALS feature variable set. 
The ALS variables values were scaled to 
integer numbers to decrease required data 
storage space. The values were input into 
(Eq. 1) and further modifi ed by aj.

Tabel 3.  Kirjeldavate tunnuste kaalu aj (1) mõju 
tüvemahu ennustusele uuriti ALS andme-
komplektil. ALS tunnuste väärtused ska-
lee riti täisarvudeks andmemahu kokku-
hoiuks. Neid väärtusi kasutati sisendina 
valemis (1) ja muudeti edasi kaaluga aj.

Feature variable / 
Kirjeldav tunnus 

Range /
Haare

aj

CaC3.0m 0..10000 0.01..1.0

H90 0..3769 1.0

H25 0..2791 0.2

R1ratio 0..100 1.0

The change in distance-based neighbour 
weight t value from 0 to 3 resulted only in 
a small, but still detectable improvements 
in estimation accuracy as found for for-
est stands. The bias estimate and RMSE of 
wood volume decreased about 1.5 m3 ha-1 
when t was increased from zero to three. 
Similar trend was detectable by validation 

of estimates on FGN plots, except for fi rst 
tree layer wood volume estimate based on 
L8 feature variable set.

based wood volume (M +M ) estimate on 1 2

stand-wise forest inventory data.

Joonis 7 .  Peakomponentide andmestikul (PCA) põhi- 
   eva tüvemahu (M +M ) hinnangu vali- n 1 2

 deerimise tulemused metsakorralduse 
andmetel.

The second important response variable 
was the dominant species code. In Figure 
8 the dependence of the predicted propor-
tions of birch, spruce and aspen are shown 
based on feature variable sets L8, ALS and 
PCA. The overall predicted proportion of 
birch had about 10% positive overall bias 
(Figure 8 a, d, g). The proportion of birch 
trees was underestimated in young stands 
and overestimated in old stands, regardless 
of the feature variable set used. The propor-
tion of spruce trees was underestimated, be-
ing the smallest for the ALS feature variable 
set at the price of much larger random er-
rors. Visual inspection of the maps revealed 
substantial noise in the ALS feature variable 
set based dominant species maps. The pre-
dicted proportion of spruce trees had also 
notable but less pronounced discrepancy 
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from observed value depending on forest 
age (Figure 8 b, e, h). The difference of pre-
dicted and observed share of aspen trees, 
however, showed exactly the opposite 
trend compared to the prediction error of 
birch proportion. The smallest discrepancy 
of aspen proportion was in the age classes 
in which aspen dominated plots were not 

present in the reference set. In the same 
age classes also the predicted proportion 
of aspen was the smallest (Figure 8 c, f, i). 
The comparison of species composition in 
the reference plots with the corresponding 
forest stand records in the inventory data-
base did not reveal such forest age depen-
dent lack of fi t (Figure 9). Hence, the cause 

Figure 8.  The difference of species composition between stand-wise forest inventory data and kNN imputed 
value in age classes using three different feature datasets (columns). Stdev is the standard devia-
tion of the difference between predicted proportion and the measured value. 

Joonis 8.  Metsaeraldistele kNN abil ennustatud kase, kuuse ja haava osakaalude võrdlus takseeritud osakaalu-
dega vanusrühmade kaupa. Stdev on ennustatud osakaalu ja andmebaasis antud osakaalu erinevuse 
standardhälve.
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Figure 9.  The comparison of proportions of three most widespread tree species on forest inventory stands 
and corresponding reference set plots. The marker size is dependent on forest age. There are no 
clusters and no trend detectable in respect to forest age.

Joonis 9.  Kase, kuuse ja haava osakaalu võrdlus kNN treeningproovitükkidel ja neid sisaldavatel eraldistel. 
Sümbolid on vanuse järgi skaleeritud. Jooniselt ei ilmne vanusest sõltuvaid klastreid ega trendi.

Figure 10.  The effect of partial removal of birch dominated plots from the reference set on predicted propor-
tions of birch, spruce and pine in case of three different feature datasets (columns).

Joonis 10.  Kaseenamusega treeningalade osaline eelmaldamine õpetusalade hulgast avaldab mõju enamus-
puuliigi ennustusele pikslitel ja seeläbi ka puistute liigilise koosseisu hinnangutele.
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is rather in the kNN imputation procedure 
than a possible systematic error in the forest 
inventory database.

The birch dominated reference plot re-
moval decreased also the predicted propor-
tion of birch dominated pixels but did not 
always correct for the previously described 
opposite to birch proportion trend in the 
share of aspen (Figure 10). The partial re-
moval of birch dominated reference plots 
caused also the predicted share of spruce 
to increase. We repeated the birch plot 
partial removal test with random selection 
several times and always reached the same 
general changes in predicted species com-
position. This can be partially explained 
by the fact that many reference plots were 
mixed stands and the spruce dominated 
plots had also birch and other deciduous 
trees, which had an infl uence on the fea-
ture variables too. The results also expose 
the dependence of nearest neighbour tech-
nique on the distribution of the reference 
plots in respect to response variables and 
feature variables. An explanation here is 
that the probability of a reference observa-
tion to be used as nearest neighbour in im-
putation increases with the count of such 
plots which have similar vectors of feature 
variable values. Similar note is given in the 
manual of kNN implementation in IDRISI 
Taiga (Clark Labs, Worcester, MA, USA). 

Discussion

In this study we were not able to repeat 
the kNN imputation of wood volume for 
forest stands with accuracy reported by 
Packalén & Maltamo (2007) concerning the 
estimation bias at small or large predicted 
values. Packalén & Maltamo (2007) carried 
out their tests in boreal forests which were 
dominated by Norway spruce and Scots 
pine and the share of deciduous was in av-
erage only about 10%. Another reasons for 
the good accuracy statistics achieved in the 
study of Packalén & Maltamo (2007) who 
report 10% relative RMSE for average stem 

volume at stand level, are the stand level 
leave-one-out cross validation which tends 
to produce more optimistic fi gures (Tomp-
po et al., 2009), and the use of airborne im-
ages as spectral feature variables which 
provide much fi ner spatial resolution 
compared to Landsat-8 OLI images used 
in this study. Concerning the feature vari-
able selection, we can confi rm that already 
a few informative variables e.g. principal 
components of original feature variable set 
perform suffi ciently well as pointed out by 
Packalén & Maltamo (2007) for canonical 
components used in kMSN.

The inclusion of airborne lidar met-
rics did improve the accuracy of kNN pre-
dicted wood volume compared to spectral 
feature variables but did not remove the 
underestimation of the wood volumes at 
larger values for the lower layer of trees. 
Neither did the ALS feature variable set 
nor PCA feature variable set, which both 
included information from lidar metrics, 
entirely remove the well-known (Fazakas 
et al., 1999) overestimation of small values 
and underestimation of large values in the 
predicted wood volume in the upper tree 
layer. While airborne lidar data are still 
quite expensive for large area applications, 
the medium spatial resolution multi spec-
tral satellite images still remain one of the 
main feature variable sources. The spectral 
information from airborne or space borne 
measurements must be used in addition to 
lidar data if tree species composition is tar-
get in kNN imputation. Tree species com-
position can be predicted in some extent 
based on lidar data only (e.g. Breidenbach 
et al., 2010), since the airborne topographic 
lidar emit pulses in the near infrared part 
of electromagnetic spectrum where the 
spectral refl ectance of coniferous and de-
ciduous forests is different (Nilson & Pe-
terson, 1993). The different spectral refl ec-
tance impacts the formulation of the pulse 
refl ection positions and the relationships 
between lidar metrics and forest height or 
wood volume will be species dependent. 
Recent studies (Zald et al., 2014) show that 
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time series of Landsat-5 TM and Landsat-7 
ETM+ type satellite images may further 
improve the accuracy of species composi-
tion prediction. Strategic forest inventory 
data and multitemporal Landsat images 
can also be used for basal area prediction 
and the estimates may provide an alterna-
tive to expensive sample plot based for-
est management inventories (McRoberts, 
2008). However, in practical applications a 
careful validation of the imputed maps of 
forest inventory variables is required to de-
cide if the accuracy of the maps is suitable 
for decision making.

The accuracy estimation of the kNN im-
puted maps is not a trivial task and may 
be related to many diffi culties. The sim-
plest method is the leave-one-out cross 
validation on the reference set but this may 
produce unrealistically optimistic results 
(Tomppo et al., 2009). An alternative is to 
split the reference set into training and 
validation sets which will have a negative 
impact on the fi nal estimation accuracy 
(Chirici et al., 2008). McRoberts (2012) pro-
poses bootstrapping with replacement to 
construct a large number alternative refer-
ence sets based on the original reference 
set. For each bootstrap sample the nearest 
neighbour technique is to be then used to 
calculate predictions for each population 
unit. Variability and bias will be then esti-
mated using the bootstrap samples based 
predictions (McRoberts, 2012). In this study 
we conducted a test where large propor-
tion of birch dominated reference plots was 
removed to equalize forest reference plot 
distribution of different deciduous forests 
according to forest age. This treatment ful-
fi lled partially its purpose and the overes-
timation of birch proportion decreased in 
forest stands, however, it also caused posi-
tive bias in the spruce proportion which 
was predicted unbiased for most of the age 
classes in case of using full reference set. 
This experience indicates that if target set 
forests in an area of interest, e.g. within a 
Landsat image frame, have systematically 
different characteristics by regions then a 

bootstrap sample dominated by the refer-
ence set units from one region may pro-
duce unfavourable estimates for the other 
region. A solution could be the application 
of kNN techniques and bootstrapping re-
gionally based on some stratifi cation crite-
rion in similar to Tomppo et al. (2009) who 
used separate reference sets for mineral 
soils and peat land soils.

The kNN procedure does not require 
any assumptions regarding the distribu-
tions of response or predictor variables, 
instead, user has to select the best perform-
ing feature variables, make the choice of 
distance metric, and fi nd appropriate val-
ues for k, t, and aj. In our study the selec-
tion of feature variables (mainly inclusion 
of airborne lidar metrics) had the largest 
impact on results while varying the num-
ber of neighbours or distance-based neigh-
bour weight t or feature-based weight 
aj had much smaller infl uence. By using 
fewer neighbours the lack of fi t close to the 
minimum and maximum values to be es-
timated decreased in some extent but was 
still apparent. The increase in t from 0 to 
3 decreased both RMSE and bias estimate 
at forest stand level by about 1.5 m3 ha-1 
independent from feature variable set. On 
the FGN plots the improvement was up 
to 5 m3 ha-1 for PCA feature variable set, 
but smaller for other feature variable sets. 
The problem of selecting appropriate val-
ues k, t, and aj, and the best set of features 
for a regional kNN application can prob-
ably be solved by adding an optimization 
routine to kNN implementation similar to 
McRoberts (2008, 2012) and McRoberts et 
al. (2015). However, the optimization may 
have to be carried out separately for wood 
volume estimation and for species com-
position estimation, since wood volume is 
related to forest height and canopy cover, 
but species separation is better based on 
spectral refl ectance. Inclusion of spectral 
feature variables to ALS feature variable 
set may increase redundancy and wood 
volume estimation errors. On the other 
hand, if species composition is calculated 
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from shares of the tree species wood vol-
ume in target set sampling units then the 
optimization routine can be adopted for 
both by keeping attention also to the other 
important measures e.g. species composi-
tion in different age classes.

Optimization may tune kNN for a cer-
tain region, for a particular set of features 
or for a set of response variables based on 
validation observations exclusive to refer-
ence set. However, such exclusive valida-
tion datasets are not always available or 
require additional fi eld measurements 
increasing the project cost. In this study 
stand-wise forest inventory data and for-
est growth network sample plots from 
Laeva test site were used as the exclusive 
validation information. Both the validation 
datasets had their positive and negative 
aspects. Stand-wise forest inventory covers 
most of the forests in test site, but the in-
ventory variables have bigger random and 
systematic errors due to the applied inven-
tory method. The FGN sample plots are 
instrumentally measured, but the count is 
small and the dataset lacks observations 
from young stands and there are only few 
sample plots from spruce stands. Both da-
tasets required updating to predict stem 
volume information to the reference set 
plots measurement time. Hence, neither of 
the validation datasets was perfect to study 
the causes of under and over-estimation of 
wood volume. The solution for such gen-
eral study can be an artifi cial dataset with 
controlled shape of relationships between 
response and feature variables, adjustable 
distribution of reference observations in 
respect to response variables and simu-
lated noise. Forest refl ectance models and 
empirical models may be used to create 
such datasets for kNN studies.

Conclusions

Our study confi rmed that in forests similar 
to Laeva test site the k nearest neighbour 
imputed wood volume may be overesti-

mated at small values and underestimated 
at large values. This lack of fi t was present 
for the wood volume in upper and lower 
tree layer. Inclusion of airborne lidar data 
did decrease but not remove this lack of fi t. 
We also found that a few principal compo-
nents of the original feature variable set al-
ready contain enough information for kNN 
imputation.

There was no substantial difference in 
results when using principal components 
instead of original feature variables, which 
shows the principal component analysis as 
an effi cient tool for feature space dimen-
sionality reduction. The kNN predicted 
species composition had a forest age depen-
dent lack of fi t at species level and the dis-
crepancy was dependent also on the num-
ber of reference plots with similar dominant 
species. This fi nding can be important for 
next studies which use bootstrap samples 
with replacement for error estimation and 
for confi dence limits construction of the 
kNN imputed values over study areas con-
sisting of regionally different forests. Con-
sidering the very basic and not optimized 
kNN implementation used in this study the 
results are still encouraging, since the forest 
in Laeva test site are far more complex than 
used in many other studies.
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Appendix 1. Some examples of plots from different forest types in Laeva test site (photos M. Merenäkk).

Lisa 1.  Näited erinevatest naadi (a, c, d, f) ja angervaksa (b, e) kasvukohatüübi proovitükkidest Laeva 
testalalt (fotod M. Merenäkk).

a) 55 years old AG site type birch stand with 
second layer spruces.

b) 30 years old FP site type birch dominated stand 
with 20% grey alder in the fi rst layer.

c) 50 years old AG site type birch and spruce mixed 
forest stand.

d) 70 years old AG site type birch stand with dense 
understory vegetation.

e) 55 years old FP site type birch stand with dense 
understory vegetation.

f) 45 years old AG site type spruce dominated stand 
with sparse second layer spruce.
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Jätkusuutlik metsamajandus ja seda toetav 
metsapoliitika peab tuginema objektiiv se-
tele ja piisavalt sagedasti uuendatud eelis-
tatult kogu käsitletavat ala katvatele tak-
seerandmetele. Üksikvaatlusteks on kas 
puistud või proovitükid, mille põhjal saab 
soovi korral teha üldistusi piirkonniti (Kri-
gul, 1972). Suurtel aladel takseerandmes-
tiku uuendamiseks on paljudes maades 
kasutamist leidnud niinimetatud k lähima 
naabri klassifi tseerimismeetod (kNN), mis 
seob puistu takseerimisel või proovitüki 
mõõtmisel saadud andmed satelliitidelt 
või lennukitelt tehtud spektraalsete mõõt-
miste või kolmemõõtmeliste punktiparve-
dega võimaldades niimoodi koostada üle-
pinnalisi takseertunnuste kaarte (Fazakas 
et al., 1999, Holmgren et al., 2000; Huiyan et 
al., 2006; McRoberts & Tomppo, 2007; Pac-
kalén & Maltamo, 2007; Chirici et al., 2008; 
Kajisa et al., 2008; McInerney & Nieuwen-
huis, 2009; Breidenbach et al., 2010; McRo-
berts, 2012; Fassnacht et al., 2014; Zald et 
al., 2014). Eestis on varem kNN meetodit 
kasutanud masinõppe ühe osana metsade 
takseertunnuste ennustamiseks lausmetsa-
korralduse andmete järgi Tamm & Remm 
(2009).

Takseertunnuste kaartide koostamiseks 
kasutatava kNN tööpõhimõte on lihtne. 
Eeldatakse, et näidisteks on olemas teatud 
hulk proovitükke või puistuid, millel on 
meid huvitavad tunnused mõõdetud. Nei-
le näidistele arvutatakse asukohakoordi-
naatide järgi satelliidipiltidelt, aerofotodelt 
või aerolidari mõõtmistest tunnusvektorid, 
mis sisaldavad spektraalset heledust või 
selle teisendusi ning aerolidari punktipilve 
kõrgusjaotuse statistikuid. Tunnusvektoris 
võib olla ühe tunnusena ka geograafi line 
asukoht. Seejärel hakatakse kaugseireand-

mestikku pikselhaaval läbi vaatama ning 
igale pikslile otsitakse tunnusvektori jär-
gi k kõige sarnasemat näidist. Sarnasuse 
mõõtmiseks kõige lihtsamal juhul arvuta-
takse näidise ja vaadeldava piksli tunnus-
vektorite vahe line Eukleidiline kaugus (1). 
Vaadeldavale pikslile omistatakse k kõige 
lähema näidise andmetest võetud soovitud 
takseertunnuse väärtus (tüvemaht M, met-
sa kõrgus H) kas aritmeetilise keskmisena 
või eelnevalt arvutatud kaugusega pöörd-
võrdeliselt kaalutuna (2, 3) (Fazakas et al., 
1999; McRoberts, 2012). Nominaaltunnuste 
korral nagu näiteks puuliigi kood kasuta-
takse moodväärtust. Üheks olulisimaks 
probleemiks kNN meetodi puhul on saa-
davate hinnangute nihe (Poso et al., 1990; 
Holmgren et al., 2000) ehk süstemaatiline 
erinevus tegelikust väärtusest, mille põh-
justeks peetakse kaugreiretunnuste ja maa -
peal mõõdetud takseerandmete vahelisi 
mittelineaarseid ja küllastuvaid seoseid 
(joonis 3) ning seda, et enamasti on kõiki-
de tunnuste kaalud positiivsed (Fazakas et 
al., 1999). Lähima naabri klassifi tseerimis-
tehnika puhul on uuritud nii võimaliku 
naabrite arvu kui ka tunnusvektorite di-
mensionaalsuse vähendamist ning saadud 
ennustuste vigade hindamist. Enamik au-
toreid pakub naabrite arvuks 3 ≤ k ≤ 10, aga 
näiteks McRoberts (2008, 2012) saab kogu 
protsessi optimeerimise järel üldiselt k > 
25. Kaugseiretunnuste valiku osas on ka-
sutatud geneetilisi algoritme (McRoberts, 
2008; Tomppo et al., 2009), klasteranalüüsi 
(Tamm & Remm 2009), peakomponentide 
meetodit (Chirici et al., 2008) ja ekspertar-
vamust (Zald et al., 2014). 

Laeva-Kursi piirkonda rajati 2013. aas-
tal 15 × 15 km katseala (joonis 1) eesmärgiga 
uurida kNN meetodi abil mitmerindelistes 

Puistute liigilise koosseisu ja tüvemahu hindamine k-lähima 
naabri meetodil mitmerindelistes majandatavates segametsades
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segapuistutes rinnete tüvemahu ja puistu 
koosseisu hindamist. Näidistena kasutati 
444 proovitükki (tabel 1, joonis 2), tüvema-
hu hinnangute kontrollimiseks oli 89 met-
sa kasvukäigu proovitükki ja 2290 puistut 
metsakorralduse andmebaasist. Kontrol-
landmestikus ennustati tüvemaht mude-
lite abil 2013. aasta kohta, millal tehti len-
nukilt laserskanneerimine. Süstemaatilise 
allahindamise tõttu (Raudsaar et al., 2014) 
skaleeriti metsaregistri takseerkirjelduste 
tüvemaht (MIDB) proovitükkidel mõõde-
tud tüvemahu (Mtr) vahemikku (joonis 4). 
Ennustustes testiti viit tunnusvektorite 
komplekti (tabel 2), mis koostati originaal-
tunnustest või nende peakomponentidest. 
Testiti naabrite arvu  ja leiti, et võrreldes 
k = 3 on teiste variantide puhul saadud hin-
nangute erinevused väikesed. Uuriti kirjel-
dava tunnuste kaalu aj  (1) mõju tüvemahu 
ennustustele ALS andmekomplektil põhi-
neva tüvemahu ennustusele andes kaalule 
aj tabelis (3) toodud väärtused. Korraldati 
ka puistute koosseisu ennustamise katse, 
milles näidisalade hulgast eemaldati kuni 
70% kaseenamusega proovitükidest.

Tulemustest selgus sarnaselt paljude-
le varasematele uuringutele, et aerolidari 
and mete kaasamine parandab tüvemahu 
ennustamise täpsust ning vähendab en-
nustatava tüvemahu väärtusest sõltuvat 
nihet nii esimese kui ka teise rinde puhul 
(joonised 5, 6, 7). Samas ei õnnestunud ühe-
gi kaugseiretunnuste komplekti puhul süs-
temaatilist nihet tüvemahu hinnangutest 
kõrvaldada. Ilmnes ka, et tunnuste ruumi 
mõõtmete vähendamine peakomponen-
tide meetodi abil on tõhus võte, sest näi-

teks kõikide sisendtunnuste (tabel 2) viis 
esimest peakomponenti sisaldasid 99,7% 
kogu informatsioonist ning ennustatud 
tüve mahud või puistute koosseis oli sama 
täpne või isegi täpsem originaaltunnus-
te kasutamisega võrreldes. Üsna uudseid 
tulemusi saadi puistute liigilise koosseisu 
ennustuse analüüsimisel seoses puistute 
vanusega. Selgus, et ennustatud koossei-
sus esineb süstemaatiline viga puuliigiti 
sõltuvalt puistute vanusest (joonis 8) ning 
kaskede osakaalu hinnatakse nooremates 
puistutes alla ja vanemates süstemaatiliselt 
üle, aga haabade osakaalu puhul on täpselt 
vastupidi. Kuna näidisalade ja neid sisal-
davate metsaeraldiste andmete võrdlemi-
sel sarnast seaduspära ei ilmnenud (joo-
nis 9), siis tuleb sellise süstemaatilise vea 
põhjuseks pidada kNN tehnika omapära, 
mis on seotud tunnusvektorite info kat-
tumisega segapuistutes. Kui näidisalade 
hulgast eemaldati vanusklassiti kuni 70% 
kaseenamusega proovitükkidest, et muuta 
haava ja kaseenamusega näidiste jagune-
mist vanuse järgi võrdsemaks, muutusid 
ka puuliikide ennustatud osakaalud, kuid 
nihked hakkasid tekkima ka eelnevalt pi-
gem täpselt ennustatud kuuskede osakaa-
lus (joonis 10). Selline vea ümberpaiknemi-
ne sõltuvalt näidisproovitükkide jaotusest 
koosseisu või vanuse järgi võib osutuda 
oluliseks neis uuringutes, kus kasutatakse 
tagasipanekuga bootstrap valimit (McRo-
berts, 2012) kNN ennustuste usalduspiiri-
de konstrueerimiseks aladel, kus ühe pildi 
ulatuses esineb piirkonniti erinevaid metsi.
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