Structural diversity of selected oak stands (Quercus robur L.) on the Krotoszyn Plateau in Poland

Janusz Szmyt 1
  • 1 Poznań University of Life Sciences, Faculty of Forestry, Department of Silviculture, 60–625, Poznań, Poland

Abstract

The oak forests growing on the Krotoszyn Plateau are the biggest and most valuable oak forest complexes in Poland. The purpose of this study was to analyze the structural diversity of oak (Q. robur L.) stands older than 140 years. Two natural stands located within the forest reserve as well as two managed stands were chosen for investigation. Species and tree size diversity were analyzed using different measures and spatially explicit and inexplicit indices. The results indicate that the structural diversity of the protected oak forests did not differ significantly from that of managed stands. On the contrary, undisturbed natural processes in protected forests can result in a low diversity of some structural attributes in such stands. Although most indices pointed towards a higher structural diversity in protected forests, the differences were not large, especially in the case of spatially explicit indices. The spatial arrangement of live trees was either random, aggregated or regular, with the latter clearly dominating managed, poorly mixed oak stands. Furthermore, a lack of natural disturbances strong hornbeam expansion, in which case strict protection is not favorable for oak sustainability as it creates unsuitable conditions for oak regeneration beneath the hornbeam canopy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguirre O., Hui G., Gadow K. Von, Jiménez J. 2003. An analysis of spatial forest structure using neighbourhood-based variables. Forest Ecology and Management 183: 137–145.

  • Baddeley A., Turner R. 2005. Spatstat: An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software 6: 1–42. http://www.jstatsoft.org/v12/i06/ [1.02.2016].

  • Biber P., Weyerhaeuser H. 1998. Numerical methods for characterizing structure and diversity applied to a natural tropical forest and an even aged teak stand, in: Natural and Socioeconomic analysis and modelling of forest and agroforestry systems in Southeast Asia. (ed. E. Mies). http://www.wwk.forst.tu-muenchen.de/info/publications/OnlinePublications/482.pdf. [2.02.2016].

  • Balanda M. 2012. Spatio-temporal structure of natural forest: a structural index approach. Beskydy 5: 163–172

  • Bernadzki E., Bolibok L., Brzeziecki B., Zajączkowski J., Żybura H. 1998. Compositional dynamics of natural forests in the Białowieża National Park, northeastern Poland. Journal of Vegetation Science 9: 229–238.

  • Bilski M., Brzeziecki B. 2005. Wpływ trzebieży przerębowej na zróżnicowanie strukturalne drzewostanu. Sylwan 4: 21–34.

  • Bobinac M. 2000. Stand structure and natural regeneration of common oak in the nature reserves “Vraticna” and “Smogva” near Morovic. Glasnik za sumske pokuse 37: 295–309.

  • Boncina A., Kadunc A., Robic D. 2007. Effects of selective thinning of growth and development of beech (Fagus sylvatica L.) forest stands in south-eastern Slovenia. Annals of Forest Science 64: 47–57.

  • Brooker R.W., Brooker R.W. 2006. Plant – plant interactions and environmental change. New Phytologist 171: 271–284.

  • Brzeziecki B. 2002. Wskaźniki zróżnicowania struktury drzewostanu. Sylwan 4: 69–88.

  • Brzeziecki B. 2005. Wpływ trzebieży na zróżnicowanie strukturalne drzewostanów sosnowych. Sylwan 10: 11–20.

  • Brzeziecki B., Janicki S., Wiech M. 2011. Wieloletnia dynamika drzewostanów na dawnym zrębie kulisowym w warunkach ochrony ścisłej (Łysica, Góry Świętokrzyskie). Sylwan 8: 518–530

  • Brzeziecki B., Keczyński A., Zajączkowski J., Drozdowski S., Gawron L., Buraczyk W., Bielak K., Szeligowski H., Dzwonkowski M. 2012. Zagrożone gatunki drzew Białowieskiego Parku Narodowego (Rezerwat Ścisły). Sylwan 156(4): 252–261

  • Brzeziecki B., Pommerening A., Miścicki S., Drozdowski S., Żybura H. 2016. A common lack of demographic equilibrium among tree species in Białowieża National Park (NE Poland): evidence from long-term plots. Journal of Vegetation Science 27: 460–469. DOI 10.1111/jvs.12369.

  • Ceitel J. 2006. Lasy dębowe w Polsce, in: Dęby. Nasze drzewa leśne. Instytut Dendrologii PAN, Kórnik.

  • Das A., Battles J., Stephenson N.L. van Mantgem P.J. 2011. The contribution of competition to tree mortality in old-growth coniferous forests. Forest Ecology and Management 261: 1203–1213. DOI 10.1016/j.foreco.2010.12.035.

  • Del Rio M., Pretzsch H., Alberdi I., Bielak K., Bravo F., Brunner A., Condes S., Ducey M.J., Fonseca T., Lupke N. von, Pach M., Peric S., Perot T., Souidi Z., Spathelf P., Sterba H., Tijardovoc M., Tome M., Vallet P., Bravo-Oviedo A. 2015. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. European Journal of Forest Research 135(1): 23–49. DOI 10.1007/s10342-015-0927-6.

  • Donnelly K.P. 1978. Simulation to determine the variance and the edge effect of total nearest-neighbor distances, in: Simulation methods in Archeology (ed. I. Hodder). Cambridge Press, London, 91–95.

  • Drozdowski S., Bielak K., Buraczyk W., Gawron L., Jaros R., Żybura H. 2014a. Planowanie hodowlane w drzewostanach jodłowych o złożonej strukturze z wykorzystaniem metody BDq w Nadleśnictwie Zagnańsk. Sylwan 9: 651–661.

  • Drozdowski S., Andrzejczyk T., Bielak K., Buraczyk W., Gawron L. 2014b. Planowanie hodowlane z wykorzystaniem metody DBq w drzewostanach świerkowych na siedliskach bagiennych. Sylwan 10: 733–743.

  • Eichhorn M.P. 2010. Pattern reveals process: spatial organization of Kamchatkan stone birch forest. Plant Ecology and Diversity 3: 281–288.

  • Fibich P., Leps J., Novotny V., Klimes P., Tesitel J., Molem K., Damas K., Weiblen G. 2016. Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest. Journal of Vegetation Science 27(2): 328–339. DOI 10.1111/jvs.12363.

  • Forrester D.I. 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management 312: 282–292.

  • Gadow K. von, Zhang C.Y., Wehenkel C., Pommerening A., Corral-Rivas J., Korol M. et al. 2012. Forest structure and diversity, in: Continuous Cover Forestry. Managing Forest Ecosystems (eds. T. Pukkala, K. Gadow). Springer Science+Business Media B.V.

  • Gadow K. v. Hui G. 2002. Characterising forest spatial structure and diversity, in: Sustainable forestry in temperate regions. (ed. L. Bjoerk). Materiały konferencyjne IUFRO, Lund, 20–30.

  • Getzin S., Dean C., He F., Trofymow J.A., Wiegand K., Wiegand T. 2006. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29: 671–682.

  • Hobi M., Commarmot B., Bugmann H. 2015. Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). Journal of Vegetation Science 26: 323–336.

  • Horedecki P., Wiczyńska K., Jagodziński A.M. 2014. Odnowienie naturalne w rezerwacie przyrody „Czmoń” (Wielkopolska). Leśne Prace Badawcze 75: 61–75. DOI 10.2478/frp-2014-0007.

  • Indir K., Balenovic I., Paladinic E., Marjanovic H., Szirovicza L., Vuletic D. 2013. Spatial structure indices of mature pedunculate oak stands in NW Croatia. SEEFOR South-East European Forestry.

  • Iszkuło G., Didukh Y., Giertych M.J., Jasińska A.K., Sobierajska K., Szmyt J. 2013. Weak competitive ability may explain decline of Taxus baccata. Annals of Forest Science 69: 705–712.

  • Jaworski A. 2011. Hodowla lasu: Sposoby zagospodarowana, odnowienie lasu, przebudowa i przemiana drzewostanów. PWRiL, Warszawa.

  • Kenkel N.C. 1988. Pattern of self-thinning in jack pine: testing the random mortality hypothesis. Ecology 69: 1017–1024

  • Kint V., Lust N., Ferris R., Olsthoorn A.F.M. 2000. Quantification of forest stand structure applied to Scots pine (Pinus sylvestris L.) forests. Investigación Agraria: Sistemas y Recursos Forestales: Fuera de Serie 1. 147–163.

  • Kucbel S., Saniga M., Jaloviar P., Vencurik J. 2012. Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: A 40-years perspective. Forest Ecology and Management 264: 125–133. DOI 10.1016/j.foreco.2011.10.011.

  • Longuetad F., Seifert T., Leban J.M., Pretzsch H. 2008. Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. Forest Ecology and Management 255: 2007–2019.

  • Lexerød N.L., Eid T. 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management 222 (1–3): 17–28.

  • Lähde E., Laiho O., Norokorpi Y. 1999. Diversity-oriented silviculture in the Boreal Zone of Europe. Forest Ecology and Management 118 (1–3): 223–243.

  • Magurran A.E. 2004. Measuring biological diversity. Blackwell Science Ltd.

  • Matuszkiewicz J.M. 2011. Przemiany w zespołach leśnych Puszczy Białowieskiej w drugiej połowie XX wieku (Rezerwat Ścisły BPN). Czasopismo Geograficzne 82: 69–105

  • McElhinny C., Gibbons, P. Brack, C. Bauhus, J. 2005. Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecology and Management 218(1–3): 1–24.

  • Mosandl R., Kleinert A. 1998. Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus sylvestris L.) stands. Forest Ecology and Management 106(1): 35–44.

  • Montes F., Cañellas I., Río M. del 2004. The effects of thinning on the structural diversity of coppice forests. Annals of Forest Science 61: 771–779.

  • Müller S., von, Ammer C., Nusslein S. 2000. Analyses of stand structure as a tool for silvicultural decisions – a case study in a Quercus petraea-Sorbus torminalis stand. Forstwissenschaftliches Centralblatt 119: 32–42.

  • McIntire E.J., Fajardo A. 2009. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90: 46–56.

  • Neumann M., Starlinger F. 2001. The significance of different indices for stand structure and diversity in forests. Forest Ecology and Management 145: 91–106.

  • Oliver C., Larson B.C. 1996. Forest stand dynamics. John Wiley & Sons, Inc. Chichester.

  • Paluch R., Bielak K. 2009. Przebudowa drzewostanów z wykorzystaniem naturalnych procesów sukcesyjnych w Puszczy Białowieskiej. Leśne Prace Badawcze 70(4): 339–354.

  • Pastorella F., Paletto A. 2013. Stand structure indices as tools to support forest management: An application in Trentino forests (Italy). Journal of Forest Science 59(4): 159–168.

  • Petritan A.M., Biris I.A., Merce A., Turcu D.O., Petritan I.C. 2012. Structure and diversity of natural temperate sessile oak (Quercus petraea L.) European beech (Fagus sylvatica L.) forest. Forest Ecology and Management 280: 140–149.

  • Petritan I.C., Commarmot B., Hobi M.L., Petritan A.M. Bigler C., Abrudan I.V., Rigling A. 2015. Structural patterns of beech and silver fir suggest stability and resilience of the virgin forest Sinca in the Southern Carpathians, Romania. Forest Ecology and Management 356: 184–195.

  • Pommerening A. 2002. Approaches to quantifying forest structures. Forestry 75: 305–324.

  • R Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [3.02.2016].

  • Pretzsch H. 1996. The effect of various thinning regimes on the spatial stand structure, in: Effects of environmental factors on tree and stand growth. Conference materials, 183–191.

  • Pretzsch H. 2010. Forest Dynamics, growth and yield. Berlin Heidelberg, Springer-Verlag.

  • Sterba H. 2008. Diversity indices based on angle count sampling and their interrelationships when used in forest inventories. Forestry 81(5): 587–597.

  • Raventós J., Wiegand T., De Lusie M. 2010. Evidence for the spatial segregation hypothesis: a test with nine-year survivorship data in a Mediterranean shrubland. Ecology 91: 2110–2120.

  • Szwagrzyk J. 1992. Small-scale spatial patterns of trees in a mixed Pinus sylvestris-Fagus sylvatica forest. Forest Ecology and Management 51: 301–315.

  • Saunders M.R., Wagner R.G. 2008. Long-term spatial and structural dynamics in Acadian mixedwood stands managed under various silvicultural systems. Canadian Journal of Forest Research 38(3): 498–517.

  • Spies T. 1998. Forest structure: a key to the ecosystem. Northwest Science 72(2): 34–39. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Forest+Structure+:+A+Key+to+the+Ecosystem#0 [6.02.2016].

  • Szmyt J., Ceitel J. 2011. Zróżnicowanie przestrzenne i grubościowe drzew w niepielęgnowanych drzewostanach sosnowych o różnym zagęszczeniu początkowym. Sylwan 155: 749–59

  • Szmyt J. 2012. Spatial structure of managed beech-dominated forest: Applicability of nearest neighbors indices. Dendrobiology 68: 69–76.

  • Szymański S. 2000. Ekologiczne podstawy hodowli lasu. PWRiL, Warszawa.

  • Trampler T., Kliczkowska A., Dmyterko E., Sierpińska A., Matuszkiewicz W. 1990. Regionalizacja przyrodniczo-leśna na podstawach ekologiczno-fizjograficznych. PWRiL, Warszawa.

  • Wehenkel C. Brazao-Protazio J.M., Carillo-Parra A., Martinez-Guerrero J.H., Crecente-Campo F. 2015. Spatial distribution patterns in the very rare and species-rich Picea chihuahuana tree community (Mexico). PLoS ONE 10(10): e0140442. DOI 10.1371/journal.pone.0140442.

  • Wiczyńska K., Horodecki P., Jagodzińska A.M. 2013. Stand structure and species composition in the „Czmoń” nature reserve. Nauka Przyroda Technologie 7: #69.

  • Wiegand T., Gunatilleke S, Gunatilleke N, Okuda T. 2007. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88(12): 3088–3102.

  • Wiegand T., Martinez I., Huth A. 2009. Recruitment in tropical tree species: revealing complex spatial patterns. American Naturalist 174: E106–E140.

  • Wilson J.B. 2011. The twelve theories of co-existence in plant communities: The doubtful, the important and the unexplored. Journal of Vegetation Science 22: 184–195. DOI 10.1111/j.1654-1103.2010.01226.x.

  • Youngblood A., Max T., Coe K. 2004. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California. Forest Ecology and Management 199(2–3): 191–217.

  • Zenner E.K. 2004. Does old-growth condition imply high live-tree structural complexity? Forest Ecology and Management 195 (1–2): 243–258.

  • Zenner E.K., Lähde E., Laiho O. 2011. Contrasting the temporal dynamics of stand structure in even- and uneven-sized Picea abies dominated stands. Canadian Journal of Forest Research 41(2): 289–299.

  • Zenner E.K., Peck J.E., Hobi M.L., Commarmot B. 2015. The dynamics of structure across scale in a primeval European beech stand. Forestry 88: 180–189. DOI 10.1093/forestry/cpu042.

  • Zhang Z.H., Zhang, Hu G., Zhu J.D., Luo D.H., Ni J. 2010. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research 25: 1151–1160.

OPEN ACCESS

Journal + Issues

Search